

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 5-phenyl-1,2,3,4,4a,5,5a,13coctahvdro-6H-benzo[f]chromeno[3.4-b]indolizine-5a-carboxylate

E. Theboral Sugi Kamala,^a S. Nirmala,^a L. Sudha,^b* S. Kathiravan^c and R. Raghunathan^c

^aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, ^bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India Correspondence e-mail: sudharose18@gmail.com

Received 29 June 2009; accepted 8 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.122; data-to-parameter ratio = 16.5.

In the title compound, C₂₇H₂₇NO₃, the pyrrolidine ring exhibits a twist conformation and the piperidine ring exhibits a chair conformation. The pyrrolidine ring makes dihedral angles of 54.47 (5), 51.50 (5) and 73.37 (6) $^{\circ}$ with the napthalene ring system and the tetrahydropyran and phenyl rings, respectively. The structure is stabilized by intramolecular C- $H \cdots O$ and $C - H \cdots N$ interactions.

Related literature

For general background to the applications and biological activity of indolizine derivatives, see: Gubin et al. (1992); Gupta et al. (2003); Poty et al. (1994); Hema et al. (2003); Malonne et al. (1998); Medda et al. (2003). For puckering parameters, see: Cremer and Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Experimental

Crystal data

C ₂₇ H ₂₇ NO ₃	$\gamma = 87.346 \ (2)^{\circ}$
$M_r = 413.50$	V = 1066.34 (5) Å ³
Triclinic, P1	Z = 2
a = 9.4201 (3) Å	Mo $K\alpha$ radiation
b = 10.6752 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 11.0761 (3) Å	T = 293 K
$\alpha = 78.262 \ (2)^{\circ}$	$0.30 \times 0.20 \times 0.15 \text{ mm}$
$\beta = 77.911 \ (2)^{\circ}$	

Data collection

Bruker Kappa APEXII	22685 measured reflections
diffractometer	4641 independent reflections
Absorption correction: multi-scan	3461 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.026$
$T_{\min} = 0.975, \ T_{\max} = 0.988$	
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.044$	281 parameters
$wR(F^2) = 0.122$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
4641 reflections	$\Delta \rho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	H···A	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8−H8····O3	0.98	2.47	2.8240 (19)	101
C19−H19 <i>B</i> ····N1	0.97	2.55	2.885 (2)	100

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: APEX2 and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

ETSK thanks Professors M. N. Ponnusamy and D. Velmurugan, Department of Crystallography and Biophysics, University of Madras, India, for their guidance and valuable suggestions. ETSK also thanks Dr Babu Varghese, SAIF, IIT-Madras and SRM Management, for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2988).

References

- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981-988.
- Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867-873.
- Hema, R., Parthasarathi, V., Sarkunam, K., Nallu, M. & Linden, A. (2003). Acta Crvst. C59, 0703-0705.
- Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4. 241-242.
- Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.

Poty, C., Gibon, V., Evrard, G., Norberg, B., Vercauteren, D. P., Gubin, J., Chatelain, P. & Durant, F. (1994). *Eur. J. Med. Chem.* 29, 911–923.
Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supporting information

Acta Cryst. (2009). E65, o1923-o1924 [doi:10.1107/S1600536809026774]

Methyl 5-phenyl-1,2,3,4,4a,5,5a,13c-octahydro-6*H*-benzo[*f*]chromeno[3,4*b*]indolizine-5a-carboxylate

E. Theboral Sugi Kamala, S. Nirmala, L. Sudha, S. Kathiravan and R. Raghunathan

S1. Comment

Indolizines, the nitrogen containing heterocyclic systems, are widely distributed in nature; in particular, indolizine derivatives are an important class of heterocyclic bioactive compounds with a wide range of applications, such as pharmaceutical drugs, potential central nervous system depressants, calcium entry blockers, cardiovascular agents, spectral sensitizers and novel dyes(Gubin *et al.*, 1992; Gupta *et al.*, 2003; Poty *et al.*, 1994; Hema *et al.*, 2003).Moreover indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne *et al.*, 1998), antiviral (Medda *et al.*, 2003).

Fig 1 shows the *ORTEP* plot of compound (I). Bond lengths and angles are comparable with other reported values. In the molecule the pyrrolidine ring N1/C5/C6/C7/C8 exhibits *twist* conformation with assymetry parameters (Nardelli, 1983) $\Delta C_s(N1) = 23.66 (1)/(C8) = 14.95 (1)$ and with the puckering parameters (Cremer and Pople, 1975) q2 = 0.4749 (1)Å and $\varphi 2 = 155.74 (2)^\circ$. The six membered ring N1/C1—C5 exhibits *chair* conformation with assymetry parameters $\Delta C_s(N1) = 2.78 (1)/(C3) = 2.78 (1)$ and with the puckering parameters Q = 0.5788 (2) Å, $\Theta = 175.62 (2)^\circ$ and $\varphi = 145 (2)^\circ$. The sum of bond angles around N1 [331.99 (3)°] indicates *sp*³ hybridization. The pyrrolidine ring makes dihedral angles of 54.47 (5)°, 51.50 (5)° and 73.37 (6)° with the napthalene,tetrahydro pyran and phenyl rings respectively. The napthalene and tetrahydro pyran rings are almost planar with each other with a dihedral angle of 8.88 (4)°,

In the crystal packing, atom O3 is involved in intramolecular C - H…O interactions and atom N1 contributes to C - H…N intramolecular interactions.

S2. Experimental

A mixture of (*Z*)-methyl 2-(1-formylnaphthalen-2-yloxy)-3-*p*-tolylacrylate and pipecolinic acid were refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. The product was recrystallized from dry benzene by slow evaporation.

S3. Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C-H = 0.93 or 0.96 Å and Uĩso~(H)= 1.2-1.5U~eq~(C).

Figure 1

Figure 2

The packing of the molecules viewed along *b* axis.

Methyl 5-phenyl-1,2,3,4,4a,5,5a,13c-octahydro-6*H*- benzo[*f*]chromeno[3,4-*b*]indolizine-5a-carboxylate

Crystal data	
$C_{27}H_{27}NO_3$ $M_r = 413.50$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 9.4201 (3) Å b = 10.6752 (3) Å c = 11.0761 (3) Å a = 78.262 (2)° $\beta = 77.911$ (2)° $\gamma = 87.346$ (2)° V = 1066.34 (5) Å ³	Z = 2 F(000) = 440 $D_x = 1.288 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 22685 reflections $\theta = 2.0-27.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Needle, colourless $0.30 \times 0.20 \times 0.15 \text{ mm}$
Data collection	
Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.975, T_{\max} = 0.988$	22685 measured reflections 4641 independent reflections 3461 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -11 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.122$	$w = 1/[\sigma^2(F_o^2) + (0.0534P)^2 + 0.3168P]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
4641 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
281 parameters	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.012 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.54853 (15)	0.76212 (14)	0.13837 (13)	0.0396 (3)	
H1A	0.4898	0.7171	0.2165	0.047*	
H1B	0.5454	0.8527	0.1403	0.047*	
C2	0.70388 (16)	0.71426 (15)	0.12642 (15)	0.0453 (4)	
H2A	0.7052	0.6221	0.1343	0.054*	
H2B	0.7439	0.7339	0.1943	0.054*	
C3	0.79742 (17)	0.77508 (18)	0.00095 (16)	0.0540 (4)	
H3A	0.8930	0.7357	-0.0077	0.065*	
H3B	0.8089	0.8655	-0.0016	0.065*	
C4	0.72958 (17)	0.75893 (18)	-0.10770 (16)	0.0504 (4)	
H4A	0.7854	0.8056	-0.1864	0.060*	
H4B	0.7295	0.6692	-0.1125	0.060*	
C5	0.57534 (15)	0.80960 (13)	-0.08654 (13)	0.0366 (3)	
Н5	0.5812	0.8987	-0.0780	0.044*	
C6	0.47933 (16)	0.80945 (13)	-0.18463 (13)	0.0378 (3)	
H6	0.4643	0.8996	-0.2206	0.045*	
C7	0.32917 (15)	0.76056 (13)	-0.10062 (13)	0.0365 (3)	
C8	0.33931 (14)	0.78431 (12)	0.02922 (13)	0.0340 (3)	
H8	0.3313	0.8762	0.0288	0.041*	
C9	0.22386 (15)	0.71384 (13)	0.13304 (13)	0.0376 (3)	
C10	0.17673 (15)	0.75355 (14)	0.25133 (14)	0.0412 (3)	
C11	0.23444 (18)	0.86035 (16)	0.28129 (15)	0.0476 (4)	
H11	0.3068	0.9082	0.2220	0.057*	

H12 0.2275 0.9661 0.4118 0.073^* C13 0.0784 (2) 0.8262 (2) 0.48593 (17) 0.0714 (6)H13 0.0478 0.8495 0.5638 0.086^* C14 0.0178 (2) 0.7247 (2) 0.46007 (17) 0.0658 (5)H14 -0.0558 0.797 0.5205 0.079^* C15 0.06357 (17) 0.68546 (16) 0.34362 (15) 0.0501 (4)C16 -0.00152 (18) 0.58123 (17) 0.31539 (17) 0.0572 (5)H16 -0.0748 0.5357 0.3758 0.069^* C17 0.04018 (17) 0.54627 (16) 0.20290 (18) 0.0540 (4)H17 -0.0050 0.4782 0.1857 0.065^* C18 0.15284 (16) 0.61359 (14) 0.11133 (15) 0.0441 (4)H19A 0.3044 0.6000 -0.1696 $0.053*$ C20 0.35277 (16) 0.74536 (14) -0.28796 (15) 0.0478 (4)H19B 0.3921 0.5724 -0.0612 $0.57*$ C22 0.63086 (19) 0.56903 (18) -0.39354 (18) 0.0571 (4)H21 0.6021 0.5754 -0.2102 $0.69*$ C23 0.6149 (2) 0.6367 (2) -0.59714 $0.909*$ C24 0.594 (2) 0.7582 (2) -0.51919 (17) 0.0750 (6)H24 0.5486 0.8048 -0.5974 $0.909*$ C25 0.5192 (2) 0.75182 (2) -0.51919 (17) 0.0750 (6)H24 0.5486	C12	0.1870 (2)	0.8954 (2)	0.39497 (17)	0.0612 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H12	0.2275	0.9661	0.4118	0.073*
H13 0.0478 0.8495 0.5638 $0.086*$ C14 0.0178 (2) 0.7247 (2) 0.46007 (17) 0.0658 (5)H14 -0.0558 0.6797 0.5205 $0.079*$ C15 0.06357 (17) 0.68546 (16) 0.34362 (15) 0.0501 (4)C16 -0.00152 (18) 0.58123 (17) 0.31539 (17) 0.0572 (5)H16 -0.0748 0.5357 0.3758 $0.069*$ C17 0.04018 (17) 0.54627 (16) 0.20290 (18) 0.0540 (4)H17 -0.0050 0.4782 0.1857 $0.065*$ C18 0.15284 (16) 0.61359 (14) 0.11133 (15) 0.0431 (4)C19 0.30894 (17) 0.61779 (14) -0.08800 (15) 0.0441 (4)H19A 0.3044 0.6000 -0.1696 $0.053*$ C20 0.53277 (16) 0.74536 (14) -0.29578 (14) 0.0413 (3)C21 0.59051 (17) 0.62247 (15) -0.28796 (15) 0.0478 (4)H21 0.6021 0.5754 -0.2102 $0.0569*$ C22 0.6308 (19) 0.56903 (18) -0.3863 $0.069*$ C23 0.6149 (2) 0.6367 (2) -0.50911 (18) $0.088*$ (5)H23 0.6415 0.6004 -0.5801 $0.83*$ C24 0.5594 (2) 0.7582 (2) -0.51919 (17) 0.0750 (6)H24 0.5486 0.8303 (14) -0.1372 (15) 0.0588 (5)H25 0.4823 0.8949 -0.4222 $0.071*$	C13	0.0784 (2)	0.8262 (2)	0.48593 (17)	0.0714 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H13	0.0478	0.8495	0.5638	0.086*
H14 -0.0558 0.6797 0.5205 $0.079*$ C15 $0.06357(17)$ $0.68546(16)$ $0.34362(15)$ $0.0501(4)$ C16 $-0.0152(18)$ $0.58123(17)$ $0.31539(17)$ $0.0572(5)$ H16 -0.0748 0.5357 0.3758 $0.069*$ C17 $0.04018(17)$ $0.54627(16)$ $0.20290(18)$ $0.0540(4)$ H17 -0.0050 0.4782 0.1857 $0.065*$ C18 $0.15284(16)$ $0.61359(14)$ $0.11133(15)$ $0.0431(4)$ C19 $0.30894(17)$ $0.61779(14)$ $-0.08800(15)$ $0.0441(4)$ H19A 0.3044 0.6000 -0.1696 $0.053*$ C20 $0.53277(16)$ $0.74536(14)$ $-0.28798(14)$ $0.0413(3)$ C21 $0.59051(17)$ $0.62247(15)$ $-0.28796(15)$ $0.0478(4)$ H21 0.6021 0.5754 -0.2102 $0.057*$ C22 $0.63086(19)$ $0.56903(18)$ $-0.39354(18)$ $0.0571(4)$ H22 0.6691 0.4866 -0.3863 $0.069*$ C23 $0.6149(2)$ $0.6367(2)$ $-0.5191(18)$ $0.688(5)$ H23 0.6415 0.6004 -0.5801 $0.083*$ C24 $0.5594(2)$ $0.7582(2)$ $-0.5191(17)$ $0.0750(6)$ H24 0.5486 0.8048 -0.5974 $0.090*$ C25 $0.5192(2)$ $0.81199(18)$ $-0.41372(15)$ $0.0589(5)$ H25 0.4823 0.8949 -0.4222 $0.071*$ C26 $0.20768(16)$ $0.83093(14)$	C14	0.0178 (2)	0.7247 (2)	0.46007 (17)	0.0658 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H14	-0.0558	0.6797	0.5205	0.079*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.06357 (17)	0.68546 (16)	0.34362 (15)	0.0501 (4)
H16 -0.0748 0.5357 0.3758 0.069^* C17 $0.04018 (17)$ $0.54627 (16)$ $0.20290 (18)$ $0.0540 (4)$ H17 -0.0050 0.4782 0.1857 0.065^* C18 $0.15284 (16)$ $0.61359 (14)$ $0.11133 (15)$ $0.0431 (4)$ C19 $0.30894 (17)$ $0.61779 (14)$ $-0.0880 (15)$ $0.0441 (4)$ H19A 0.3044 0.6000 -0.1696 0.053^* C20 $0.53277 (16)$ 0.724 -0.0612 0.053^* C21 $0.59051 (17)$ $0.62247 (15)$ $-0.28796 (15)$ $0.0478 (4)$ H21 0.6021 0.5754 -0.2102 0.057^* C22 $0.63086 (19)$ $0.56903 (18)$ $-0.39354 (18)$ $0.0571 (4)$ H22 0.6691 0.4866 -0.3863 0.069^* C23 $0.6149 (2)$ $0.6367 (2)$ $-0.51911 (18)$ $0.0688 (5)$ H23 0.6415 0.6004 -0.5801 0.083^* C24 $0.5594 (2)$ $0.7582 (2)$ $-0.51919 (17)$ $0.0750 (6)$ H24 0.5486 0.8048 -0.5974 0.090^* C25 $0.5192 (2)$ $0.81199 (18)$ $-0.41372 (15)$ $0.0589 (5)$ H25 0.4823 0.8949 -0.4222 $0.071*$ C26 $0.20768 (16)$ $0.83093 (14)$ $-0.15768 (14)$ $0.0420 (4)$ C27 $0.0803 (2)$ $1.02515 (18)$ $-0.1933 (2)$ $0.0728 (6)$ H27A 0.0737 1.1075 -0.1703 0.109^* H27B<	C16	-0.00152 (18)	0.58123 (17)	0.31539 (17)	0.0572 (5)
C17 $0.04018(17)$ $0.54627(16)$ $0.20290(18)$ $0.0540(4)$ H17 -0.0050 0.4782 0.1857 $0.065*$ C18 $0.15284(16)$ $0.61359(14)$ $0.11133(15)$ $0.0431(4)$ C19 $0.30894(17)$ $0.61779(14)$ $-0.08800(15)$ $0.0441(4)$ H19A 0.3044 0.6000 -0.1696 $0.053*$ C20 $0.53277(16)$ 0.5724 -0.0612 $0.053*$ C21 $0.59051(17)$ $0.62247(15)$ $-0.28796(15)$ $0.0478(4)$ L21 0.6021 0.5754 -0.2102 $0.057*$ C22 $0.63086(19)$ $0.56903(18)$ $-0.39354(18)$ $0.0571(4)$ H22 0.6691 0.4866 -0.3863 $0.069*$ C23 $0.6149(2)$ $0.6367(2)$ $-0.50911(18)$ $0.0688(5)$ H23 0.6415 0.6004 -0.5801 $0.083*$ C24 $0.5594(2)$ $0.7582(2)$ $-0.51919(17)$ $0.0750(6)$ H24 0.5486 0.8048 -0.5974 $0.090*$ C25 $0.5192(2)$ $0.81199(18)$ $-0.41372(15)$ $0.0589(5)$ H25 0.4823 0.8949 -0.4222 $0.071*$ C26 $0.20768(16)$ $0.83093(14)$ $-0.1933(2)$ $0.0728(6)$ C27 $0.0803(2)$ $1.02515(18)$ $-0.1933(2)$ $0.0728(6)$ H27A 0.737 1.075 -0.1703 $0.109*$ H27B -0.0126 0.9839 -0.1656 $0.109*$ H27B -0.0126 0.9839 $-0.21840(14$	H16	-0.0748	0.5357	0.3758	0.069*
H17-0.00500.47820.18570.065*C180.15284 (16)0.61359 (14)0.11133 (15)0.0431 (4)C190.30894 (17)0.61779 (14)-0.08800 (15)0.0441 (4)H19A0.30440.6000-0.16960.053*H19B0.39210.5724-0.06120.053*C200.53277 (16)0.74536 (14)-0.29578 (14)0.0413 (3)C210.59051 (17)0.62247 (15)-0.28796 (15)0.0478 (4)H210.60210.5754-0.21020.057*C220.63086 (19)0.56903 (18)-0.39354 (18)0.0571 (4)H220.66910.4866-0.38630.069*C230.6149 (2)0.6367 (2)-0.50911 (18)0.0688 (5)H240.54860.8048-0.59740.090*C250.5192 (2)0.81199 (18)-0.41372 (15)0.0589 (5)H250.48230.8949-0.42220.071*C260.20768 (16)0.83093 (14)-0.15768 (14)0.0420 (4)C270.803 (2)1.02515 (18)-0.1933 (2)0.0728 (6)H27A0.07371.1075-0.17030.109*H27B-0.01260.9839-0.16560.109*H27C0.10931.0355-0.28320.109*N10.49017 (12)0.74134 (10)0.03267 (10)0.0349 (3)O10.17989 (12)0.57199 (10)0.00045 (11)0.0524 (3)O20.13962 (15)0.78741 (13)-0.21840 (14)0	C17	0.04018 (17)	0.54627 (16)	0.20290 (18)	0.0540 (4)
C180.15284 (16)0.61359 (14)0.11133 (15)0.0431 (4)C190.30894 (17)0.61779 (14) $-0.08800 (15)$ 0.0441 (4)H19A0.30440.6000 -0.1696 0.053*H19B0.39210.5724 -0.0612 0.053*C200.53277 (16)0.74536 (14) $-0.29578 (14)$ 0.0413 (3)C210.59051 (17)0.62247 (15) $-0.28796 (15)$ 0.0478 (4)H210.60210.5754 -0.2102 0.057*C220.63086 (19)0.56903 (18) $-0.39354 (18)$ 0.0571 (4)H220.66910.4866 -0.3863 0.609*C230.6149 (2)0.6367 (2) $-0.50911 (18)$ 0.688 (5)H230.64150.6004 -0.5801 0.083*C240.5594 (2)0.7582 (2) $-0.51919 (17)$ 0.0750 (6)H240.54860.8048 -0.5974 0.090*C250.5192 (2)0.81199 (18) $-0.41372 (15)$ 0.0589 (5)H250.48230.8949 -0.4222 0.071*C260.20768 (16)0.83093 (14) $-0.15768 (14)$ 0.0420 (4)C270.0803 (2)1.02515 (18) $-0.1933 (2)$ 0.0728 (6)H27A0.07371.1075 -0.1703 0.109*H27B -0.0126 0.9839 -0.1656 0.109*H27B -0.0126 0.9839 -0.1656 0.109*H27B -0.126 0.9719 (10)0.0045 (11)0.0524 (3)O10.17989 (12)0.719	H17	-0.0050	0.4782	0.1857	0.065*
C19 $0.30894(17)$ $0.61779(14)$ $-0.08800(15)$ $0.0441(4)$ H19A 0.3044 0.6000 -0.1696 $0.053*$ H19B 0.3921 0.5724 -0.0612 $0.053*$ C20 $0.53277(16)$ $0.74536(14)$ $-0.29578(14)$ $0.0413(3)$ C21 $0.59051(17)$ $0.62247(15)$ $-0.28796(15)$ $0.0478(4)$ H21 0.6021 0.5754 -0.2102 $0.057*$ C22 $0.63086(19)$ $0.56903(18)$ $-0.39354(18)$ $0.0571(4)$ H22 0.6691 0.4866 -0.3863 $0.069*$ C23 $0.6149(2)$ $0.6367(2)$ $-0.50911(18)$ $0.0688(5)$ H23 0.6415 0.6004 -0.5801 $0.83*$ C24 $0.5594(2)$ $0.7582(2)$ $-0.51919(17)$ $0.0750(6)$ H24 0.5486 0.8048 -0.5974 $0.090*$ C25 $0.5192(2)$ $0.81199(18)$ $-0.41372(15)$ $0.589(5)$ H25 0.4823 0.8949 -0.4222 $0.071*$ C26 $0.20768(16)$ $0.83093(14)$ $-0.15768(14)$ $0.0420(4)$ C27 $0.0803(2)$ $1.02515(18)$ $-0.1933(2)$ $0.0728(6)$ H27A 0.0737 1.1075 -0.1703 $0.109*$ H27B -0.0126 0.9839 -0.1656 $0.109*$ H27C 0.1093 1.0355 -0.2832 $0.109*$ N1 $0.49017(12)$ $0.74134(10)$ $0.03267(10)$ $0.0349(3)$ O1 $0.17989(12)$ $0.57199(10)$ 0.000	C18	0.15284 (16)	0.61359 (14)	0.11133 (15)	0.0431 (4)
H19A 0.3044 0.6000 -0.1696 $0.053*$ H19B 0.3921 0.5724 -0.0612 $0.053*$ C20 $0.53277 (16)$ $0.74536 (14)$ $-0.29578 (14)$ $0.0413 (3)$ C21 $0.59051 (17)$ $0.62247 (15)$ $-0.28796 (15)$ $0.0478 (4)$ H21 0.6021 0.5754 -0.2102 $0.057*$ C22 $0.63086 (19)$ $0.56903 (18)$ $-0.39354 (18)$ $0.0571 (4)$ H22 0.6691 0.4866 -0.3863 $0.069*$ C23 $0.6149 (2)$ $0.6367 (2)$ $-0.50911 (18)$ $0.083*$ C24 $0.5594 (2)$ $0.7582 (2)$ $-0.51919 (17)$ $0.0750 (6)$ H24 0.5486 0.8048 -0.5974 $0.090*$ C25 $0.5192 (2)$ $0.81199 (18)$ $-0.41372 (15)$ $0.0589 (5)$ H25 0.4823 0.8949 -0.4222 $0.071*$ C26 $0.20768 (16)$ $0.83093 (14)$ $-0.15768 (14)$ $0.0420 (4)$ C27 $0.0803 (2)$ $1.02515 (18)$ $-0.1933 (2)$ $0.0728 (6)$ H27A 0.0737 1.1075 -0.1703 $0.109*$ H27B -0.0126 0.9839 -0.1656 $0.109*$ H27C 0.1093 1.0355 -0.2832 $0.109*$ N1 $0.49017 (12)$ $0.74134 (10)$ $0.03267 (10)$ $0.0349 (3)$ O1 $0.17989 (12)$ $0.57199 (10)$ $0.00045 (11)$ $0.0524 (3)$ O2 $0.13962 (15)$ $0.78741 (13)$ $-0.21840 (14)$ $0.0738 (4)$ <td>C19</td> <td>0.30894 (17)</td> <td>0.61779 (14)</td> <td>-0.08800 (15)</td> <td>0.0441 (4)</td>	C19	0.30894 (17)	0.61779 (14)	-0.08800 (15)	0.0441 (4)
H19B 0.3921 0.5724 -0.0612 $0.053*$ C20 $0.53277(16)$ $0.74536(14)$ $-0.29578(14)$ $0.0413(3)$ C21 $0.59051(17)$ $0.62247(15)$ $-0.28796(15)$ $0.0478(4)$ H21 0.6021 0.5754 -0.2102 $0.057*$ C22 $0.63086(19)$ $0.56903(18)$ $-0.39354(18)$ $0.0571(4)$ H22 0.6691 0.4866 -0.3863 $0.069*$ C23 $0.6149(2)$ $0.6367(2)$ $-0.50911(18)$ $0.083*$ C24 $0.5594(2)$ $0.7582(2)$ $-0.51919(17)$ $0.0750(6)$ H24 0.5486 0.8048 -0.5974 $0.909*$ C25 $0.5192(2)$ $0.81199(18)$ $-0.41372(15)$ $0.0589(5)$ H25 0.4823 0.8949 -0.4222 $0.071*$ C26 $0.20768(16)$ $0.83093(14)$ $-0.15768(14)$ $0.0420(4)$ C27 $0.0803(2)$ $1.02515(18)$ $-0.1933(2)$ $0.0728(6)$ H27A 0.0737 1.1075 -0.1703 $0.109*$ H27B -0.0126 0.9839 -0.1656 $0.109*$ H27C 0.1093 1.0355 -0.2832 $0.109*$ N1 $0.49017(12)$ $0.74134(10)$ $0.03267(10)$ $0.0349(3)$ O1 $0.17989(12)$ $0.57199(10)$ $0.00045(11)$ $0.524(3)$ O2 $0.13962(15)$ $0.78741(13)$ $-0.21840(14)$ $0.738(4)$	H19A	0.3044	0.6000	-0.1696	0.053*
C20 $0.53277(16)$ $0.74536(14)$ $-0.29578(14)$ $0.0413(3)$ C21 $0.59051(17)$ $0.62247(15)$ $-0.28796(15)$ $0.0478(4)$ H21 0.6021 0.5754 -0.2102 $0.057*$ C22 $0.63086(19)$ $0.56903(18)$ $-0.39354(18)$ $0.0571(4)$ H22 0.6691 0.4866 -0.3863 $0.069*$ C23 $0.6149(2)$ $0.6367(2)$ $-0.50911(18)$ $0.083*$ C24 $0.5594(2)$ $0.7582(2)$ $-0.51919(17)$ $0.0750(6)$ H24 0.5486 0.8048 -0.5974 $0.090*$ C25 $0.5192(2)$ $0.81199(18)$ $-0.41372(15)$ $0.0589(5)$ H25 0.4823 0.8949 -0.4222 $0.071*$ C26 $0.20768(16)$ $0.83093(14)$ $-0.15768(14)$ $0.0420(4)$ C27 $0.0803(2)$ $1.02515(18)$ $-0.1933(2)$ $0.0728(6)$ H27A 0.0737 1.1075 -0.1703 $0.109*$ H27B -0.0126 0.9839 -0.1656 $0.109*$ H27C 0.1093 1.0355 -0.2832 $0.109*$ N1 $0.49017(12)$ $0.74134(10)$ $0.03267(10)$ $0.0349(3)$ O1 $0.17989(12)$ $0.57199(10)$ $0.00045(11)$ $0.0524(3)$ O2 $0.13962(15)$ $0.78741(13)$ $-0.21840(14)$ $0.738(4)$	H19B	0.3921	0.5724	-0.0612	0.053*
C21 $0.59051(17)$ $0.62247(15)$ $-0.28796(15)$ $0.0478(4)$ H21 0.6021 0.5754 -0.2102 $0.057*$ C22 $0.63086(19)$ $0.56903(18)$ $-0.39354(18)$ $0.0571(4)$ H22 0.6691 0.4866 -0.3863 $0.069*$ C23 $0.6149(2)$ $0.6367(2)$ $-0.50911(18)$ $0.688(5)$ H23 0.6415 0.6004 -0.5801 $0.083*$ C24 $0.5594(2)$ $0.7582(2)$ $-0.51919(17)$ $0.0750(6)$ H24 0.5486 0.8048 -0.5974 $0.090*$ C25 $0.5192(2)$ $0.81199(18)$ $-0.41372(15)$ $0.589(5)$ H25 0.4823 0.8949 -0.4222 $0.071*$ C26 $0.20768(16)$ $0.83093(14)$ $-0.15768(14)$ $0.0420(4)$ C27 $0.0803(2)$ $1.02515(18)$ $-0.1933(2)$ $0.0728(6)$ H27A 0.0737 1.1075 -0.1703 $0.109*$ H27C 0.1093 1.0355 -0.2832 $0.109*$ N1 $0.49017(12)$ $0.74134(10)$ $0.03267(10)$ $0.0349(3)$ O1 $0.17989(12)$ $0.57199(10)$ $0.00045(11)$ $0.0524(3)$ O2 $0.13962(15)$ $0.78741(13)$ $-0.21840(14)$ $0.0738(4)$	C20	0.53277 (16)	0.74536 (14)	-0.29578 (14)	0.0413 (3)
H21 0.6021 0.5754 -0.2102 $0.057*$ C22 $0.63086 (19)$ $0.56903 (18)$ $-0.39354 (18)$ $0.0571 (4)$ H22 0.6691 0.4866 -0.3863 $0.069*$ C23 $0.6149 (2)$ $0.6367 (2)$ $-0.50911 (18)$ $0.0688 (5)$ H23 0.6415 0.6004 -0.5801 $0.083*$ C24 $0.5594 (2)$ $0.7582 (2)$ $-0.51919 (17)$ $0.0750 (6)$ H24 0.5486 0.8048 -0.5974 $0.909*$ C25 $0.5192 (2)$ $0.81199 (18)$ $-0.41372 (15)$ $0.0589 (5)$ H25 0.4823 0.8949 -0.4222 $0.071*$ C26 $0.20768 (16)$ $0.83093 (14)$ $-0.15768 (14)$ $0.0420 (4)$ C27 $0.0803 (2)$ $1.02515 (18)$ $-0.1933 (2)$ $0.0728 (6)$ H27A 0.0737 1.1075 -0.1703 $0.109*$ H27C 0.1093 1.0355 -0.2832 $0.109*$ N1 $0.49017 (12)$ $0.74134 (10)$ $0.03267 (10)$ $0.0349 (3)$ O1 $0.17989 (12)$ $0.57199 (10)$ $0.00045 (11)$ $0.0524 (3)$ O2 $0.13962 (15)$ $0.78741 (13)$ $-0.21840 (14)$ $0.0738 (4)$	C21	0.59051 (17)	0.62247 (15)	-0.28796 (15)	0.0478 (4)
C22 $0.63086(19)$ $0.56903(18)$ $-0.39354(18)$ $0.0571(4)$ H22 0.6691 0.4866 -0.3863 $0.069*$ C23 $0.6149(2)$ $0.6367(2)$ $-0.50911(18)$ $0.0688(5)$ H23 0.6415 0.6004 -0.5801 $0.083*$ C24 $0.5594(2)$ $0.7582(2)$ $-0.51919(17)$ $0.0750(6)$ H24 0.5486 0.8048 -0.5974 $0.090*$ C25 $0.5192(2)$ $0.81199(18)$ $-0.41372(15)$ $0.0589(5)$ H25 0.4823 0.8949 -0.4222 $0.071*$ C26 $0.20768(16)$ $0.83093(14)$ $-0.15768(14)$ $0.0420(4)$ C27 $0.0803(2)$ $1.02515(18)$ $-0.1933(2)$ $0.0728(6)$ H27A 0.0737 1.1075 -0.1703 $0.109*$ H27B -0.0126 0.9839 -0.1656 $0.109*$ H27C 0.1093 1.0355 -0.2832 $0.109*$ N1 $0.49017(12)$ $0.74134(10)$ $0.03267(10)$ $0.0349(3)$ O1 $0.17989(12)$ $0.57199(10)$ $0.00045(11)$ $0.0738(4)$	H21	0.6021	0.5754	-0.2102	0.057*
H22 0.6691 0.4866 -0.3863 $0.069*$ C23 0.6149 (2) 0.6367 (2) -0.50911 (18) 0.0688 (5)H23 0.6415 0.6004 -0.5801 $0.083*$ C24 0.5594 (2) 0.7582 (2) -0.51919 (17) 0.0750 (6)H24 0.5486 0.8048 -0.5974 $0.090*$ C25 0.5192 (2) 0.81199 (18) -0.41372 (15) 0.0589 (5)H25 0.4823 0.8949 -0.4222 $0.071*$ C26 0.20768 (16) 0.83093 (14) -0.15768 (14) 0.0420 (4)C27 0.0803 (2) 1.02515 (18) -0.1933 (2) 0.0728 (6)H27A 0.0737 1.1075 -0.1703 $0.109*$ H27B -0.0126 0.9839 -0.1656 $0.109*$ H27C 0.1093 1.0355 -0.2832 $0.109*$ N1 0.49017 (12) 0.74134 (10) 0.03267 (10) 0.0349 (3)O1 0.17989 (12) 0.57199 (10) 0.00045 (11) 0.0728 (4)	C22	0.63086 (19)	0.56903 (18)	-0.39354 (18)	0.0571 (4)
C23 $0.6149(2)$ $0.6367(2)$ $-0.50911(18)$ $0.0688(5)$ H23 0.6415 0.6004 -0.5801 0.083^* C24 $0.5594(2)$ $0.7582(2)$ $-0.51919(17)$ $0.0750(6)$ H24 0.5486 0.8048 -0.5974 0.090^* C25 $0.5192(2)$ $0.81199(18)$ $-0.41372(15)$ $0.0589(5)$ H25 0.4823 0.8949 -0.4222 0.071^* C26 $0.20768(16)$ $0.83093(14)$ $-0.15768(14)$ $0.0420(4)$ C27 $0.0803(2)$ $1.02515(18)$ $-0.1933(2)$ $0.0728(6)$ H27B -0.0126 0.9839 -0.1656 0.109^* H27C 0.1093 1.0355 -0.2832 0.109^* N1 $0.49017(12)$ $0.74134(10)$ $0.03267(10)$ $0.0349(3)$ O1 $0.17989(12)$ $0.57199(10)$ $0.00045(11)$ $0.0524(3)$ O2 $0.13962(15)$ $0.78741(13)$ $-0.21840(14)$ $0.0738(4)$	H22	0.6691	0.4866	-0.3863	0.069*
H23 0.6415 0.6004 -0.5801 $0.083*$ C24 0.5594 (2) 0.7582 (2) -0.51919 (17) 0.0750 (6)H24 0.5486 0.8048 -0.5974 $0.090*$ C25 0.5192 (2) 0.81199 (18) -0.41372 (15) 0.0589 (5)H25 0.4823 0.8949 -0.4222 $0.071*$ C26 0.20768 (16) 0.83093 (14) -0.15768 (14) 0.0420 (4)C27 0.0803 (2) 1.02515 (18) -0.1933 (2) 0.0728 (6)H27A 0.0737 1.1075 -0.1703 $0.109*$ H27B -0.0126 0.9839 -0.1656 $0.109*$ H27C 0.1093 1.0355 -0.2832 $0.109*$ N1 0.49017 (12) 0.74134 (10) 0.03267 (10) 0.0349 (3)O1 0.17989 (12) 0.57199 (10) 0.00045 (11) 0.0524 (3)O2 0.13962 (15) 0.78741 (13) -0.21840 (14) 0.0738 (4)	C23	0.6149 (2)	0.6367 (2)	-0.50911 (18)	0.0688 (5)
C24 $0.5594(2)$ $0.7582(2)$ $-0.51919(17)$ $0.0750(6)$ H24 0.5486 0.8048 -0.5974 $0.090*$ C25 $0.5192(2)$ $0.81199(18)$ $-0.41372(15)$ $0.0589(5)$ H25 0.4823 0.8949 -0.4222 $0.071*$ C26 $0.20768(16)$ $0.83093(14)$ $-0.15768(14)$ $0.0420(4)$ C27 $0.0803(2)$ $1.02515(18)$ $-0.1933(2)$ $0.0728(6)$ H27A 0.0737 1.1075 -0.1703 $0.109*$ H27B -0.0126 0.9839 -0.1656 $0.109*$ H27C 0.1093 1.0355 -0.2832 $0.109*$ N1 $0.49017(12)$ $0.74134(10)$ $0.03267(10)$ $0.0349(3)$ O1 $0.17989(12)$ $0.57199(10)$ $0.00045(11)$ $0.0524(3)$ O2 $0.13962(15)$ $0.78741(13)$ $-0.21840(14)$ $0.0738(4)$	H23	0.6415	0.6004	-0.5801	0.083*
H240.54860.8048-0.59740.090*C250.5192 (2)0.81199 (18)-0.41372 (15)0.0589 (5)H250.48230.8949-0.42220.071*C260.20768 (16)0.83093 (14)-0.15768 (14)0.0420 (4)C270.0803 (2)1.02515 (18)-0.1933 (2)0.0728 (6)H27A0.07371.1075-0.17030.109*H27B-0.01260.9839-0.16560.109*H27C0.10931.0355-0.28320.109*N10.49017 (12)0.74134 (10)0.03267 (10)0.0349 (3)O10.17989 (12)0.57199 (10)0.00045 (11)0.0524 (3)O20.13962 (15)0.78741 (13)-0.21840 (14)0.0738 (4)	C24	0.5594 (2)	0.7582 (2)	-0.51919 (17)	0.0750 (6)
C25 $0.5192 (2)$ $0.81199 (18)$ $-0.41372 (15)$ $0.0589 (5)$ H25 0.4823 0.8949 -0.4222 0.071^* C26 $0.20768 (16)$ $0.83093 (14)$ $-0.15768 (14)$ $0.0420 (4)$ C27 $0.0803 (2)$ $1.02515 (18)$ $-0.1933 (2)$ $0.0728 (6)$ H27A 0.0737 1.1075 -0.1703 0.109^* H27B -0.0126 0.9839 -0.1656 0.109^* H27C 0.1093 1.0355 -0.2832 0.109^* N1 $0.49017 (12)$ $0.74134 (10)$ $0.03267 (10)$ $0.0349 (3)$ O1 $0.17989 (12)$ $0.57199 (10)$ $0.00045 (11)$ $0.0524 (3)$ O2 $0.13962 (15)$ $0.78741 (13)$ $-0.21840 (14)$ $0.0738 (4)$	H24	0.5486	0.8048	-0.5974	0.090*
H250.48230.8949-0.42220.071*C260.20768 (16)0.83093 (14)-0.15768 (14)0.0420 (4)C270.0803 (2)1.02515 (18)-0.1933 (2)0.0728 (6)H27A0.07371.1075-0.17030.109*H27B-0.01260.9839-0.16560.109*H27C0.10931.0355-0.28320.109*N10.49017 (12)0.74134 (10)0.03267 (10)0.0349 (3)O10.17989 (12)0.57199 (10)0.00045 (11)0.0524 (3)O20.13962 (15)0.78741 (13)-0.21840 (14)0.0738 (4)	C25	0.5192 (2)	0.81199 (18)	-0.41372 (15)	0.0589 (5)
C26 $0.20768(16)$ $0.83093(14)$ $-0.15768(14)$ $0.0420(4)$ C27 $0.0803(2)$ $1.02515(18)$ $-0.1933(2)$ $0.0728(6)$ H27A 0.0737 1.1075 -0.1703 $0.109*$ H27B -0.0126 0.9839 -0.1656 $0.109*$ H27C 0.1093 1.0355 -0.2832 $0.109*$ N1 $0.49017(12)$ $0.74134(10)$ $0.03267(10)$ $0.0349(3)$ O1 $0.17989(12)$ $0.57199(10)$ $0.00045(11)$ $0.0524(3)$ O2 $0.13962(15)$ $0.78741(13)$ $-0.21840(14)$ $0.0738(4)$	H25	0.4823	0.8949	-0.4222	0.071*
C270.0803 (2)1.02515 (18)-0.1933 (2)0.0728 (6)H27A0.07371.1075-0.17030.109*H27B-0.01260.9839-0.16560.109*H27C0.10931.0355-0.28320.109*N10.49017 (12)0.74134 (10)0.03267 (10)0.0349 (3)O10.17989 (12)0.57199 (10)0.00045 (11)0.0524 (3)O20.13962 (15)0.78741 (13)-0.21840 (14)0.0738 (4)	C26	0.20768 (16)	0.83093 (14)	-0.15768 (14)	0.0420 (4)
H27A0.07371.1075-0.17030.109*H27B-0.01260.9839-0.16560.109*H27C0.10931.0355-0.28320.109*N10.49017 (12)0.74134 (10)0.03267 (10)0.0349 (3)O10.17989 (12)0.57199 (10)0.00045 (11)0.0524 (3)O20.13962 (15)0.78741 (13)-0.21840 (14)0.0738 (4)	C27	0.0803 (2)	1.02515 (18)	-0.1933 (2)	0.0728 (6)
H27B-0.01260.9839-0.16560.109*H27C0.10931.0355-0.28320.109*N10.49017 (12)0.74134 (10)0.03267 (10)0.0349 (3)O10.17989 (12)0.57199 (10)0.00045 (11)0.0524 (3)O20.13962 (15)0.78741 (13)-0.21840 (14)0.0738 (4)	H27A	0.0737	1.1075	-0.1703	0.109*
H27C0.10931.0355-0.28320.109*N10.49017 (12)0.74134 (10)0.03267 (10)0.0349 (3)O10.17989 (12)0.57199 (10)0.00045 (11)0.0524 (3)O20.13962 (15)0.78741 (13)-0.21840 (14)0.0738 (4)	H27B	-0.0126	0.9839	-0.1656	0.109*
N10.49017 (12)0.74134 (10)0.03267 (10)0.0349 (3)O10.17989 (12)0.57199 (10)0.00045 (11)0.0524 (3)O20.13962 (15)0.78741 (13)-0.21840 (14)0.0738 (4)	H27C	0.1093	1.0355	-0.2832	0.109*
O10.17989 (12)0.57199 (10)0.00045 (11)0.0524 (3)O20.13962 (15)0.78741 (13)-0.21840 (14)0.0738 (4)	N1	0.49017 (12)	0.74134 (10)	0.03267 (10)	0.0349 (3)
O2 0.13962 (15) 0.78741 (13) -0.21840 (14) 0.0738 (4)	01	0.17989 (12)	0.57199 (10)	0.00045 (11)	0.0524 (3)
	O2	0.13962 (15)	0.78741 (13)	-0.21840 (14)	0.0738 (4)
O30.18643 (13)0.94760 (11)-0.13447 (13)0.0610 (4)	O3	0.18643 (13)	0.94760 (11)	-0.13447 (13)	0.0610 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0406 (8)	0.0426 (8)	0.0360 (8)	0.0003 (6)	-0.0123 (6)	-0.0045 (6)
C2	0.0417 (8)	0.0485 (8)	0.0495 (9)	0.0022 (7)	-0.0186 (7)	-0.0092 (7)
C3	0.0359 (8)	0.0718 (11)	0.0571 (11)	-0.0019 (8)	-0.0116 (7)	-0.0172 (9)
C4	0.0384 (8)	0.0672 (10)	0.0466 (9)	-0.0003 (7)	-0.0068 (7)	-0.0153 (8)
C5	0.0401 (8)	0.0355 (7)	0.0331 (7)	-0.0035 (6)	-0.0068 (6)	-0.0042 (6)
C6	0.0427 (8)	0.0346 (7)	0.0344 (8)	0.0016 (6)	-0.0092 (6)	-0.0020 (6)
C7	0.0380 (7)	0.0355 (7)	0.0368 (8)	0.0032 (6)	-0.0112 (6)	-0.0062 (6)
C8	0.0354 (7)	0.0320 (6)	0.0348 (7)	0.0028 (5)	-0.0116 (6)	-0.0035 (5)
C9	0.0332 (7)	0.0377 (7)	0.0384 (8)	0.0052 (6)	-0.0093 (6)	0.0010 (6)

C10	0.0353 (7)	0.0467 (8)	0.0377 (8)	0.0105 (6)	-0.0105 (6)	0.0016 (6)
C11	0.0452 (9)	0.0583 (9)	0.0393 (8)	0.0089 (7)	-0.0116 (7)	-0.0083 (7)
C12	0.0594 (11)	0.0808 (13)	0.0485 (10)	0.0128 (9)	-0.0170 (9)	-0.0209 (9)
C13	0.0698 (13)	0.1044 (17)	0.0372 (10)	0.0179 (12)	-0.0085 (9)	-0.0145 (10)
C14	0.0548 (11)	0.0877 (14)	0.0406 (10)	0.0156 (10)	0.0001 (8)	0.0062 (9)
C15	0.0393 (8)	0.0583 (10)	0.0431 (9)	0.0113 (7)	-0.0065 (7)	0.0075 (7)
C16	0.0392 (9)	0.0582 (10)	0.0591 (11)	0.0025 (8)	0.0005 (8)	0.0119 (8)
C17	0.0380 (8)	0.0464 (9)	0.0707 (12)	-0.0031 (7)	-0.0078 (8)	0.0018 (8)
C18	0.0356 (7)	0.0408 (8)	0.0492 (9)	0.0031 (6)	-0.0088 (7)	-0.0013 (7)
C19	0.0437 (8)	0.0409 (8)	0.0480 (9)	-0.0014 (6)	-0.0076 (7)	-0.0113 (7)
C20	0.0406 (8)	0.0486 (8)	0.0342 (8)	-0.0004 (6)	-0.0088 (6)	-0.0058 (6)
C21	0.0476 (9)	0.0520 (9)	0.0443 (9)	0.0055 (7)	-0.0102 (7)	-0.0111 (7)
C22	0.0482 (9)	0.0654 (11)	0.0605 (11)	0.0050 (8)	-0.0059 (8)	-0.0255 (9)
C23	0.0632 (12)	0.0998 (16)	0.0486 (11)	0.0020 (11)	-0.0046 (9)	-0.0338 (11)
C24	0.0890 (15)	0.1004 (16)	0.0344 (10)	0.0088 (13)	-0.0153 (10)	-0.0098 (10)
C25	0.0689 (12)	0.0660 (11)	0.0385 (9)	0.0091 (9)	-0.0128 (8)	-0.0031 (8)
C26	0.0432 (8)	0.0482 (8)	0.0380 (8)	0.0029 (7)	-0.0154 (7)	-0.0098 (6)
C27	0.0742 (13)	0.0566 (11)	0.0990 (16)	0.0198 (9)	-0.0548 (12)	-0.0080 (10)
N1	0.0328 (6)	0.0373 (6)	0.0334 (6)	0.0007 (5)	-0.0090 (5)	-0.0022 (5)
01	0.0482 (6)	0.0477 (6)	0.0609 (7)	-0.0112 (5)	-0.0050 (5)	-0.0140 (5)
O2	0.0823 (10)	0.0762 (9)	0.0850 (10)	0.0176 (7)	-0.0542 (8)	-0.0328 (8)
03	0.0680 (8)	0.0456 (6)	0.0851 (9)	0.0183 (5)	-0.0509 (7)	-0.0167 (6)

Geometric parameters (Å, °)

C1—N1	1.4521 (18)	С12—Н12	0.9300
C1—C2	1.5157 (19)	C13—C14	1.355 (3)
C1—H1A	0.9700	C13—H13	0.9300
C1—H1B	0.9700	C14—C15	1.412 (3)
C2—C3	1.517 (2)	C14—H14	0.9300
C2—H2A	0.9700	C15—C16	1.413 (3)
C2—H2B	0.9700	C16—C17	1.348 (3)
C3—C4	1.518 (2)	C16—H16	0.9300
С3—НЗА	0.9700	C17—C18	1.412 (2)
С3—Н3В	0.9700	C17—H17	0.9300
C4—C5	1.515 (2)	C18—O1	1.3604 (19)
C4—H4A	0.9700	C19—O1	1.4276 (18)
C4—H4B	0.9700	C19—H19A	0.9700
C5—N1	1.4618 (17)	C19—H19B	0.9700
C5—C6	1.553 (2)	C20—C25	1.383 (2)
С5—Н5	0.9800	C20—C21	1.390 (2)
C6—C20	1.5128 (19)	C21—C22	1.379 (2)
C6—C7	1.568 (2)	C21—H21	0.9300
С6—Н6	0.9800	C22—C23	1.370 (3)
C7—C26	1.5178 (19)	C22—H22	0.9300
C7—C19	1.5191 (19)	C23—C24	1.368 (3)
С7—С8	1.5328 (19)	С23—Н23	0.9300
C8—N1	1.4788 (16)	C24—C25	1.380 (3)

С8—С9	1.5070 (19)	C24—H24	0.9300
С8—Н8	0.9800	С25—Н25	0.9300
C9—C18	1.375 (2)	C26—O2	1.1892 (18)
C9—C10	1.435 (2)	C26—O3	1.3203 (18)
C10—C11	1.412 (2)	С27—ОЗ	1.4445 (18)
C10—C15	1.422 (2)	С27—Н27А	0.9600
C11—C12	1.366 (2)	С27—Н27В	0.9600
C11—H11	0.9300	С27—Н27С	0.9600
C12—C13	1.393 (3)		
N1—C1—C2	110.04 (12)	C11—C12—H12	119.7
N1—C1—H1A	109.7	C13—C12—H12	119.7
C2—C1—H1A	109.7	C14—C13—C12	119.46 (18)
N1—C1—H1B	109.7	C14—C13—H13	120.3
C2—C1—H1B	109.7	C12—C13—H13	120.3
H1A—C1—H1B	108.2	C13—C14—C15	121.63 (18)
C1—C2—C3	111.46 (13)	C13—C14—H14	119.2
C1—C2—H2A	109.3	C15—C14—H14	119.2
C3—C2—H2A	109.3	C14—C15—C16	121.75 (17)
C1—C2—H2B	109.3	C14—C15—C10	119.33 (18)
C3—C2—H2B	109.3	C16—C15—C10	118.91 (15)
H2A—C2—H2B	108.0	C17—C16—C15	121.48 (16)
C2—C3—C4	110.99 (14)	C17—C16—H16	119.3
С2—С3—НЗА	109.4	C15—C16—H16	119.3
С4—С3—НЗА	109.4	C16—C17—C18	119.65 (17)
С2—С3—Н3В	109.4	C16—C17—H17	120.2
С4—С3—Н3В	109.4	C18—C17—H17	120.2
НЗА—СЗ—НЗВ	108.0	O1—C18—C9	124.15 (14)
C5—C4—C3	108.85 (13)	O1—C18—C17	113.58 (14)
C5—C4—H4A	109.9	C9—C18—C17	122.24 (15)
C3—C4—H4A	109.9	O1—C19—C7	111.98 (12)
C5—C4—H4B	109.9	O1—C19—H19A	109.2
C3—C4—H4B	109.9	С7—С19—Н19А	109.2
H4A—C4—H4B	108.3	O1—C19—H19B	109.2
N1C5C4	110.61 (12)	C7—C19—H19B	109.2
N1—C5—C6	104.91 (11)	H19A—C19—H19B	107.9
C4—C5—C6	120.75 (12)	C25—C20—C21	117.25 (15)
N1—C5—H5	106.6	C25—C20—C6	117.84 (14)
C4—C5—H5	106.6	C21—C20—C6	124.88 (13)
С6—С5—Н5	106.6	C22—C21—C20	121.16 (16)
C20—C6—C5	120.22 (12)	C22—C21—H21	119.4
C20—C6—C7	115.04 (12)	C20—C21—H21	119.4
C5—C6—C7	103.10 (11)	C23—C22—C21	120.37 (17)
С20—С6—Н6	105.8	С23—С22—Н22	119.8
С5—С6—Н6	105.8	C21—C22—H22	119.8
С7—С6—Н6	105.8	C24—C23—C22	119.46 (17)
C26—C7—C19	108.51 (12)	C24—C23—H23	120.3
C26—C7—C8	115.68 (11)	C22—C23—H23	120.3

С19—С7—С8	107.65 (11)	C23—C24—C25	120.25 (18)
C26—C7—C6	109.40 (11)	C23—C24—H24	119.9
С19—С7—С6	112.66 (11)	C25—C24—H24	119.9
C8—C7—C6	102.97 (11)	C24—C25—C20	121.49 (18)
N1—C8—C9	115.59 (10)	С24—С25—Н25	119.3
N1—C8—C7	99.80 (10)	С20—С25—Н25	119.3
C9—C8—C7	112.33 (12)	O2—C26—O3	123.07 (14)
N1—C8—H8	109.6	O2—C26—C7	124.22 (14)
С9—С8—Н8	109.6	O3—C26—C7	112.70 (12)
С7—С8—Н8	109.6	O3—C27—H27A	109.5
C18—C9—C10	118.14 (13)	O3—C27—H27B	109.5
C18—C9—C8	119.29 (13)	H27A—C27—H27B	109.5
С10—С9—С8	122.39 (13)	O3—C27—H27C	109.5
C11—C10—C15	117.06 (15)	H27A—C27—H27C	109.5
C11—C10—C9	123.40 (14)	H27B—C27—H27C	109.5
C15—C10—C9	119.52 (15)	C1—N1—C5	110.91 (11)
C12—C11—C10	121.81 (17)	C1—N1—C8	116.93 (11)
C12—C11—H11	119.1	C5—N1—C8	104.15 (10)
C10-C11-H11	119.1	C18—O1—C19	116.88 (12)
C11—C12—C13	120.7 (2)	C26—O3—C27	116.46 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
С8—Н8…О3	0.98	2.47	2.8240 (19)	101
C19—H19 <i>B</i> …N1	0.97	2.55	2.885 (2)	100