

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-{[(5-Methyl-2-furyl)methylene]hydrazinocarbonyl}pyridinium chloride monohydrate

Li-Min Li,^a Fang-Fang Jian^{b*} and Li Liu^a

^aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and ^bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: ffjian2008@163.com

Received 15 July 2009; accepted 18 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.107; data-to-parameter ratio = 17.7.

The title compound, $C_{12}H_{12}N_3O_2^+\cdot Cl^-\cdot H_2O$, was prepared by the reaction of N'-[(5-methyl-2-furyl)methylene]isonicotinohydrazide and hydrochloric acid at room temperature. The entire molecule is approximately planar with a maximum deviation of 0.047 (2) Å. An intramolecular $C-H\cdots O$ interaction is observed. $O-H\cdots Cl, N-H\cdots Cl, N-H\cdots O, N H\cdots N, C-H\cdots Cl$ and $C-H\cdots O$ hydrogen-bonds stabilize the crystal structure.

Related literature

Schiff bases have been used extensively as ligands in the field of coordination chemistry, see: Cui *et al.* (2005). For their antimicrobial and anticancer applications, see: Tarafder *et al.* (2000) and Deschamps *et al.* (2003), respectively.

Experimental

Crystal data $C_{12}H_{12}N_3O_2^+ \cdot Cl^- \cdot H_2O$ $M_r = 283.71$

Monoclinic, $P2_1/c$ a = 8.5258 (17) Å b = 14.435 (3) Å c = 13.625 (4) Å $\beta = 123.55 (2)^{\circ}$ $V = 1397.5 (7) \text{ Å}^{3}$ Z = 4

Data collection

Bruker P4 diffractometer Absorption correction: none 13328 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.107$ S = 1.07 3187 reflections 180 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O1W-H2W1\cdots Cl1^{i}$	0.86 (3)	2.40 (3)	3.229 (3)	162 (3)
O1W−H1W1···Cl1 ⁱⁱ	0.72(3)	2.51 (3)	3.225 (3)	177 (2)
$N2-H2A\cdots Cl1^{i}$	0.86	2.39	3.2243 (15)	164
$N3-H3A\cdots O2^{ii}$	0.86	1.89	2.639 (2)	144
N3-H3A···N1 ⁱⁱ	0.86	2.50	3.2238 (18)	142
$C3-H3B\cdots Cl1^{iii}$	0.93	2.76	3.6574 (19)	162
$C6-H6A\cdots Cl1^{i}$	0.93	2.69	3.5374 (18)	151
C9−H9A···Cl1 ⁱ	0.93	2.64	3.5656 (18)	171
$C11-H11A\cdots O1^{ii}$	0.93	2.45	3.1694 (19)	135
$C12-H12A\cdots O2$	0.93	2.39	2.713 (2)	100

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z - \frac{1}{2}$; (ii) $x - 1, -y - \frac{1}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y, -z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors would like to thank the Natural Science Foundation of Shandong Province (No.Y2008B30).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2845).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cui, S.-L., Zhou, F.-Y. & Lin, X.-F. (2005). Acta Cryst. E61, o3198-o3199.

Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). *Inorg. Chem.* 42, 7366–7368. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). *Transition Met. Chem.* 25, 456–460.

organic compounds

Mo $K\alpha$ radiation

 $0.20 \times 0.15 \times 0.11 \text{ mm}$

3187 independent reflections

2715 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.28 \text{ mm}^{-3}$

T = 293 K

 $R_{\rm int} = 0.026$

refinement $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\min} = -0.21 \text{ e} \text{ Å}^{-3}$

supporting information

Acta Cryst. (2009). E65, o1983 [doi:10.1107/S1600536809028426]

4-{[(5-Methyl-2-furyl)methylene]hydrazinocarbonyl}pyridinium chloride monohydrate

Li-Min Li, Fang-Fang Jian and Li Liu

S1. Comment

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Cui *et al.*, 2005). And they have antimicrobial (Tarafder *et al.*, 2000) and anticancer applications (Deschamps *et al.*, 2003). The title compound (I) was synthesized and we report its crystal structure here.

In the crystal structure of (I) (Fig. 1), the carbon and nitrogen atoms are nearly the same plane with a maximum deviation of 0.047Å for N2. There are intra- and intermolecular O—H···Cl, N—H···Cl, N—H···O, N—H···N, C—H···Cl and C—H···O hydrogen-bonds to stabilize the crystal structure (Table 1).

S2. Experimental

A mixture of N'-[(5-methyl-2-furyl)methylene]isonicotinohydrazide (0.02 mol) and hydrochloric acid (0.01 mol) was stirred with ethanol (50 ml) at 298 K for 2 h, then afford the title compound (2.61 g, yield 92%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol and trichloromethane (1:1) at room temperature.

S3. Refinement

The H atoms of the water molecule were found from a difference Fourier map and refined freely. The other H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with $U_{iso} = 1.2-1.5U_{eq}(C,N)$.

Figure 1

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

4-{[(5-Methyl-2-furyl)methylene]hydrazinocarbonyl}pyridinium chloride monohydrate

F(000) = 592

 $\theta = 3.1 - 27.5^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$

T = 293 K

Bar, yellow

 $D_{\rm x} = 1.348 {\rm Mg} {\rm m}^{-3}$

 $0.20 \times 0.15 \times 0.11 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2715 reflections

Crystal data

 $C_{12}H_{12}N_{3}O_{2}^{+}\cdot CI^{-}\cdot H_{2}O$ $M_{r} = 283.71$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 8.5258 (17) Å b = 14.435 (3) Å c = 13.625 (4) Å $\beta = 123.55 (2)^{\circ}$ $V = 1397.5 (7) \text{ Å}^{3}$ Z = 4

Data collection

Bruker P4	3187 independent reflections
diffractometer	2715 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.026$
Graphite monochromator	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Detector resolution: 3 pixels mm ⁻¹	$h = -10 \rightarrow 11$
ω scans	$k = -18 \rightarrow 18$
13328 measured reflections	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.107$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
3187 reflections	and constrained refinement
180 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0543P)^2 + 0.3029P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$

180 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.21 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.22892 (6)	-0.42533 (3)	-0.18006 (4)	0.06023 (16)	
01	0.51022 (13)	0.04123 (6)	0.13453 (8)	0.0380 (2)	
O2	0.05971 (14)	-0.22008 (7)	-0.02944 (10)	0.0536 (3)	
N1	0.16922 (14)	-0.04732 (7)	-0.03026 (9)	0.0327 (2)	
N2	-0.00554 (14)	-0.08118 (7)	-0.11953 (9)	0.0327 (2)	

H2A	-0.0844	-0.0467	-0.1778	0.039*
N3	-0.57485 (15)	-0.28167 (8)	-0.36865 (9)	0.0392 (3)
H3A	-0.6822	-0.3057	-0.4198	0.047*
C1	0.8247 (2)	0.07121 (14)	0.30399 (16)	0.0616 (5)
H1B	0.9141	0.1209	0.3397	0.092*
H1C	0.8779	0.0215	0.2847	0.092*
H1D	0.7941	0.0493	0.3580	0.092*
C2	0.65193 (19)	0.10503 (11)	0.19547 (13)	0.0419 (3)
C3	0.5985 (2)	0.18739 (10)	0.14057 (14)	0.0469 (4)
H3B	0.6695	0.2415	0.1641	0.056*
C4	0.4137 (2)	0.17617 (10)	0.04032 (13)	0.0441 (3)
H4A	0.3395	0.2216	-0.0145	0.053*
C5	0.36538 (19)	0.08648 (9)	0.03927 (12)	0.0354 (3)
C6	0.19437 (19)	0.03842 (9)	-0.04240 (11)	0.0359 (3)
H6A	0.0978	0.0707	-0.1067	0.043*
C7	-0.04668 (16)	-0.16914 (9)	-0.11160 (10)	0.0321 (3)
C8	-0.23608 (16)	-0.20547 (8)	-0.20798 (10)	0.0301 (3)
C9	-0.37266 (17)	-0.15335 (9)	-0.30253 (11)	0.0365 (3)
H9A	-0.3495	-0.0920	-0.3115	0.044*
C10	-0.54274 (18)	-0.19394 (10)	-0.38265 (11)	0.0404 (3)
H10A	-0.6356	-0.1601	-0.4468	0.049*
C11	-0.4484 (2)	-0.33342 (10)	-0.27924 (13)	0.0441 (3)
H11A	-0.4768	-0.3942	-0.2721	0.053*
C12	-0.27438 (19)	-0.29683 (9)	-0.19686 (12)	0.0413 (3)
H12A	-0.1837	-0.3330	-0.1346	0.050*
O1W	-0.3179 (3)	-0.06393 (18)	-0.5308 (2)	0.1060 (7)
H2W1	-0.282 (4)	-0.0189 (19)	-0.481 (2)	0.093 (8)*
H1W1	-0.419 (4)	-0.0676 (18)	-0.566 (2)	0.084 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0599 (3)	0.0341 (2)	0.0513 (2)	-0.00819 (16)	0.00847 (19)	-0.00564 (15)
01	0.0337 (5)	0.0317 (5)	0.0423 (5)	-0.0068 (4)	0.0170 (4)	-0.0055 (4)
O2	0.0291 (5)	0.0402 (5)	0.0497 (6)	-0.0051 (4)	-0.0044 (4)	0.0125 (5)
N1	0.0253 (5)	0.0331 (5)	0.0312 (5)	-0.0053 (4)	0.0104 (4)	-0.0060 (4)
N2	0.0240 (5)	0.0305 (5)	0.0292 (5)	-0.0022 (4)	0.0056 (4)	-0.0012 (4)
N3	0.0252 (5)	0.0466 (7)	0.0317 (5)	-0.0085 (5)	0.0070 (4)	-0.0110 (5)
C1	0.0368 (8)	0.0758 (12)	0.0565 (10)	-0.0073 (8)	0.0159 (7)	-0.0122 (9)
C2	0.0348 (6)	0.0454 (7)	0.0472 (8)	-0.0143 (6)	0.0236 (6)	-0.0167 (6)
C3	0.0515 (8)	0.0396 (7)	0.0572 (9)	-0.0204 (7)	0.0348 (7)	-0.0155 (7)
C4	0.0531 (8)	0.0334 (7)	0.0484 (8)	-0.0089 (6)	0.0297 (7)	-0.0025 (6)
C5	0.0377 (7)	0.0321 (6)	0.0359 (6)	-0.0053 (5)	0.0200 (6)	-0.0047 (5)
C6	0.0348 (6)	0.0332 (6)	0.0335 (6)	-0.0030 (5)	0.0151 (5)	-0.0032 (5)
C7	0.0221 (5)	0.0321 (6)	0.0305 (6)	-0.0002(5)	0.0072 (5)	-0.0007 (5)
C8	0.0217 (5)	0.0319 (6)	0.0282 (5)	-0.0003 (5)	0.0084 (5)	-0.0021 (5)
C9	0.0278 (6)	0.0365 (6)	0.0326 (6)	-0.0007 (5)	0.0089 (5)	0.0038 (5)
C10	0.0262 (6)	0.0476 (8)	0.0302 (6)	0.0008 (6)	0.0047 (5)	0.0022 (5)

supporting information

C11	0.0386 (7)	0.0333 (7)	0.0435 (7)	-0.0094 (6)	0.0120 (6)	-0.0066 (6)
C12	0.0319 (6)	0.0307 (6)	0.0384 (7)	-0.0011 (5)	0.0050 (5)	0.0010 (5)
O1W	0.0743 (12)	0.152 (2)	0.0905 (13)	-0.0102 (12)	0.0446 (11)	-0.0516 (13)

Geometric parameters (Å, °)

01—C5	1.3655 (17)	С3—Н3В	0.9300	
O1—C2	1.3742 (16)	C4—C5	1.3566 (19)	
O2—C7	1.2225 (16)	C4—H4A	0.9300	
N1—C6	1.2823 (17)	C5—C6	1.4324 (18)	
N1—N2	1.3911 (14)	C6—H6A	0.9300	
N2—C7	1.3375 (16)	С7—С8	1.5044 (16)	
N2—H2A	0.8600	C8—C12	1.3868 (18)	
N3—C11	1.3239 (18)	C8—C9	1.3869 (17)	
N3—C10	1.3314 (19)	C9—C10	1.3741 (18)	
N3—H3A	0.8600	С9—Н9А	0.9300	
C1—C2	1.479 (2)	C10—H10A	0.9300	
C1—H1B	0.9600	C11—C12	1.3780 (18)	
C1—H1C	0.9600	C11—H11A	0.9300	
C1—H1D	0.9600	C12—H12A	0.9300	
C2—C3	1.343 (2)	O1W—H2W1	0.87 (3)	
C3—C4	1.412 (2)	O1W—H1W1	0.72 (3)	
C5—O1—C2	106.56 (11)	C4—C5—C6	130.05 (13)	
C6—N1—N2	113.64 (11)	O1—C5—C6	120.28 (11)	
C7—N2—N1	117.70 (10)	N1—C6—C5	122.56 (12)	
C7—N2—H2A	121.1	N1—C6—H6A	118.7	
N1—N2—H2A	121.1	С5—С6—Н6А	118.7	
C11—N3—C10	122.76 (11)	O2—C7—N2	123.37 (11)	
C11—N3—H3A	118.6	O2—C7—C8	119.01 (11)	
C10—N3—H3A	118.6	N2—C7—C8	117.61 (10)	
C2—C1—H1B	109.5	C12—C8—C9	119.33 (11)	
C2C1H1C	109.5	C12—C8—C7	116.11 (11)	
H1B—C1—H1C	109.5	C9—C8—C7	124.53 (11)	
C2—C1—H1D	109.5	C10—C9—C8	118.83 (13)	
H1B—C1—H1D	109.5	С10—С9—Н9А	120.6	
H1C—C1—H1D	109.5	С8—С9—Н9А	120.6	
C3—C2—O1	110.02 (13)	N3—C10—C9	120.13 (12)	
C3—C2—C1	133.87 (14)	N3—C10—H10A	119.9	
01—C2—C1	116.11 (14)	C9-C10-H10A	119.9	
C2—C3—C4	106.92 (13)	N3—C11—C12	119.73 (13)	
С2—С3—Н3В	126.5	N3—C11—H11A	120.1	
С4—С3—Н3В	126.5	C12—C11—H11A	120.1	
C5—C4—C3	106.83 (14)	C11—C12—C8	119.21 (12)	
C5—C4—H4A	126.6	C11—C12—H12A	120.4	
C3—C4—H4A	126.6	C8—C12—H12A	120.4	
C4—C5—O1	109.67 (12)	H2W1—O1W—H1W1	111 (3)	

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
$O1W - H2W1 \cdots Cl1^{i}$	0.86 (3)	2.40 (3)	3.229 (3)	162 (3)
O1 <i>W</i> —H1 <i>W</i> 1···Cl1 ⁱⁱ	0.72 (3)	2.51 (3)	3.225 (3)	177 (2)
N2—H2A···Cl1 ⁱ	0.86	2.39	3.2243 (15)	164
N3—H3 <i>A</i> ···O2 ⁱⁱ	0.86	1.89	2.639 (2)	144
N3—H3 <i>A</i> …N1 ⁱⁱ	0.86	2.50	3.2238 (18)	142
C3—H3 <i>B</i> ···Cl1 ⁱⁱⁱ	0.93	2.76	3.6574 (19)	162
C6—H6A···Cl1 ⁱ	0.93	2.69	3.5374 (18)	151
C9—H9A···Cl1 ⁱ	0.93	2.64	3.5656 (18)	171
С11—Н11А…О1 ^{іі}	0.93	2.45	3.1694 (19)	135
C12—H12A····O2	0.93	2.39	2.713 (2)	100

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, *y*+1/2, -*z*-1/2; (ii) *x*-1, -*y*-1/2, *z*-1/2; (iii) -*x*+1, -*y*, -*z*.