Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Bromo- N -(2-chlorophenyl)acetamide

B. Thimme Gowda, ${ }^{\text {a }}$ Sabine Foro, ${ }^{\text {b }}$ P. A. Suchetan, ${ }^{\text {a }}$ Hartmut Fuess ${ }^{\text {b }}$ and Hiromitsu Terao ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and 'Faculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
Correspondence e-mail: gowdabt@yahoo.com

Received 7 July 2009; accepted 21 July 2009

Key indicators: single-crystal X-ray study; $T=299 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.044 ; w R$ factor $=0.118$; data-to-parameter ratio $=14.6$.

The conformation of the $\mathrm{N}-\mathrm{H}$ bond in the structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrClNO}$, is syn to the 2-chloro substituent in the aniline ring and anti to both the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{Br}$ bonds in the side chain, similar to that observed in 2-chloro- N-(2-chlorophenyl)acetamide. In the crystal, molecules are linked into chains along the a axis by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. These chains are in turn linked into pairs, in the form of columns, through much weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{Br} \cdots \mathrm{Br}[4.3027$ (3) \AA] interactions.

Related literature

For the preparation of the compound, see: Gowda et al. (2003). For our studies of the effect of ring and side-chain substituents on the structures of N -aromatic amides, see: Gowda et al. (2007a,b,c)

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrClNO}$

$$
M_{r}=248.51
$$

Monoclinic, $P 2_{1} / n$
$a=9.9781$ (9) A
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$b=4.7161$ (5) \AA
$c=20.028$ (2) \AA
$\beta=102.194$ (9) ${ }^{\circ}$
$V=921.21(16) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.071, T_{\text {max }}=0.286$
2349 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.118$
$S=1.11$
1650 reflections
113 parameters
1 restraint
$\mu=8.36 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
$0.55 \times 0.20 \times 0.15 \mathrm{~mm}$

1650 independent reflections
1482 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
3 standard reflections
frequency: 120 min intensity decay: 1.0%

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.87 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.88 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.839(19)$	$2.05(2)$	$2.852(4)$	$160(4)$
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.97	3.09	$3.765(5)$	128

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y,-z+2$.
Data collection: CAD-4-PC (Enraf-Nonius, 1996); cell refinement: $C A D-4-P C$; data reduction: REDU4 (Stoe \& Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2279).

References

Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands. Gowda, B. T., Foro, S. \& Fuess, H. (2007a). Acta Cryst. E63, o4611.
Gowda, B. T., Svoboda, I. \& Fuess, H. (2007b). Acta Cryst. E63, 03266.
Gowda, B. T., Svoboda, I. \& Fuess, H. (2007c). Acta Cryst. E63, 03267.
Gowda, B. T., Usha, K. M. \& Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (1987). REDU4. Stoe \& Cie GmbH, Darmstadt, Germany.

supporting information

Acta Cryst. (2009). E65, o1998 [doi:10.1107/S1600536809028918]

2-Bromo- N -(2-chlorophenyl)acetamide

B. Thimme Gowda, Sabine Foro, P. A. Suchetan, Hartmut Fuess and Hiromitsu Terao

S1. Comment

As part of a study of the effect of the ring and the side chain substituents on the structures of N -aromatic amides (Gowda et al., 2007a,b,c), in the present work we report the structure of 2-bromo- N-(2-chlorophenyl)acetamide (I). The conformation of the $\mathrm{N}-\mathrm{H}$ bond in the structure is syn to the ortho -Cl substituent in the aniline ring and anti to both the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C} — \mathrm{Br}$ bonds in the side chain (Fig. 1), similar to that observed in 2-chloro- N -(2-chlorophenyl)acetamide (Gowda et al., 2007a) and other side chain substituted aromatic amides.
The packing diagram in Fig. 2 shows the formation of molecular chains in the direction of the a axis through the N1H1N \cdots O1 H-bonds (Table 1). These chains are in turn linked into pairs, in the form of strips, through much weaker C$\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{Br} \cdots \mathrm{Br}$ interactions.

S2. Experimental

The title compound was prepared from 2-chloroaniline and bromoacetylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point, and further characterized by recording its infrared spectra (Gowda et al., 2003). Single crystals of the title compound used for X-ray diffraction studies were obtained by slow evaporation of an ethanolic solution at room temperature.

S3. Refinement

The N -bound H atom was located in a difference map and refined with a restrained geometry $(\mathrm{N}-\mathrm{H}=0.86$ (2) \AA). The other H atoms were positioned with idealized geometry using a riding model $[\mathrm{C}-\mathrm{H}=0.93-0.97 \AA]$. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the U_{eq} of the parent atom).

Figure 1
Molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.

Figure 2

Molecular packing of (I) showing chains, with hydrogen bonds shown as dashed lines. The unit cell is shown as "broken" along the c direction, for completeness.

2-Bromo- N -(2-chlorophenyl)acetamide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrClNO}$

$M_{r}=248.51$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=9.9781$ (9) Å
$b=4.7161$ (5) \AA
$c=20.028$ (2) \AA
$\beta=102.194(9)^{\circ}$
$V=921.21(16) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.071, T_{\text {max }}=0.286$
2349 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.118$
$S=1.11$
1650 reflections
113 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
\begin{aligned}
& F(000)=488 \\
& D_{\mathrm{x}}=1.792 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54180 \AA \\
& \text { Cell parameters from } 25 \text { reflections } \\
& \theta=7.3-22.5^{\circ} \\
& \mu=8.36 \mathrm{~mm}^{-1} \\
& T=299 \mathrm{~K} \\
& \text { Rod, colourless } \\
& 0.55 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

1650 independent reflections
1482 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=67.0^{\circ}, \theta_{\text {min }}=4.5^{\circ}$
$h=-11 \rightarrow 3$
$k=-5 \rightarrow 0$
$l=-23 \rightarrow 23$
3 standard reflections every 120 min intensity decay: 1.0%

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0557 P)^{2}+1.2453 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.87 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.88$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0137 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.2297(3)$	$0.0215(7)$	$1.03419(17)$	$0.0397(7)$
C2	$0.3291(3)$	$-0.0895(7)$	$1.08624(18)$	$0.0425(8)$

C3	$0.3353(4)$	$-0.0151(10)$	$1.15353(19)$	$0.0551(9)$
H3	0.4019	-0.0941	1.1881	0.066^{*}
C4	$0.2433(5)$	$0.1749(10)$	$1.1691(2)$	$0.0629(11)$
H4	0.2482	0.2279	1.2143	0.075^{*}
C5	$0.1426(5)$	$0.2888(9)$	$1.1178(2)$	$0.0591(10)$
H5	0.0795	0.4170	1.1285	0.071^{*}
C6	$0.1361(4)$	$0.2117(9)$	$1.0508(2)$	$0.0501(9)$
H6	0.0683	0.2881	1.0165	0.060^{*}
C7	$0.2077(4)$	$0.1136(7)$	$0.91258(19)$	$0.0446(8)$
C8	$0.2212(5)$	$-0.0244(9)$	$0.84652(19)$	$0.0564(10)$
H8A	0.2136	-0.2284	0.8507	0.068^{*}
H8B	0.3111	0.0170	0.8378	0.068^{*}
N1	$0.2235(3)$	$-0.0623(6)$	$0.96571(15)$	$0.0421(6)$
H1N	$0.234(4)$	$-0.233(5)$	$0.957(2)$	0.050^{*}
O1	$0.1903(4)$	$0.3694(5)$	$0.91641(16)$	$0.0658(8)$
C11	$0.44859(10)$	$-0.3266(2)$	$1.06732(5)$	$0.0583(3)$
Br1	$0.08344(5)$	$0.10591(13)$	$0.77113(2)$	$0.0742(3)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0435(16)$	$0.0345(16)$	$0.0401(17)$	$-0.0053(14)$	$0.0065(13)$	$-0.0034(14)$
C2	$0.0444(17)$	$0.0402(17)$	$0.0426(18)$	$-0.0046(14)$	$0.0083(14)$	$-0.0022(14)$
C3	$0.067(2)$	$0.057(2)$	$0.0396(19)$	$-0.0064(19)$	$0.0055(17)$	$-0.0013(18)$
C4	$0.080(3)$	$0.067(3)$	$0.047(2)$	$-0.010(2)$	$0.025(2)$	$-0.013(2)$
C5	$0.065(2)$	$0.055(2)$	$0.064(2)$	$0.002(2)$	$0.029(2)$	$-0.013(2)$
C6	$0.0485(19)$	$0.048(2)$	$0.054(2)$	$0.0036(16)$	$0.0099(16)$	$-0.0042(18)$
C7	$0.0530(19)$	$0.0367(18)$	$0.0393(18)$	$0.0005(14)$	$-0.0010(14)$	$-0.0023(14)$
C8	$0.076(3)$	$0.051(2)$	$0.0387(19)$	$0.009(2)$	$0.0048(17)$	$-0.0008(18)$
N1	$0.0542(16)$	$0.0332(14)$	$0.0353(15)$	$0.0038(13)$	$0.0016(12)$	$-0.0039(12)$
O1	$0.108(2)$	$0.0331(14)$	$0.0523(17)$	$0.0082(14)$	$0.0087(16)$	$-0.0002(11)$
C11	$0.0509(5)$	$0.0628(6)$	$0.0573(6)$	$0.0146(4)$	$0.0025(4)$	$-0.0032(5)$
Br1	$0.0792(4)$	$0.0936(5)$	$0.0427(3)$	$-0.0058(3)$	$-0.0035(2)$	$0.0111(2)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 2$	$1.381(5)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 1-\mathrm{C} 6$	$1.385(5)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 1-\mathrm{N} 1$	$1.416(4)$	$\mathrm{C} 7-\mathrm{O} 1$	$1.223(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.381(5)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.332(5)$
$\mathrm{C} 2-\mathrm{C} 11$	$1.734(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.506(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.365(6)$	$\mathrm{C} 8-\mathrm{Br} 1$	$1.916(4)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{C} 5$	$1.385(7)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 4-\mathrm{H} 4$	0.9300	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.839(19)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.377(6)$		$120.6(4)$

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$120.2(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$121.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.2(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	$119.8(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl} 1$	$119.1(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.7(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.1
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.1(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.9
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.9
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.8(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.1
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.1
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.4(5)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.7(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$-179.6(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$1.3(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.1(6)$
$\mathrm{C} 11-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.9(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.1(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.5(7)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.2(6)$

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.7
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.7
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$124.0(4)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$121.4(4)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$114.5(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 1$	$111.8(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.3
$\mathrm{Br} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.3
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.3
$\mathrm{Br} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.3
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	107.9
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$125.0(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$115(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$120(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.3(6)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$179.3(4)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 1$	$-46.2(5)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 1$	$137.2(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$-3.4(6)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$173.1(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$-134.5(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$46.5(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.84(2)$	$2.05(2)$	$2.852(4)$	$160(4)$
$\mathrm{C} 8 — \mathrm{H} 8 B \cdots \mathrm{Cl}^{1 i}$	0.97	3.09	$3.765(5)$	128

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y,-z+2$.

