Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Methyl 2-methyl-2H-1,2,3-triazole-4carboxylate

K. Prabakaran, ${ }^{\text {a }}$ Venkatesha R. Hathwar, ${ }^{\text {b }}$ T. Maiyalagan, ${ }^{\text {a }}$ M. V. Kirthana ${ }^{\text {a }}$ and F. Nawaz Khan ${ }^{\text {a* }}$
${ }^{\text {a }}$ Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and ${ }^{\mathbf{b}}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
Correspondence e-mail: nawaz_f@yahoo.co.in

Received 16 June 2009; accepted 27 June 2009
Key indicators: single-crystal X-ray study; $T=290 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.042 ; w R$ factor $=0.119 ;$ data-to-parameter ratio $=13.6$.

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$, all non- H atoms lie in a common plane, with a maximum deviation of $0.061(2)^{\circ}$ for the ester methyl C atom. The structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For general background to the applications of triazoles and their derivatives, see: Abu-Orabi et al. (1989); Fan \& Katritzky (1996); Dehne (1994); Wang et al. (1998). For a related structure, see: Prabakaran et al. (2009).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2} \\
& M_{r}=141.14 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=3.9482(10) \AA \\
& b=7.9549(15) \AA \\
& c=21.655(4) \AA \\
& \beta=92.05(2)^{\circ}
\end{aligned}
$$

Data collection
Oxford Xcalibur Eos(Nova) CCD detector diffractometer
Absorption correction: multi-scan (CrysAlisPro RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.926, T_{\text {max }}=0.989$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042 \quad 93$ parameters
$w R\left(F^{2}\right)=0.119$
$S=1.07$
1262 reflections

7464 measured reflections 1262 independent reflections 910 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.53	$3.416(3)$	159

Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: CrysAlisPro CCD (Oxford Diffraction, 2009); cell refinement: CrysAlisPro CCD; data reduction: CrysAlisPro RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPADST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2973).

References

Abu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari'i, F. M. \& Ali, A. A. S. (1989). J. Heterocycl. Chem. 26, 1461-1468.
Dehne, H. (1994). Editor. Methoden der Organischen Chemie, 8th Ed., pp. 305-405. Stuttgart: Thieme.
Fan, W.-Q. \& Katritzky, A. R. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees \& E. F. V Scriven, pp. 1-126. Oxford: Pergamon.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Oxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED, including $A B S P A C K$. Oxford Diffraction Ltd, Yarnton, England.
Prabakaran, K., Maiyalagan, T., Hathwar, V. R., Kazak, C. \& Khan, F. N. (2009). Acta Cryst. E65, o300.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, Z., Jian, F., Duan, C., Bai, Z. \& You, X. (1998). Acta Cryst. C54, 19271929.

Watkin, D. J., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supporting information

Acta Cryst. (2009). E65, o1752 [doi:10.1107/S1600536809024829]

Methyl 2-methyl-2H-1,2,3-triazole-4-carboxylate

K. Prabakaran, Venkatesha R. Hathwar, T. Maiyalagan, M. V. Kirthana and F. Nawaz Khan

S1. Comment

Triazoles and their derivatives find their application in pharmaceuticals, agrochemicals, dyes, photographic materials, and in corrosion inhibition (Fan \& Katritzky, 1996; Dehne,1994; Abu-Orabi et al., 1989). In continuous of our earlier report (Prabakaran et al., 2009), here the crystal structure of the title compound is presented. All non-H atoms lie in a common plane with maximum deviation of $0.061(2)^{\circ}$ for atom C 4 . The packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

S2. Experimental

To Methyl $1 H$-1,2,3-triazole-4-carboxylate (2 g) in dry DMF (15 ml) maintained at 273 K in nitrogen atmosphere, was added $\mathrm{K}_{2 \mathrm{CO}} 3(1.3 \mathrm{~g})$, metyliodide (ml), the mixture was then stirred at 273 K for 1 hr , allowed to warm to room temperature and stirred till completion of reaction, monitored by TLC. The reaction mixture on LCMS analysis showed three isomers well separated with their significant retention time and high purity. Three fractions were identified by mass spectroscopy. The solvent was evaporated under vacuo and the residue was isolated into individual isomers by column chromatography. A portion of the mixture was also analysed by HPLC analysis and also isolated by preparative HPLC techniques. The single crystal of the title compound for X-ray structure anlaysis was obtained from ether solution by slow evaporation.

S3. Refinement

All the H atoms in were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}$ bond lenghts of $0.93 \AA$ and $0.96 \AA$ for aromatic and for methyl H atoms respectively and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$. The methyl groups were allowed to rotate but not to tip.

Figure 1

ORTEP diagram of the asymmetric unit of (I) with 50% probability displacement ellipsoids.

Methyl 2-methyl-2H-1,2,3-triazole-4-carboxylate

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=141.14$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=3.9482$ (10) \AA
$b=7.9549$ (15) \AA
$c=21.655$ (4) \AA
$\beta=92.05$ (2) ${ }^{\circ}$
$V=679.7(2) \AA^{3}$
$Z=4$

Data collection

Oxford Xcalibur Eos(Nova) CCD detector diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
ω scans
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.926, T_{\text {max }}=0.989$
$F(000)=296$
$D_{\mathrm{x}}=1.379 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 783 reflections
$\theta=2.0-21.4^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=290 \mathrm{~K}$
Plate, colorless
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

7464 measured reflections
1262 independent reflections
910 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-4 \rightarrow 4$
$k=-9 \rightarrow 9$
$l=-26 \rightarrow 26$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.119$
$S=1.07$
1262 reflections
93 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0589 P)^{2}+0.0659 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.2453(4)$	$0.56849(18)$	$0.43005(7)$	$0.0442(4)$
N2	$0.3338(4)$	$0.71794(19)$	$0.45090(7)$	$0.0449(4)$
N3	$0.4803(5)$	$0.8185(2)$	$0.41047(7)$	$0.0562(5)$
O1	$0.3755(4)$	$0.42664(18)$	$0.27655(6)$	$0.0620(5)$
O2	$0.1319(4)$	$0.29948(17)$	$0.35597(6)$	$0.0539(4)$
C1	$0.4849(6)$	$0.7258(2)$	$0.35967(9)$	$0.0547(6)$
H1	0.5707	0.7596	0.3222	0.066^{*}
C2	$0.3408(5)$	$0.5700(2)$	$0.37131(8)$	$0.0407(5)$
C3	$0.2884(5)$	$0.4274(2)$	$0.32930(8)$	$0.0435(5)$
C4	$0.0524(6)$	$0.1556(3)$	$0.31750(10)$	$0.0634(6)$
H4A	-0.0937	0.1895	0.2834	0.095^{*}
H4B	-0.0597	0.0720	0.3414	0.095^{*}
H4C	0.2579	0.1095	0.3022	0.095^{*}
C5	$0.2690(6)$	$0.7700(3)$	$0.51385(9)$	$0.0567(6)$
H5A	0.1463	0.6831	0.5342	0.085^{*}
H5B	0.1374	0.8715	0.5130	0.085^{*}
H5C	0.4805	0.7896	0.5359	0.085^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0534(11)$	$0.0371(9)$	$0.0423(9)$	$-0.0034(7)$	$0.0041(7)$	$0.0000(7)$
N2	$0.0581(11)$	$0.0348(9)$	$0.0419(9)$	$-0.0033(7)$	$0.0029(7)$	$-0.0004(7)$
N3	$0.0755(13)$	$0.0424(10)$	$0.0511(10)$	$-0.0100(9)$	$0.0069(9)$	$0.0050(8)$
O1	$0.0904(12)$	$0.0553(9)$	$0.0413(8)$	$0.0058(8)$	$0.0164(7)$	$0.0007(6)$
O2	$0.0715(10)$	$0.0457(8)$	$0.0450(8)$	$-0.0120(7)$	$0.0066(6)$	$-0.0058(6)$
C1	$0.0740(15)$	$0.0480(12)$	$0.0427(11)$	$-0.0060(10)$	$0.0109(10)$	$0.0065(9)$
C2	$0.0454(11)$	$0.0381(10)$	$0.0388(10)$	$0.0017(8)$	$0.0034(8)$	$0.0050(8)$
C3	$0.0502(12)$	$0.0422(11)$	$0.0382(10)$	$0.0072(9)$	$0.0018(8)$	$0.0038(8)$
C4	$0.0752(16)$	$0.0449(12)$	$0.0699(15)$	$-0.0064(11)$	$0.0016(12)$	$-0.0155(10)$
C5	$0.0770(16)$	$0.0479(13)$	$0.0455(11)$	$-0.0022(10)$	$0.0067(10)$	$-0.0084(9)$

Geometric parameters $\left({ }^{(},{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{N} 2$	$1.315(2)$	$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{~N} 1-\mathrm{C} 2$	$1.340(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.464(3)$

$\mathrm{N} 2-\mathrm{N} 3$	$1.333(2)$
$\mathrm{N} 2-\mathrm{C} 5$	$1.456(2)$
$\mathrm{N} 3-\mathrm{C} 1$	$1.325(2)$
$\mathrm{O} 1-\mathrm{C} 3$	$1.205(2)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.333(2)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.444(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.391(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2$	$103.75(15)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$	$115.69(15)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 5$	$121.67(15)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 5$	$122.63(16)$
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{N} 2$	$103.33(16)$
$\mathrm{C} 3-\mathrm{O} 2-\mathrm{C} 4$	$116.74(16)$
$\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 2$	$109.13(17)$
$\mathrm{N} 3-\mathrm{C} 1-\mathrm{H} 1$	125.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	125.4
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{C} 1$	$108.10(16)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$123.02(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$128.88(17)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{O} 2$	$124.03(17)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$123.65(18)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$	$0.1(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 5$	$179.01(17)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 1$	$0.2(2)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 1$	$-178.75(18)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 2$	$-0.3(2)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$-0.3(2)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	
$\mathrm{~N} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	

C4-H4A	0.9600
C4-H4B	0.9600
C4-H4C	0.9600
C5-H5A	0.9600
C5-H5B	0.9600
C5-H5C	0.9600

$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$
H4A-C4-H4B
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$
H4B-C4-H4C
N2-C5-H5A

$$
\mathrm{N} 2-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}
$$

$$
\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B} \quad 109.5
$$

$\mathrm{N} 2-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C} \quad 109.5$
$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C} \quad 109.5$
$\mathrm{H} 5 \mathrm{~B}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C} \quad 109.5$

N3-C1-C2-C3
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 3-\mathrm{O} 1$
C4-O2-C3-C2
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$
0.9600
0.9600
0.9600
0.9600
0.9600
0.9600
112.31 (16)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
179.47 (18)
-2.7 (3)
176.96 (16)
$-179.38(18)$
1.7 (3)
1.0 (3)
-177.96(19)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots 1^{\mathrm{i}}$	0.93	2.53	$3.416(3)$	159

Symmetry code: (i) $-x+1, y+1 / 2,-z+1 / 2$.

