Structure Reports

Online
ISSN 1600-5368

Ethylenediammonium tetrabromidomercurate(II) monohydrate

B. Thimme Gowda, ${ }^{\text {a }}$ Sabine Foro, ${ }^{\text {b }}$ Hiromitsu Terao ${ }^{\text {c }}$ and Hartmut Fuess ${ }^{\text {b }}$
a Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and ${ }^{\text {c }}$ Faculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
Correspondence e-mail: gowdabt@yahoo.com

Received 14 July 2009; accepted 14 July 2009
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$;
R factor $=0.024 ; w R$ factor $=0.062$; data-to-parameter ratio $=22.5$.

The $\mathrm{Hg}^{\text {II }}$ atoms in the crystal structure of the title compound, $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{HgBr}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, are tetrahedrally coordinated by four Br atoms and the resulting $\left[\mathrm{HgBr}_{4}\right]^{2-}$ ions are interconnected to the $\left[\mathrm{NH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}\right]^{2+}$ ions and water molecules by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ bonds, forming a threedimensional network. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions are also present. The observed three different $\mathrm{Hg}-\mathrm{Br}$ distances of 2.5597 (6), 2.6862 (8) and 2.6923 (8) \AA in the tetrabromomercurate unit are due to the connection of Br atoms to different numbers of H atoms. The Hg, O and two Br atoms are located on a crystallographic mirror plane. The cation has $\overline{1}$ symmetry with the center of the $\mathrm{C}-\mathrm{C}$ bond lying on a crystallographic center of inversion.

Related literature

For synthetic methods, see: Furukawa et al. (2005). For background to Hg -halogen bonds, see: Ishihara et al. (2002); Furukawa et al. (2005). For a related structure, see: Terao et al. (2009).

Experimental

Crystal data

$$
\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{HgBr}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} \quad M_{r}=600.37
$$

Monoclinic, $P 2_{\mathrm{t}} / m \quad Z=2$
$a=6.4976$ (6) A \quad Mo $K \alpha$ radiation
$b=11.416$ (1) $\AA \quad \mu=27.07 \mathrm{~mm}^{-1}$
$c=8.0161(8) \AA \quad T=100 \mathrm{~K}$
$\beta=103.38(1)^{\circ}$
$0.16 \times 0.10 \times 0.06 \mathrm{~mm}$
$V=578.47$ (9) \AA^{3}

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.062$
$S=1.11$
1240 reflections
55 parameters
3 restraints

Diffraction, 2009)
$T_{\text {min }}=0.052, T_{\text {max }}=0.197$ 2304 measured reflections 1240 independent reflections 1159 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=2.00 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.60 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br}^{\mathrm{i}}$	0.91	2.56	$3.359(5)$	147
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br}^{\mathrm{ii}}$	0.91	3.14	$3.655(5)$	118
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots 1^{\text {iii }}$	0.91	1.98	$2.882(5)$	169
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{Br}^{\mathrm{i}}$	0.91	2.72	$3.482(4)$	141
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{Br} 2$	0.91	2.95	$3.503(5)$	121
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{Br}^{\text {iv }}$	$0.881(19)$	$3.02(3)$	$3.521(6)$	$118(2)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+2,-y,-z+1$; (iii) $x+1, y, z$; (iv) $x, y, z-1$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for resumption of his research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5004).

References

Furukawa, Y., Terao, H., Ishihara, H., Gesing, T. M. \& Buhl, J.-C. (2005). Hyperfine Interact. 159, 143-148.
Ishihara, H., Hatano, N., Horiuchi, K. \& Terao, H. (2002). Z. Naturforsch. Teil A, 57, 343-347.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Terao, H., Gesing, T. M., Ishihara, H., Furukawa, Y. \& Gowda, B. T. (2009). Acta Cryst. E65, m323.

supporting information

Acta Cryst. (2009). E65, m946 [doi:10.1107/S160053680902772X]

Ethylenediammonium tetrabromidomercurate(II) monohydrate

B. Thimme Gowda, Sabine Foro, Hiromitsu Terao and Hartmut Fuess

S1. Comment

Hg atoms due to their soft nature are amenable to polarization and thus the Hg -halogen bonds are sensitive to the intermolecular interactions such as hydrogen bonding (Ishihara et al., 2002). This was evident in the halogen NQR of the Hg compounds in which the resonance frequencies are widely spread (Furukawa et al., 2005). Thus the study of the structure and bonding of this class of compounds is interesting. As a part of our studies in this direction (Terao et al., 2009), we report herein the crystal structure of ethylenediammonium tetrabromomercurate(II) monohydrate (I) (Fig. 1). In the structure, mercury atoms are tetrahedrally coordinated by four bromine atoms and the resulting HgBr_{4} tetrahedra are interconnected to the $\left[\mathrm{NH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}\right]^{2+}$ ions and water molecules by bromine-hydrogen bonds forming a three-dimensional network (Fig. 2). Three different $\mathrm{Hg}-\mathrm{Br}$ distances observed $[\mathrm{Hg}-\mathrm{Br} 1=2.5597$ (6) $\AA, \mathrm{Hg}-\mathrm{Br} 2=$ 2.6862 (8) \AA and $\mathrm{Hg} — \mathrm{Br} 3=2.6923$ (8) \AA] establish the existence of three inequivalent Br atoms in the tetrabromomercurate unit. This may be due to the difference in intensity of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonding with different Br atoms. The packing diagram of the crystal structure, as viewed in the direction of a axis is shown in Fig. 3.

S2. Experimental

Ethylenediammonium tetrabromomercurate(II) monohydrate crystals were prepared by mixing equimolecular proportions of ethylenediammonium bromide and mercury(II) bomide into a methanol solution, followed by a successive evaporation of the solvent.

S3. Refinement

The H atom of the water molecule was located in difference map and was refined with restrained geometry, viz. the $\mathrm{O}-\mathrm{H}$ distance was restrained to 0.85 (3) \AA and $\mathrm{H} — \mathrm{H}$ distance was restrained to $1.365 \AA$, thus leading to the angle of 107°. The other H atoms were positioned with idealized geometry using a riding model with $\mathrm{N}-\mathrm{H}=0.91 \AA$ and $\mathrm{C}-\mathrm{H}=0.99 \AA$. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the $U_{\text {eq }}$ of the parent atom.
The residual electron-density features are located in the region of Hg 1 . The highest peak and the deepest hole are 0.91 and $0.71 \AA$ from Hg 1 , respectivily.

Figure 1
Molecular structure of (I), showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50\% probability level. The H atoms are represented as small spheres of arbitrary radii.

Figure 2
Connection scheme of the HgBr_{4} terahedra with the connected $\left[\mathrm{NH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}\right]^{2+}$ ions, showing the different Hg —Br bonds.

Figure 3
Packing diagram of (I) as viewed in the direction of a axis.

Ethylenediammonium tetrabromidomercurate(II) monohydrate

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{HgBr}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=600.37$
Monoclinic, $P 2_{1} / m$
Hall symbol: -P 2yb
$a=6.4976$ (6) \AA
$b=11.416$ (1) \AA
$c=8.0161$ (8) \AA
$\beta=103.38(1)^{\circ}$
$V=578.47(9) \AA^{3}$
$Z=2$

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω and φ scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min }=0.052, T_{\text {max }}=0.197$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.062$
$S=1.11$
1240 reflections
55 parameters
3 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=532$
$D_{\mathrm{x}}=3.447 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1937 reflections
$\theta=2.6-27.9^{\circ}$
$\mu=27.07 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colourless
$0.16 \times 0.10 \times 0.06 \mathrm{~mm}$

2304 measured reflections
1240 independent reflections
1159 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-8 \rightarrow 7$
$k=-10 \rightarrow 14$
$l=-10 \rightarrow 9$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0387 P)^{2}+1.5899 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.049$
$\Delta \rho_{\max }=2.00 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.60 \mathrm{e}^{-3}$

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.8265(7)$	$0.0383(4)$	$0.2834(5)$	$0.0106(9)$
H1A	0.8539	-0.0264	0.2258	0.013^{*}
H1B	0.9046	0.0996	0.2595	0.013^{*}
H1C	0.6866	0.0563	0.2501	0.013^{*}
C1	$0.8833(8)$	$0.0144(5)$	$0.4718(6)$	$0.0118(11)$
H11	0.7985	-0.0521	0.4984	0.014^{*}
H12	0.8511	0.0840	0.5349	0.014^{*}
Hg1	$0.55745(4)$	0.2500	$0.75798(4)$	$0.01179(11)$
Br1	$0.69952(8)$	$0.04665(4)$	$0.85916(6)$	$0.01038(14)$
Br2	$0.50796(11)$	0.2500	$0.41588(9)$	$0.01061(17)$
Br3	$0.15662(11)$	0.2500	$0.79637(10)$	$0.01234(17)$
O1	$0.0198(8)$	0.2500	$0.1966(7)$	$0.0125(11)$
H1O	$0.032(9)$	$0.1920(13)$	$0.127(5)$	0.015^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.017(2)$	$0.006(2)$	$0.008(2)$	$0.0032(17)$	$0.0007(18)$	$0.0019(17)$
C 1	$0.018(3)$	$0.011(2)$	$0.007(2)$	$0.005(2)$	$0.005(2)$	$0.001(2)$
Hg 1	$0.01411(17)$	$0.00870(16)$	$0.01290(17)$	0.000	$0.00384(11)$	0.000
Br 1	$0.0130(3)$	$0.0098(3)$	$0.0085(2)$	$0.00092(19)$	$0.00280(19)$	$0.00217(19)$
Br 2	$0.0128(3)$	$0.0093(3)$	$0.0090(3)$	0.000	$0.0010(3)$	0.000
Br 3	$0.0134(4)$	$0.0072(3)$	$0.0185(4)$	0.000	$0.0079(3)$	0.000
O 1	$0.015(3)$	$0.010(3)$	$0.014(3)$	0.000	$0.005(2)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 1$	$1.495(6)$	$\mathrm{C} 1-\mathrm{H} 12$	0.9900
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A}$	0.9100	$\mathrm{Hg1}-\mathrm{Br} 1^{\mathrm{ii}}$	$2.5597(6)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~B}$	0.9100	$\mathrm{Hg} 1-\mathrm{Br} 1$	$2.5597(6)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	0.9100	$\mathrm{Hg} 1-\mathrm{Br} 2$	$2.6862(8)$
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.515(10)$	$\mathrm{Hg} 1-\mathrm{Br} 3$	$2.6923(8)$
$\mathrm{C} 1-\mathrm{H} 11$	0.9900	$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	$0.881(19)$

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 12$	109.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{C} 1-\mathrm{C} 1-\mathrm{H} 12$	109.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{H} 11-\mathrm{C} 1-\mathrm{H} 12$	108.2
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{Br}^{\mathrm{ii}}-\mathrm{Hg} 1-\mathrm{Br} 1$	$130.16(3)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{Br}^{1 \mathrm{ii}}-\mathrm{Hg} 1-\mathrm{Br} 2$	$105.823(15)$
$\mathrm{H} 1 \mathrm{~B}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{Br} 2$	$105.823(15)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$109.7(5)$	$\mathrm{Br}{ }^{1 i}-\mathrm{Hg} 1-\mathrm{Br} 3$	$104.551(15)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 11$	109.7	$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{Br} 3$	$104.551(15)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{H} 11$	109.7	$\mathrm{Br} 2 — \mathrm{Hg} 1-\mathrm{Br} 3$	$103.08(3)$

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $x,-y+1 / 2, z$.
Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Br}^{\mathrm{iii}}$	0.91	2.56	$3.359(5)$	147
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Br}^{\mathrm{i}}$	0.91	3.14	$3.655(5)$	118
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{O}^{\text {iv }}$	0.91	1.98	$2.882(5)$	169
$\mathrm{~N} 1 — \mathrm{H} 1 C \cdots \mathrm{Br} 1^{\mathrm{iii}}$	0.91	2.72	$3.482(4)$	141
$\mathrm{~N} 1 — \mathrm{H} 1 C \cdots \mathrm{Br} 2$	0.91	2.95	$3.503(5)$	121
$\mathrm{O}_{1} \mathrm{H} 1 O \cdots \mathrm{Br}^{v}$	$0.88(2)$	$3.02(3)$	$3.521(6)$	$118(2)$

Symmetry codes: (i) $-x+2,-y,-z+1$; (iii) $-x+1,-y,-z+1$; (iv) $x+1, y, z$; (v) $x, y, z-1$.

