Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone

Wei-Xia Qing, ${ }^{\text {a }}$ Yan-Zhao Liu ${ }^{\text {b }}$ and Su-Mei Yao ${ }^{\text {a }}$

${ }^{\text {a Medical College of Henan University, Henan University, Kaifeng 475004, People's }}$ Republic of China, and ${ }^{\text {b }}$ Henan Quality Polytechnic, Pingdingshan, 467000, People's Republic of China
Correspondence e-mail: ysum@yahoo.cn

Received 21 July 2009; accepted 22 July 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.045 ; w R$ factor $=0.068$; data-to-parameter ratio $=15.8$.

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$, the dihedral angle between the ethanone group and the aromatic ring is $3.6(2)^{\circ}$. The molecular conformation is consolidated by an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The crystal structure is stabilized by $\pi-\pi$ interactions between the benzene rings [centroidcentroid distance $=3.588(2) \AA$].

Related literature

1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone is one of the main components of the traditional Chinese medicine Moutan Cortex, which is also a valuable spice and is widely used in domestic chemistry, see: Chung (1999); Liu et al. (2000). For our work on the preparation of derivatives, see: Qi et al. (2003).

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$
$V=952.0(5) \AA^{3}$
$M_{r}=245.07$
Monoclinic, $P 2_{1} / c$
$Z=4$
$a=9.916$ (3) \AA
$b=13.836$ (5) \AA
$c=6.940$ (2) \AA
Mo $K \alpha$ radiation
$\mu=4.29 \mathrm{~mm}^{-1}$
$\beta=90.031(3)^{\circ}$
$0.24 \times 0.13 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.426, T_{\text {max }}=0.699$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045 \quad 118$ parameters
$w R\left(F^{2}\right)=0.068 \quad$ H-atom parameters constrained
$S=1.01$
$\Delta \rho_{\max }=0.46 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.52 \mathrm{e}^{-3}$
1860 reflections

5163 measured reflections 1860 independent reflections 977 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.080$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1A $\cdots \mathrm{O} 3$	0.82	1.83	$2.549(4)$	146

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

[^0]
References

Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Chung, J. G. (1999). Food Chem. Toxicol. 37, 327-334.
Liu, C. Y., Wu, Y. Z., Zhou, D. X. \& Wang, C. P. (2000). J. Biol. 17, $23-24$.
Qi, J. S., Chao, Y. \& Wang, Y. L. (2003). Chin. J. Appl. Chem. 20, 702-703.
Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2004 [doi:10.1107/S1600536809029067]

1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone

Wei-Xia Qing, Yan-Zhao Liu and Su-Mei Yao

S1. Comment

1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone is one of the main components of traditional Chinese medicine Moutan Cortex, which is also a valuable inartificial spicery and can be widely used in domestic chemistry (Chung, 1999; Liu, et al. 2000). But the nature of water insolubility and volatility makes it difficult to exert its efficiency sufficiently. Preparing derivatives has been an active research area (Qi, et al. 2003) for a long time. Herein we report the crystal structure of the title compound (I).
Compound (I) consists of an asymmetric organic molecule (Fig.1). The $\mathrm{C} 1-\mathrm{C} 6$ benzene ring in (I) is an aromatic ring, on which four different organic groups decorated. In the structure, $\mathrm{C} 8-\mathrm{O} 3$ [1.224 (4) \AA] is typical for a $\mathrm{C}=\mathrm{O}$ double bond, whereas, the $\mathrm{C} 4-\mathrm{O} 1, \mathrm{C} 6-\mathrm{O} 2$ and $\mathrm{C} 7-\mathrm{O} 2$ bond distances are of 1.347 (4), 1.351 (4) and 1.420 (4) \AA, respectively, indicating three obviously $\mathrm{C}-\mathrm{O}$ single bonds.
In addition, the intramolecular hydrogen bond exhibit in the compound, $\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$ acting as hydrogen bond donor, and O3 atom as hydrogen bond acceptor, constructing a S(6) ring (Fig.1, Table 1). The crystal structure is stabilized by $\pi-\pi$ interactions between the benzene rings [centroid-to-centroid distance $=3.588(2) \AA$].

S2. Experimental

2-Hydroxyl-4-methoxyacetophenone was isolated from the Chinese medicine Moutan Cortex. N-Bromosuccinimide ($0.534 \mathrm{~g}, 3 \mathrm{mmol}$) was added slowly by cannulation to a stirred suspension of 2-hydroxyl-4-methoxyacetophenone (0.499 $\mathrm{g}, 3 \mathrm{mmol}$) in chloroform (50 ml) at room temperature. After stirring for 1 h the solution was quenched with saturated aqueous sodium bicarbonate solution $(20 \mathrm{ml})$ the layers were separated and the aqueous layer was extracted with chloroform, the combined organic extracts were washed with water (20 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Then purification by short column chromatography (chloroform) and recrystallization from chloroform gave the compound (I) as needle-like colourless crystal ($0.645 \mathrm{~g}, 88 \%$).

S3. Refinement

H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA-0.96 \AA$ and $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$, and were refined as riding with $U_{\text {iso }}(H)=1.2 U_{\text {eq }}(\mathrm{C}$ in aromatic ring $)$ and $U_{\mathrm{iso}}(H)=1.5 U_{\mathrm{eq}}\left(\mathrm{O}\right.$ or $\left.\mathrm{C}_{\text {methy }}\right)$.

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50\% probability level. An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is indicated by the dashed line.

1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$

$M_{r}=245.07$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.916(3) \AA$
$b=13.836$ (5) \AA
$c=6.940(2) \AA$
$\beta=90.031(3)^{\circ}$
$V=952.0(5) \AA^{3}$
$Z=4$
$F(000)=488$
$D_{\mathrm{x}}=1.710 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1164 reflections
$\theta=2.5-21.4^{\circ}$
$\mu=4.29 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle-like, colourless
$0.24 \times 0.13 \times 0.09 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\min }=0.426, T_{\text {max }}=0.699$
5163 measured reflections
1860 independent reflections
977 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.080 \\
& \theta_{\max }=26.0^{\circ}, \theta_{\min }=2.1^{\circ} \\
& h=-12 \rightarrow 9
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.068$
$S=1.01$
1860 reflections
118 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& k=-17 \rightarrow 16 \\
& l=-8 \rightarrow 8
\end{aligned}
$$

Secondary atom site location: difference Fourier
map map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.001 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.46$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.52$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Br1	$0.67087(5)$	$0.52356(3)$	$0.17229(7)$	$0.0635(2)$
O1	$1.0051(3)$	$0.88085(17)$	$0.2857(4)$	$0.0522(8)$
H1A	1.0839	0.8682	0.3109	0.078^{*}
O2	$0.5841(3)$	$0.7279(2)$	$0.1634(4)$	$0.0514(8)$
O3	$1.2075(3)$	$0.7721(2)$	$0.3509(4)$	$0.0625(9)$
C1	$0.7770(4)$	$0.6352(3)$	$0.2110(5)$	$0.0377(11)$
C2	$0.9133(4)$	$0.6264(3)$	$0.2495(5)$	$0.0398(11)$
H2A	0.9515	0.5651	0.2572	0.048^{*}
C3	$0.9948(4)$	$0.7076(3)$	$0.2771(5)$	$0.0336(10)$
C4	$0.9349(4)$	$0.7981(3)$	$0.2651(5)$	$0.0379(11)$
C5	$0.7969(4)$	$0.8080(3)$	$0.2272(5)$	$0.0393(11)$
H5A	0.7584	0.8692	0.2200	0.047^{*}
C6	$0.7179(4)$	$0.7270(3)$	$0.2006(5)$	$0.0382(11)$
C7	$0.5177(4)$	$0.8188(3)$	$0.1589(7)$	$0.0638(14)$
H7A	0.4238	0.8093	0.1308	0.096^{*}
H7B	0.5575	0.8586	0.0610	0.096^{*}
H7C	0.5269	0.8499	0.2819	0.096^{*}
C8	$1.1410(5)$	$0.6994(3)$	$0.3182(6)$	$0.0445(12)$
C9	$1.2063(4)$	$0.6027(3)$	$0.3192(7)$	$0.0649(14)$
H9A	1.3005	0.6097	0.3482	0.097^{*}
H9B	1.1962	0.5732	0.1948	0.097^{*}
H9C	1.1645	0.5627	0.4151	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Br 1	$0.0606(3)$	$0.0477(3)$	$0.0823(4)$	$-0.0137(3)$	$-0.0044(3)$	$-0.0034(3)$
O1	$0.051(2)$	$0.0372(19)$	$0.069(2)$	$-0.0123(15)$	$0.0022(16)$	$0.0005(16)$
O2	$0.038(2)$	$0.051(2)$	$0.065(2)$	$0.0066(16)$	$-0.0004(16)$	$0.0018(16)$
O3	$0.043(2)$	$0.068(2)$	$0.077(2)$	$-0.0145(17)$	$-0.0017(17)$	$-0.0097(19)$
C1	$0.045(3)$	$0.033(3)$	$0.036(3)$	$-0.003(2)$	$0.005(2)$	$0.002(2)$
C2	$0.043(3)$	$0.038(3)$	$0.038(3)$	$0.008(2)$	$0.000(2)$	$0.001(2)$
C3	$0.035(3)$	$0.035(3)$	$0.030(3)$	$0.001(2)$	$-0.001(2)$	$-0.002(2)$
C4	$0.044(3)$	$0.037(3)$	$0.033(3)$	$-0.009(2)$	$0.010(2)$	$0.001(2)$
C5	$0.051(3)$	$0.030(3)$	$0.037(3)$	$0.004(2)$	$0.004(2)$	$0.003(2)$
C6	$0.035(3)$	$0.048(3)$	$0.031(3)$	$0.003(2)$	$0.007(2)$	$-0.002(2)$
C7	$0.037(3)$	$0.081(4)$	$0.074(4)$	$0.015(3)$	$0.001(3)$	$0.008(3)$
C8	$0.049(3)$	$0.048(3)$	$0.036(3)$	$0.000(3)$	$0.007(2)$	$-0.004(2)$
C9	$0.041(3)$	$0.076(4)$	$0.078(4)$	$0.009(3)$	$-0.016(3)$	$-0.006(3)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 1$	1.889 (4)	C3-C8	1.482 (5)
$\mathrm{O} 1-\mathrm{C} 4$	1.347 (4)	C4-C5	1.400 (5)
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	0.8200	C5-C6	1.380 (5)
O2-C6	1.351 (4)	C5-H5A	0.9300
$\mathrm{O} 2-\mathrm{C} 7$	1.420 (4)	C7-H7A	0.9600
O3-C8	1.224 (4)	C7-H7B	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	1.382 (5)	C7-H7C	0.9600
C1-C6	1.400 (5)	C8-C9	1.487 (5)
C2-C3	1.397 (5)	C9-H9A	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300	C9-H9B	0.9600
C3-C4	1.389 (5)	C9-H9C	0.9600
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	O2-C6- C 1	115.5 (4)
C6-O2-C7	117.9 (3)	C5-C6-C1	119.4 (4)
C2-C1-C6	120.0 (4)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	120.0 (3)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
C6- $\mathrm{C} 1-\mathrm{Br} 1$	120.0 (3)	H7A-C7-H7B	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	121.4 (4)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.3	H7A-C7-H7C	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.3	H7B-C7-H7C	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	118.0 (4)	O3-C8-C3	120.0 (4)
C4-C3-C8	119.9 (4)	O3-C8-C9	120.3 (4)
C2-C3-C8	122.1 (4)	C3-C8-C9	119.7 (4)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	122.6 (4)	C8-C9-H9A	109.5
O1-C4-C5	116.2 (4)	C8-C9-H9B	109.5
C3-C4-C5	121.1 (4)	H9A-C9-H9B	109.5
C6-C5-C4	120.0 (4)	C8-C9- H 9 C	109.5
C6-C5-H5A	120.0	H9A-C9-H9C	109.5
C4-C5-H5A	120.0	H9B-C9-H9C	109.5

$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 5$
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
C1-C2-C3-C4
C1-C2-C3-C8
C2-C3-C4-O1
C8-C3-C4-O1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$
C8-C3-C4-C5
O1-C4-C5-C6
C3-C4-C5-C6
C7-O2-C6-C5
125.1 (4)
-0.5 (6)
179.4 (3)
0.1 (6)
-179.9 (3)
-178.7 (4)
1.4 (5)
0.2 (5)
-179.8 (3)
178.8 (3)
-0.1 (6)
-2.7 (5)

$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 1$	$177.5(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 2$	$180.0(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.3(6)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 2$	$-179.6(3)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 2$	$0.4(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.6(6)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.3(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{O} 3$	$3.6(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{O} 3$	$-176.4(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 9$	$-176.3(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 9$	$3.7(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 3$	0.82	1.83	$2.549(4)$	146

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2849).

