

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dimethyl (1-hydroxy-1,2-diphenylethvl)phosphonate

M. Nawaz Tahir,^a* Nurcan Acar,^b Hamza Yilmaz^b and Riaz H. Tarig^c

^aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, ^bDepartment of Chemistry, Faculty of Science, University of Ankara, Ankara, Turkey, and CInstitute of Chemical and Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan

Correspondence e-mail: dmntahir_uos@yahoo.com

Received 25 July 2009; accepted 27 July 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.126; data-to-parameter ratio = 19.8.

In the crystal of the title compound, C₁₆H₁₉O₄P, the molecules are dimerized with $R_2^2(10)$ ring motifs through the hydroxy and P=O O atoms. The dihedral angle between the aromatic rings is 66.89 (9)°. There are $\pi - \pi$ interactions [centroid–centroid distance = 3.9669(16) Å] between the benzene rings of adjacent benzyl groups. A C $-H \cdots \pi$ interaction between the aromatic rings where C-H is from a benzyl group is also present.

Related literature

For the preparation and crystal structures of α -hydroxy phosphonates, see: Acar et al. (2009a,b); Tahir et al. (2007, 2009*a*,*b*). For an isomer of the title compouns, see: Acar *et al*. (2009a). For ring-motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

 $C_{16}H_{19}O_4P$ $M_r = 306.28$ Monoclinic, $P2_1/c$ a = 8.4767 (5) Åb = 15.8978 (10) Å c = 13.3888 (7) Å $\beta = 119.397 \ (3)^{\circ}$

 $V = 1571.97 (17) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.19 \text{ mm}^-$ T = 296 K0.25 \times 0.18 \times 0.15 mm 16757 measured reflections

 $R_{\rm int} = 0.043$

3861 independent reflections

2183 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.963, T_{\max} = 0.974$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$wR(F^2) = 0.126$	independent and constrained
S = 1.01	refinement
3861 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
195 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} 01 - H1 \cdots O2^{i} \\ C12 - H12 \cdots CgA^{ii} \end{array}}$	0.79 (2)	1.92 (2)	2.684 (2)	164 (3)
	0.93	2.86	3.755 (4)	163

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$. CgA is the centroid of the C1-C6 ring.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer and for technical support, respectively.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2852).

References

- Acar, N., Tahir, M. N., Tariq, R. H. & Yilmaz, H. (2009b). Acta Cryst. E65, o1203.
- Acar, N., Tahir, M. N., Yılmaz, H., Chishti, M. S. A. & Malik, M. A. (2009a). Acta Cryst. E65, o481.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tahir, M. N., Acar, N., Yilmaz, H., Danish, M. & Ülkü, D. (2007). Acta Cryst. E63, o3817-o3818.
- Tahir, M. N., Acar, N., Yilmaz, H., Tariq, M. I. & Hussain, G. (2009a). Acta Cryst. E65, 0939.
- Tahir, M. N., Acar, N., Yilmaz, H., Tariq, M. I. & Ülkü, D. (2009b). Acta Cryst. E65, o562.

supporting information

Acta Cryst. (2009). E65, o2051 [doi:10.1107/S1600536809029808]

Dimethyl (1-hydroxy-1,2-diphenylethyl)phosphonate

M. Nawaz Tahir, Nurcan Acar, Hamza Yilmaz and Riaz H. Tariq

S1. Comment

We have reported preparation and crystal structures containing α -Hydroxy phosphonates (Tahir *et al.*, 2007, 2009*a*,*b*) and (Acar *et al.* 2009*a*,*b*). The title compound (I, Fig. 1) is chemically isomer of (II) (Acar *et al.*, 2009*a*). The crystals of title compound were selected from the sample of Acar *et al.*, 2009*a* present at low yield.

The difference of (I) with (II) exist due to various reasons. In (I) the dihedral angle between the aromatic rings A (C1–C6) and B (C9–C14) is 66.89 (9)° compared to 72.28 (11)°. The distorted tetrahedral geometry around C7 have range of angles 104.15 (13)° to 113.43 (16)° instead of 104.4 (2)° to 112.8 (2)°. There exist small variations in bond lengths e.g, P1–C7 is 1.835 (2) Å compared to 1.845 (3) Å. In (I) the molecules form dimers only and dimers are not linked to each other as observed in (II). The dimers (Fig. 2) are formed due to intermolecular H-bonding of O–H…O type with ring motif $R_2^2(10)$ (Bernstein *et al.*, 1995). There exist C–H… π interaction between the two aromatic rings (Table 1) and π – π interaction at a distance of 3.9669 (16) Å between the centroids of aromatic ring B with CgB…CgBⁱ [symmetry code: (i) 1 - *x*, 1 - *y*, -*z*].

S2. Experimental

The preparation is reported in Acar et al., 2009a.

S3. Refinement

The H-atom of hydroxy group were refined freely. The other H-atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figure 1

View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

Figure 2

The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers.

Dimethyl (1-hydroxy-1,2-diphenylethyl)phosphonate

Crystal data	
$C_{16}H_{19}O_4P$	F(000) = 648
$M_r = 306.28$	$D_{\rm x} = 1.294 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3861 reflections
a = 8.4767 (5) Å	$\theta = 2.8 - 28.3^{\circ}$
b = 15.8978 (10) Å	$\mu = 0.19 \text{ mm}^{-1}$
c = 13.3888 (7) Å	T = 296 K
$\beta = 119.397 \ (3)^{\circ}$	Prismatic, colourless
$V = 1571.97 (17) \text{ Å}^3$	$0.25 \times 0.18 \times 0.15 \text{ mm}$
Z = 4	
Data collection	
Bruker Kappa APEXII CCD	16757 measured reflections
diffractometer	3861 independent reflections
Radiation source: fine-focus sealed tube	2183 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.043$
Detector resolution: 7.40 pixels mm ⁻¹	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$
ω scans	$h = -11 \rightarrow 10$
Absorption correction: multi-scan	$k = -21 \rightarrow 21$
(SADABS; Bruker, 2005)	$l = -17 \rightarrow 17$
$T_{\min} = 0.963, \ T_{\max} = 0.974$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.126$	neighbouring sites
S = 1.01	H atoms treated by a mixture of independent
3861 reflections	and constrained refinement
195 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0517P)^2 + 0.2804P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
P1	1.16204 (7)	0.38185 (3)	0.45831 (5)	0.0440 (2)
O1	0.83863 (19)	0.37902 (9)	0.43056 (13)	0.0455 (5)
O2	1.20677 (18)	0.46360 (9)	0.51545 (14)	0.0587 (5)
O3	1.25054 (19)	0.36505 (11)	0.38159 (14)	0.0660 (6)
O4	1.2208 (2)	0.30558 (10)	0.54132 (14)	0.0762 (6)
C1	0.8814 (2)	0.27486 (12)	0.31946 (16)	0.0393 (6)
C2	0.9200 (3)	0.24523 (14)	0.23689 (18)	0.0528 (8)
C3	0.8833 (3)	0.16197 (17)	0.2000 (2)	0.0636 (9)
C4	0.8104 (3)	0.10853 (16)	0.2456 (2)	0.0684 (9)
C5	0.7733 (3)	0.13707 (15)	0.3286 (2)	0.0658 (9)
C6	0.8080 (3)	0.21952 (13)	0.3647 (2)	0.0512 (8)
C7	0.9192 (2)	0.36591 (12)	0.36066 (16)	0.0371 (6)
C8	0.8505 (3)	0.43043 (13)	0.26211 (17)	0.0444 (7)
C9	0.6550 (3)	0.41928 (13)	0.17226 (18)	0.0456 (7)
C10	0.6074 (4)	0.38734 (16)	0.0652 (2)	0.0691 (9)
C11	0.4283 (5)	0.37485 (19)	-0.0165 (2)	0.0922 (11)
C12	0.2939 (4)	0.39384 (18)	0.0079 (3)	0.0883 (11)
C13	0.3378 (3)	0.42615 (17)	0.1120 (3)	0.0762 (10)
C14	0.5166 (3)	0.43991 (14)	0.1941 (2)	0.0565 (8)
C15	1.4435 (3)	0.36510 (19)	0.4291 (3)	0.0795 (11)
C16	1.3067 (5)	0.3068 (2)	0.6594 (3)	0.1003 (15)
H1	0.844 (3)	0.4272 (14)	0.4467 (19)	0.0546*
H2	0.97088	0.28115	0.20561	0.0634*
Н3	0.90891	0.14285	0.14384	0.0763*
H4	0.78583	0.05302	0.22077	0.0821*

supporting information

Н5	0.72445	0.10061	0.36055	0.0789*
H6	0.78141	0.23814	0.42066	0.0615*
H8A	0.86629	0.48651	0.29419	0.0533*
H8B	0.92463	0.42629	0.22556	0.0533*
H10	0.69787	0.37396	0.04765	0.0829*
H11	0.39936	0.35349	-0.08820	0.1106*
H12	0.17327	0.38469	-0.04633	0.1061*
H13	0.24629	0.43934	0.12862	0.0914*
H14	0.54368	0.46321	0.26443	0.0678*
H15A	1.48869	0.42133	0.45095	0.1196*
H15B	1.47329	0.34472	0.37294	0.1196*
H15C	1.49759	0.32926	0.49535	0.1196*
H16A	1.42483	0.28223	0.68969	0.1505*
H16B	1.23695	0.27518	0.68516	0.1505*
H16C	1.31802	0.36388	0.68549	0.1505*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0404 (3)	0.0400 (3)	0.0461 (3)	0.0007 (2)	0.0169 (2)	-0.0084 (3)
01	0.0601 (9)	0.0362 (8)	0.0526 (9)	-0.0011 (7)	0.0373 (8)	-0.0051 (7)
O2	0.0475 (8)	0.0454 (9)	0.0735 (10)	-0.0043 (7)	0.0221 (8)	-0.0213 (8)
O3	0.0412 (8)	0.0905 (13)	0.0680 (10)	-0.0029 (8)	0.0282 (8)	-0.0230 (9)
O4	0.0837 (12)	0.0515 (11)	0.0533 (10)	0.0049 (8)	0.0027 (9)	0.0020 (8)
C1	0.0361 (10)	0.0373 (11)	0.0383 (11)	0.0022 (8)	0.0134 (9)	-0.0029 (9)
C2	0.0604 (13)	0.0521 (14)	0.0467 (12)	0.0047 (10)	0.0268 (11)	-0.0044 (11)
C3	0.0687 (16)	0.0608 (17)	0.0498 (14)	0.0114 (12)	0.0203 (12)	-0.0182 (13)
C4	0.0593 (14)	0.0453 (15)	0.0803 (19)	-0.0029 (11)	0.0185 (14)	-0.0198 (14)
C5	0.0632 (15)	0.0430 (14)	0.0912 (19)	-0.0100 (11)	0.0380 (15)	-0.0106 (14)
C6	0.0529 (12)	0.0425 (13)	0.0643 (14)	-0.0049 (10)	0.0334 (11)	-0.0079 (11)
C7	0.0403 (10)	0.0355 (11)	0.0379 (10)	-0.0005 (8)	0.0211 (9)	-0.0020 (9)
C8	0.0472 (12)	0.0397 (12)	0.0494 (12)	-0.0004 (9)	0.0261 (10)	0.0038 (10)
C9	0.0516 (12)	0.0355 (12)	0.0430 (12)	0.0005 (9)	0.0181 (10)	0.0072 (10)
C10	0.0815 (18)	0.0677 (17)	0.0464 (14)	0.0126 (14)	0.0223 (13)	0.0061 (13)
C11	0.108 (2)	0.074 (2)	0.0480 (16)	0.0089 (18)	0.0023 (17)	-0.0025 (15)
C12	0.0672 (18)	0.0561 (18)	0.084 (2)	-0.0079 (14)	-0.0073 (16)	0.0017 (16)
C13	0.0484 (14)	0.0614 (18)	0.096 (2)	0.0007 (12)	0.0179 (14)	0.0064 (16)
C14	0.0518 (13)	0.0459 (14)	0.0631 (15)	0.0036 (10)	0.0215 (12)	0.0023 (12)
C15	0.0484 (14)	0.101 (2)	0.093 (2)	-0.0057 (14)	0.0377 (14)	-0.0070 (17)
C16	0.121 (3)	0.102 (3)	0.0607 (18)	0.000 (2)	0.0312 (19)	0.0099 (18)

Geometric parameters (Å, °)

P1—O2	1.4606 (16)	C12—C13	1.355 (5)	
P1O3	1.5639 (19)	C13—C14	1.385 (4)	
P104	1.5524 (17)	C2—H2	0.9300	
P1—C7	1.835 (2)	С3—Н3	0.9300	
O1—C7	1.419 (3)	C4—H4	0.9300	

O3—C15	1.435 (4)	С5—Н5	0.9300
O4—C16	1.378 (4)	С6—Н6	0.9300
01—H1	0.79 (2)	C8—H8A	0.9700
C1—C6	1.378 (3)	C8—H8B	0.9700
C1—C7	1.526 (3)	C10—H10	0.9300
C1—C2	1.381 (3)	C11—H11	0.9300
C2—C3	1.394 (3)	C12—H12	0.9300
C3—C4	1.359 (4)	C13—H13	0.9300
C4—C5	1.372 (4)	C14—H14	0.9300
C5—C6	1.378 (3)	C15—H15A	0.9600
C7—C8	1.542 (3)	C15—H15B	0.9600
C8—C9	1.506 (3)	C15—H15C	0.9600
C9-C14	1 381 (4)	C16—H16A	0.9600
C9-C10	1 381 (3)	C16—H16B	0.9600
C10-C11	1 382 (5)	C16—H16C	0.9600
C11-C12	1 364 (6)		0.9000
011-012	1.504 (0)		
0102	3 059 (2)	C5…H16A ^v	2,9000
0104	3,056 (3)	C6···H16A ^v	2,9000
01 - C14	3 151 (3)	C8H2	2.9300
$01 - C15^{i}$	3 347 (4)	C13····H5 ^{vii}	2.8500
01 ···02 ⁱⁱ	2.684(2)	C14···H15B ⁱ	3,0000
$01 \ 02$ $02 \ 01^{ii}$	2.004(2)		2.80(3)
0201	2.064(2)	H1H9A	2.80(3)
$02^{-1}01$	3.039(2)	U1U14	2.5400
03 C2	3.147(3)		2.3800
04C12iii	3.404(3)	H102	1.92(2)
0401	3.305(3)	H2	2.7300
04…01	3.030 (3)		2.8300
O1H0	2.2800		2.5800
	2.7400		2.3600
	2.8300	H301	2.0400
01····H3··	2.6400		2.8800
02···HI	2.80 (3)	H3H13	2.5700
02····H1 ²	1.92 (2)		2.2800
02···H16C	2.5500		2.3400
02H14"	2.9000	H8A····H14	2.5900
03····H8B	2.7000	H8B03	2.7000
03···H2	2.7300	H8B····C2	2.8800
04…H15C	2.7300	H8B···H2	2.3800
C1C10	3.524 (3)	H8B…H10	2.3600
C2…O3	3.147 (3)	H10····C2	3.0800
C2···C9	3.398 (3)	H10···H8B	2.3600
C2…C10	3.381 (4)	H12····C4 ^v	2.9700
C5…C16 ^v	3.574 (5)	H12···C5 ^v	2.9700
C6…O4	3.404 (3)	H13····H5 ^{vii}	2.5700
C9…C2	3.398 (3)	H14…O1	2.7400
C10···C2	3.381 (4)	H14…H1	2.5800
C10…C1	3.524 (3)	H14…H8A	2.5900

$C12\cdots O4^{v}$	3 303 (3)	H14O2 ⁱⁱ	2 9000
$C12 \cdot 04$	3.151 (3)	$H15B\cdots O1^{vi}$	2.9000
$C15O1^{vi}$	3.131(3) 3.247(4)	H15B····C1 vi	3,0000
	3.547(4)		2 7300
C2H10	3.374 (3)	H15CC2iii	2.7300
C_2 H^{SD}	3.0800		3.0700
	2.8800		2.9000
	3.0700		2.9300
	2.9700		2.5600
C5…H12 ^m	2.9700	H16C····02	2.5500
O2—P1—O3	114.27 (10)	С4—С3—Н3	120.00
O2—P1—O4	114.23 (9)	C3—C4—H4	120.00
O2—P1—C7	114.08 (10)	C5—C4—H4	120.00
O3—P1—O4	104.36 (10)	C4—C5—H5	120.00
O3—P1—C7	103.91 (9)	C6—C5—H5	120.00
O4—P1—C7	104.81 (10)	С1—С6—Н6	119.00
P1 - O3 - C15	121 25 (18)	C5—C6—H6	119.00
P1	127.83 (17)	C7—C8—H8A	109.00
C7-01-H1	109.9(19)	C7 - C8 - H8B	109.00
C_{2} C_{1} C_{6}	118 02 (19)	C9 - C8 - H8A	109.00
$C_{6} - C_{1} - C_{7}$	120.45(18)	C9 - C8 - H8B	109.00
C_{2} C_{1} C_{7}	120.43 (18)	H8A - C8 - H8B	109.00
$C_2 = C_1 = C_7$	121.52(10) 120.6(2)	C_{0} C_{10} H_{10}	110.00
$C_1 - C_2 - C_3$	120.0(2) 120.4(2)	C_{11} C_{10} H_{10}	119.00
$C_2 = C_3 = C_4$	120.4(2) 110.5(2)	C10 C11 H11	120.00
$C_{3} - C_{4} - C_{5}$	119.3(2)	C10 $C11$ $H11$	120.00
$C_{4} - C_{5} - C_{6}$	120.3(2)		120.00
CI = CO = CS	121.2(2)	C11—C12—H12	120.00
PI = C / = CI	110.58 (13)	C13—C12—H12	120.00
PI = C/ = C8	109.76 (15)	C12—C13—H13	119.00
	107.11 (15)	C14—C13—H13	119.00
01	111.40 (17)	C9—C14—H14	120.00
C1_C7_C8	113.43 (16)	C13—C14—H14	120.00
P1—C7—O1	104.15 (13)	O3—C15—H15A	109.00
C7—C8—C9	114.24 (19)	O3—C15—H15B	109.00
C8—C9—C10	121.2 (3)	O3—C15—H15C	109.00
C10—C9—C14	117.5 (2)	H15A—C15—H15B	110.00
C8—C9—C14	121.3 (2)	H15A—C15—H15C	109.00
C9—C10—C11	121.5 (3)	H15B—C15—H15C	109.00
C10-C11-C12	120.0 (3)	O4—C16—H16A	109.00
C11—C12—C13	119.4 (3)	O4—C16—H16B	109.00
C12—C13—C14	121.2 (3)	O4—C16—H16C	109.00
C9—C14—C13	120.5 (2)	H16A—C16—H16B	110.00
C1—C2—H2	120.00	H16A—C16—H16C	109.00
С3—С2—Н2	120.00	H16B—C16—H16C	109.00
С2—С3—Н3	120.00		
O2 P1 O2 C15	50.8 (2)	C^{2} C^{1} C^{7} C^{9}	176(2)
$02-r_1-03-013$	-65.7(2)	$C_2 - C_1 - C_7 - C_0$	4/.0(3)
04-11-03-013	-03.7 (2)	CO-CI-C/-PI	105.4 (2)

C7—P1—O3—C15	-175.28 (19)	C6-C1-C7-O1	-9.5 (3)
O2—P1—O4—C16	0.5 (3)	C6-C1-C7-C8	-132.8 (2)
O3—P1—O4—C16	126.0 (3)	C1—C2—C3—C4	-0.6 (4)
C7—P1—O4—C16	-125.1 (3)	C2—C3—C4—C5	-0.1 (4)
O2—P1—C7—O1	-56.34 (15)	C3—C4—C5—C6	0.6 (4)
O2—P1—C7—C1	-171.09 (13)	C4—C5—C6—C1	-0.5 (4)
O2—P1—C7—C8	63.03 (17)	P1—C7—C8—C9	176.07 (16)
O3—P1—C7—O1	178.59 (12)	O1—C7—C8—C9	-69.1 (2)
O3—P1—C7—C1	63.84 (15)	C1—C7—C8—C9	51.8 (3)
O3—P1—C7—C8	-62.04 (16)	C7—C8—C9—C10	-106.8 (2)
O4—P1—C7—O1	69.34 (14)	C7—C8—C9—C14	72.6 (3)
O4—P1—C7—C1	-45.42 (15)	C8—C9—C10—C11	178.2 (2)
O4—P1—C7—C8	-171.30 (14)	C14—C9—C10—C11	-1.2 (4)
C6—C1—C2—C3	0.8 (3)	C8—C9—C14—C13	-177.5 (2)
C7—C1—C2—C3	-179.6 (2)	C10-C9-C14-C13	2.0 (3)
C2-C1-C6-C5	-0.2 (3)	C9-C10-C11-C12	-0.3 (4)
C7—C1—C6—C5	-179.9 (2)	C10-C11-C12-C13	1.0 (4)
C2-C1-C7-P1	-76.2 (2)	C11—C12—C13—C14	-0.2 (4)
C2-C1-C7-O1	170.90 (19)	C12—C13—C14—C9	-1.3 (4)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) –*x*+2, –*y*+1, –*z*+1; (iii) *x*+1, –*y*+1/2, *z*+1/2; (iv) *x*, –*y*+1/2, *z*+1/2; (v) *x*-1, –*y*+1/2, *z*-1/2; (vi) *x*+1, *y*, *z*; (vii) –*x*+1, *y*+1/2, –*z*+1/2; (viii) *x*, –*y*+1/2, *z*+1/2; (vi) *x*-1, –*y*+1/2, *z*-1/2; (vi) *x*+1, *y*, *z*; (vii) –*x*+1, *y*+1/2, –*z*+1/2; (viii) *x*, –*y*+1/2, *z*+1/2; (viii) *x*+1, *y*, *z*; (viii) –*x*+1, *y*+1/2, –*z*+1/2; (viii) *x*, –*y*+1/2, *z*+1/2; (viii) *x*, –*y*

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H…A	D···A	<i>D</i> —H··· <i>A</i>	
01—H1…O2 ⁱⁱ	0.79 (2)	1.92 (2)	2.684 (2)	164 (3)	
C6—H6…O1	0.93	2.28	2.655 (3)	103.00	
C16—H16C····O2	0.96	2.55	3.007 (4)	110.00	
C12—H12···CgA ^v	0.93	2.86	3.755 (4)	163.00	

Symmetry codes: (ii) -x+2, -y+1, -z+1; (v) x-1, -y+1/2, z-1/2.