organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(Methoxycarbonyl)anilinium dihydrogen phosphate

Muhammad Shafiq,^a Islam Ullah Khan,^a Muhammad Nadeem Arshad,^a* Muneeb Hayat Khan^a and Jim Simpson^b

^aMaterials Chemistry laboratory, Department of Chemistry, GC University, Lahore, Pakistan, and ^bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

Correspondence e-mail: mnachemist@hotmail.com

Received 29 June 2009; accepted 30 June 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.102; data-to-parameter ratio = 15.8.

The title compound, $C_8H_{10}NO_2^+ \cdot H_2PO_4^-$, is a derivative of the naturally occurring compound methylanthranilate. The asymmetric unit comprises the 2-(methoxycarbonyl)anilinium cation and the dihydrogen phosphate anion. In the cation, the dihedral angle between the benzene ring plane and that through the methyl ester substituent is $22.94 (9)^{\circ}$. In the crystal, adjacent cations and anions form dimers through N- $H \cdots O$ and $O - H \cdots O$ hydrogen bonds, respectively. Additional $N-H \cdots O$ and $C-H \cdots O$ contacts result in a network of cation and anion dimers stacked down the *b* axis.

Related literature

For thiazine-related heterocycles see: Shafiq et al. (2009a). For related structures, see: Gel'mbol'dt et al. (2006); Ma et al. (2005); Shafiq et al. (2008, 2009b).

Experimental

Crystal data $C_8H_{10}NO_2^+ \cdot H_2PO_4^ M_r = 249.16$ Monoclinic, C2/c a = 20.939 (3) Å b = 4.7880(5) Å c = 22.283 (4) Å $\beta = 114.970 \ (5)^{\circ}$

V = 2025.2 (5) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.29 \text{ mm}^-$ T = 296 K $0.39 \times 0.21 \times 0.17~\text{mm}$

Data	collection	
Duiu	concenton	

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.928, T_{\rm max} = 0.958$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.102$	independent and constrained
S = 1.07	refinement
2413 reflections	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$
153 parameters	$\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm \AA}^{-3}$

10812 measured reflections

 $R_{\rm int} = 0.035$

2413 independent reflections

2078 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C4—H4···O5	0.93	2.68	3.387 (2)	133
C4-H4···O6	0.93	2.71	3.590 (2)	158
$C3 - H3 \cdots O2^{i}$	0.93	2.72	3.609 (2)	162
$N1 - H1A \cdots O3^{ii}$	0.89	1.93	2.8218 (18)	178
$N1 - H1A \cdots O5^{ii}$	0.89	2.68	3.190 (2)	118
$N1 - H1C \cdot \cdot \cdot O3^{iii}$	0.89	2.01	2.9005 (18)	175
$N1 - H1B \cdots O3^{iv}$	0.89	2.09	2.9400 (17)	160
$O5 - H5O \cdots O6^{v}$	0.78 (2)	1.83 (2)	2.6021 (17)	170 (2)
$O4-H4O\cdots O6^{vi}$	0.72 (2)	1.88 (2)	2.6015 (17)	179 (2)

Symmetry codes: (i) $-x, y, -z + \frac{3}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $x, -y + 1, z + \frac{1}{2}$; (v) x, y + 1, z; (vi) -x, -y + 1, -z + 1

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

MS & MNA acknowledge the Higher Education Commission of Pakistan for providing PhD Scholarships under the Indigenous 5000 PhD fellowship program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2987).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Gel'mbol'dt, V. O., Ganin, E. V., Koroeva, L. V., Minacheva, L. Kh., Sergienko, V. S. & Ennan, A. A. (2006). Zh. Neorg. Khim. 51, 237-244.
- Ma, Y.-Y., Yu, Y., Wu, Y.-F., Xiao, F.-P. & Jin, L.-F. (2005). Acta Cryst. E61, 03497-03499.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Haider, Z. (2009a). Acta Cryst. E65, 01413.
- Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Khan, M. H. (2009b). Acta Cryst. E65, 0955.
- Shafiq, M., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, 0389.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o1786 [doi:10.1107/S1600536809025252]

2-(Methoxycarbonyl)anilinium dihydrogen phosphate

Muhammad Shafiq, Islam Ullah Khan, Muhammad Nadeem Arshad, Muneeb Hayat Khan and Jim Simpson

S1. Comment

Methylanthranilite is a naturally occurring compound which has been used in food flavoring, as a fragrance additive and a bird repellent. Our group has been involved in the synthesis of heterocyclic molecules related to benzothiazine (Shafiq *et al.*, 2009*a*) in which the title compound has been used as a starting material (Shafiq *et al.*, 2008; Shafiq *et al.*, 2009*b*). Herein we report the structure of title compound which was obtained during the synthesis of methylanthranilate Schiff base derivatives.

The asymmetric unit comprises the 2-(methoxycarbonyl)anilinium cation and the dihydrogen phosphate anion linked by bifurcated C4–H4···O5 and C4—H4···O6 interactions, Fig. 1. In the cation the dihedral angle between the C1···C6 benzene ring plane and that through the C2,C7(O1),O2,C8 atoms of the methyl ester substituent is 22.94 (9) °. Bond distances within the molecule are normal and similar to those observed in comparable structures (Gel'mbol'dt *et al.*, 2006; Ma *et al.*, 2005). In the crystal, adjacent cations and anions form dimers through N1—H1A···O1 and O4—H4O···O6 hydrogen bonds respectively, Fig. 2. Additional N—H···O and C—H···O contacts result in a network of cation and anion dimers stacked down the *b* axis, Fig. 3.

S2. Experimental

The title compound was obtained during the synthesis of Schiff base of methyl anthranilate. Methyl anthranilite (0.5 g, 0.0 mol) was dissolved in methanol (5 ml). A few drops of polyphosphoric acid were added to the above solution to precipitate the product which was recrystalized from methanol.

S3. Refinement

The H atoms bound to N1, O4 and O5 were located in a difference Fourier map and their coordinates were refined with $U_{iso}=1.5U_{eq}$ (N) and $1.2U_{eq}$ (O). All other H-atoms were placed in calculated positions and refined using a riding model with d(C—H) = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic and 0.96 Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ H atoms.

Figure 1

The asymmetric unit of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Hydrogen bonds are drawn as dashed lines.

Figure 2

Dimers formed by the cations and anions in the structure of (I) with hydrogen bonds drawn as dashed lines.

Figure 3

Crystal packing of (I) viewed down the b axis

2-(Methoxycarbonyl)anilinium dihydrogen phosphate

Crystal data

C₈H₁₀NO₂⁺·H₂PO₄⁻ $M_r = 249.16$ Monoclinic, C2/c Hall symbol: -C 2yc a = 20.939 (3) Å b = 4.7880 (5) Å c = 22.283 (4) Å $\beta = 114.970$ (5)° V = 2025.2 (5) Å³ Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.928, T_{\max} = 0.958$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.102$ S = 1.07 F(000) = 1040 $D_x = 1.634 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5124 reflections $\theta = 2.2-27.9^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 296 KNeedle, colourless $0.39 \times 0.21 \times 0.17 \text{ mm}$

10812 measured reflections 2413 independent reflections 2078 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 3.5^{\circ}$ $h = -27 \rightarrow 27$ $k = -4 \rightarrow 6$ $l = -29 \rightarrow 27$

2413 reflections153 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_0^2) + (0.0575P)^2 + 1.6713P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.29 \ { m e} \ { m \AA}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.48 \ { m e} \ { m \AA}^{-3}$
and constrained refinement	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}*/U_{ m eq}$
N1	0.24287 (7)	0.4968 (3)	0.93401 (6)	0.0200 (3)
H1A	0.2695	0.3443	0.9473	0.030*
H1B	0.2127	0.5014	0.9526	0.030*
H1C	0.2702	0.6478	0.9460	0.030*
C1	0.20379 (8)	0.4920 (3)	0.86203 (7)	0.0202 (3)
C2	0.14685 (8)	0.3118 (3)	0.83134 (7)	0.0227 (3)
C3	0.11163 (9)	0.3157 (4)	0.76239 (8)	0.0300 (4)
H3	0.0730	0.1996	0.7412	0.036*
C4	0.13337 (10)	0.4893 (4)	0.72527 (9)	0.0326 (4)
H4	0.1102	0.4864	0.6793	0.039*
C5	0.18948 (10)	0.6671 (4)	0.75648 (9)	0.0322 (4)
Н5	0.2038	0.7857	0.7315	0.039*
C6	0.22462 (9)	0.6700 (4)	0.82496 (8)	0.0273 (4)
H6	0.2622	0.7916	0.8459	0.033*
C7	0.12565 (8)	0.1075 (3)	0.86989 (8)	0.0225 (3)
C8	0.03453 (11)	-0.1887 (5)	0.86660 (11)	0.0433 (5)
H8A	0.0609	-0.1795	0.9138	0.065*
H8B	0.0402	-0.3700	0.8511	0.065*
H8C	-0.0144	-0.1566	0.8555	0.065*
O1	0.16391 (6)	0.0261 (3)	0.92428 (6)	0.0273 (3)
O2	0.05989 (7)	0.0218 (3)	0.83567 (7)	0.0380 (3)
P1	0.10739 (2)	0.56312 (8)	0.531833 (19)	0.01826 (13)
O3	0.17510 (6)	0.5066 (2)	0.52576 (6)	0.0248 (3)
O4	0.05239 (6)	0.6781 (3)	0.46425 (6)	0.0262 (3)
H4O	0.0163 (12)	0.681 (5)	0.4598 (10)	0.031*
O5	0.12078 (7)	0.8011 (3)	0.58427 (6)	0.0323 (3)
H5O	0.1063 (13)	0.948 (5)	0.5709 (11)	0.039*
O6	0.07879 (6)	0.3146 (2)	0.55400 (6)	0.0255 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0199 (6)	0.0202 (6)	0.0191 (6)	-0.0008 (5)	0.0075 (5)	-0.0015 (5)
C1	0.0202 (7)	0.0201 (7)	0.0196 (7)	0.0040 (6)	0.0076 (6)	-0.0003 (6)
C2	0.0230 (8)	0.0219 (7)	0.0215 (7)	0.0022 (6)	0.0079 (6)	0.0005 (6)
C3	0.0277 (9)	0.0334 (9)	0.0222 (8)	-0.0011 (7)	0.0038 (6)	-0.0010 (7)
C4	0.0353 (10)	0.0407 (10)	0.0194 (8)	0.0074 (8)	0.0091 (7)	0.0046 (7)
C5	0.0365 (10)	0.0354 (9)	0.0294 (9)	0.0048 (8)	0.0185 (7)	0.0085 (8)
C6	0.0277 (8)	0.0260 (8)	0.0295 (8)	-0.0016 (7)	0.0134 (7)	0.0009 (7)
C7	0.0219 (7)	0.0202 (7)	0.0235 (8)	-0.0008 (6)	0.0077 (6)	-0.0031 (6)
C8	0.0388 (11)	0.0397 (11)	0.0495 (12)	-0.0184 (9)	0.0167 (9)	0.0013 (9)
01	0.0257 (6)	0.0293 (6)	0.0241 (6)	0.0007 (5)	0.0078 (5)	0.0036 (5)
O2	0.0268 (7)	0.0436 (8)	0.0329 (7)	-0.0137 (6)	0.0022 (5)	0.0073 (6)
P1	0.0173 (2)	0.0154 (2)	0.0226 (2)	0.00185 (14)	0.00890 (16)	0.00206 (14)
03	0.0181 (6)	0.0250 (6)	0.0324 (6)	0.0032 (4)	0.0118 (5)	0.0025 (5)
04	0.0179 (5)	0.0338 (7)	0.0261 (6)	0.0029 (5)	0.0086 (5)	0.0069 (5)
05	0.0466 (8)	0.0189 (6)	0.0277 (6)	0.0072 (5)	0.0122 (6)	0.0001 (5)
06	0.0234 (6)	0.0186 (5)	0.0363 (6)	0.0010 (4)	0.0142 (5)	0.0060 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C1	1.4609 (19)	С6—Н6	0.9300
N1—H1A	0.8900	C7—O1	1.2010 (19)
N1—H1B	0.8900	C7—O2	1.326 (2)
N1—H1C	0.8900	C8—O2	1.443 (2)
C1—C6	1.379 (2)	C8—H8A	0.9600
C1—C2	1.395 (2)	C8—H8B	0.9600
C2—C3	1.396 (2)	C8—H8C	0.9600
C2—C7	1.488 (2)	P1—O3	1.5045 (12)
C3—C4	1.379 (3)	P1—O6	1.5062 (12)
С3—Н3	0.9300	P1—O4	1.5597 (12)
C4—C5	1.378 (3)	P1—O5	1.5702 (13)
C4—H4	0.9300	O4—H4O	0.72 (2)
C5—C6	1.386 (2)	O5—H5O	0.78 (2)
С5—Н5	0.9300		
C1—N1—H1A	109.5	C1—C6—C5	119.85 (16)
C1—N1—H1B	109.5	C1—C6—H6	120.1
H1A—N1—H1B	109.5	С5—С6—Н6	120.1
C1—N1—H1C	109.5	O1—C7—O2	124.62 (16)
H1A—N1—H1C	109.5	O1—C7—C2	124.15 (15)
H1B—N1—H1C	109.5	O2—C7—C2	111.21 (14)
C6—C1—C2	120.64 (15)	O2—C8—H8A	109.5
C6-C1-N1	118.39 (14)	O2—C8—H8B	109.5
C2-C1-N1	120.97 (14)	H8A—C8—H8B	109.5
C1—C2—C3	118.45 (15)	O2—C8—H8C	109.5
C1—C2—C7	121.69 (14)	H8A—C8—H8C	109.5

C3—C2—C7	119.77 (15)	H8B—C8—H8C	109.5
C4—C3—C2	120.91 (17)	C7—O2—C8	116.33 (15)
С4—С3—Н3	119.5	O3—P1—O6	114.06 (7)
С2—С3—Н3	119.5	O3—P1—O4	108.44 (7)
C5—C4—C3	119.79 (16)	O6—P1—O4	111.21 (7)
C5—C4—H4	120.1	O3—P1—O5	108.56 (7)
C3—C4—H4	120.1	O6—P1—O5	107.47 (7)
C4—C5—C6	120.33 (17)	O4—P1—O5	106.83 (7)
С4—С5—Н5	119.8	P1—O4—H4O	116.4 (17)
С6—С5—Н5	119.8	Р1—О5—Н5О	117.1 (18)
C6—C1—C2—C3	0.1 (2)	N1-C1-C6-C5	178.83 (15)
N1—C1—C2—C3	-179.80 (15)	C4—C5—C6—C1	0.7 (3)
C6—C1—C2—C7	176.75 (15)	C1—C2—C7—O1	-21.1 (2)
N1—C1—C2—C7	-3.1 (2)	C3—C2—C7—O1	155.53 (17)
C1—C2—C3—C4	1.3 (3)	C1—C2—C7—O2	160.61 (16)
C7—C2—C3—C4	-175.43 (16)	C3—C2—C7—O2	-22.8 (2)
C2—C3—C4—C5	-1.7 (3)	O1—C7—O2—C8	-1.5 (3)
C3—C4—C5—C6	0.7 (3)	C2—C7—O2—C8	176.80 (16)
C2-C1-C6-C5	-1.1 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C4—H4…O5	0.93	2.68	3.387 (2)	133
C4—H4…O6	0.93	2.71	3.590 (2)	158
C3—H3···O2 ⁱ	0.93	2.72	3.609 (2)	162
N1—H1A····O3 ⁱⁱ	0.89	1.93	2.8218 (18)	178
N1—H1A····O5 ⁱⁱ	0.89	2.68	3.190 (2)	118
N1—H1C···O3 ⁱⁱⁱ	0.89	2.01	2.9005 (18)	175
N1—H1 <i>B</i> ····O3 ^{iv}	0.89	2.09	2.9400 (17)	160
O5—H5 <i>O</i> ···O6 ^v	0.78 (2)	1.83 (2)	2.6021 (17)	170 (2)
$O4-H4O\cdots O6^{vi}$	0.72 (2)	1.88 (2)	2.6015 (17)	179 (2)

Symmetry codes: (i) -*x*, *y*, -*z*+3/2; (ii) -*x*+1/2, *y*-1/2, -*z*+3/2; (iii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iv) *x*, -*y*+1, *z*+1/2; (v) *x*, *y*+1, *z*; (vi) -*x*, -*y*+1, -*z*+1.