

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ammonium 2-(2,4-dichlorophenoxy)acetate hemihydrate

Hui-Lian Liu,^a Shu-Hua Guo,^a Yun-Ying Li^b and Fang-Fang Jian^c*

^aMicroscale Science Institute, Biology Department, Weifang University, Weifang 261061, People's Republic of China, ^bThe 7th Middle School, Weifang 261061, People's Republic of China, and ^cMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: ffjian2008@163.com

Received 19 June 2009; accepted 9 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.023; wR factor = 0.060; data-to-parameter ratio = 17.4.

The title compound, $NH_4^+ \cdot C_8H_7Cl_2O_6^- \cdot 0.5H_2O$, was prepared by the reaction of 2-(2,4-dichlorophenoxy)acetic acid and ammonia in water at 367 K. The molecular structure and packing are stabilized by $N-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot O$ intermolecular hydrogen-bond interactions.

Related literature

For the biological activity of 2-(2,4-dichlorophenoxy)acetic acid, see: Lv *et al.* (1998). Due to their versatile bonding modes with metal ions, they have also been used in the synthesis of mononuclear monomeric (Gao *et al.*, 2004*a*; Psomas *et al.*, 2000) and polymeric complexes (Liu *et al.*, 2004; Gao *et al.*, 2004*b*, 2005).

Experimental

Crystal data	
$NH_4^+ \cdot C_8H_5Cl_2O_3^- \cdot 0.5H_2O$	<i>a</i> = 37.738 (8) Å
$M_r = 247.07$	b = 4.3889 (9) Å
Monoclinic, C2/c	c = 12.900 (3) Å

 $\beta = 103.83 (3)^{\circ}$ $V = 2074.7 (8) \text{ Å}^{3}$ Z = 8Mo K α radiation

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 9447 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.060$ S = 1.072385 reflections 137 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1\cdots O2^{i}$	0.85	1.97	3.2969 (15)	170
$N1 - H1A \cdots O2^{n}$ $N1 - H1B \cdots O3^{n}$	0.84 0.85	2.07 2.02	2.8908 (14) 2.8578 (13)	168 168
$N1 - H1C \cdots O3^{iii}$	0.88	2.09	2.9310 (15)	161

Symmetry codes: (i) $x, -y, z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) -x, -y, -z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Science Foundation of Shandong Province (No. Y2008B30) and the Youth Foundation of Weifang University (No. 2009Z18).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2826).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gao, S., Liu, J.-W., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. C61, m348–m350.
 Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004a). Acta Cryst. E60, m622–m624.
- Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004*b*). *Acta Cryst.* E**60**, m1875–m1877.
- Liu, J. W., Huo, L. H., Gao, S., Zhao, H., Zhu, Z. B. & Zhao, J. G. (2004). Wuji Huaxue Xuebao, 20, 707–710.
- Lv, F. T. (1998). Chem. Agent. 20, 179–182.
- Psomas, G., Raptopoulou, C. P., Iordanidis, L., Dendrinou-Samara, C., Tangoulis, V. & Kessissoglou, D. P. (2000). *Inorg. Chem.* **39**, 3042–3048.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

 $\mu = 0.61 \text{ mm}^{-1}$

 $0.15 \times 0.12 \times 0.10 \text{ mm}$

2385 independent reflections

2216 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 203 K

 $R_{\rm int} = 0.026$

90 restraints

 $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min}$ = -0.19 e Å⁻³

supporting information

Acta Cryst. (2009). E65, o1905 [doi:10.1107/S1600536809026919]

Ammonium 2-(2,4-dichlorophenoxy)acetate hemihydrate

Hui-Lian Liu, Shu-Hua Guo, Yun-Ying Li and Fang-Fang Jian

S1. Comment

2-(2,4-Dichlorophenoxy)acetic acid is one of the important biologically active compounds that have been commonly used in herbicides and plant growth substances (Lv *et al.*, 1998). Due to their versatile bonding modes with metal ions, they have also been used in the synthesis of mononuclear monomeric (Gao *et al.*, 2004*a*; Psomas *et al.*, 2000) and polymeric complexes (Liu *et al.*, 2004; Gao *et al.*, 2004*b*, 2005). We synthesized the title compound, (I), and report here its crystal structure.

In the crystal structure of (I) (Fig. 1), all the non-H atoms of 2-(2,4-dichlorophenoxy)acetic acid are in the same plane, with the maximum deviation being 0.146Å for atom O3.

S2. Experimental

A mixture of 2-(2,4-dichlorophenoxy)acetic acid (4.42 g, 0.02 mol) and ammonia (1.0 ml, 0.02 mol) was stirred with water (50 ml) at 367 K for 2 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone and ethanol (1:1) at room temperature.

S3. Refinement

The H atoms of the water molecule were found from a difference Fourier map and refined freely. The remaining H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86Å, respectively, and with $U_{iso}(H)=1.2-1.5U_{eq}(C,N)$.

01W

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of (I), viewed along b axis. Hydrogen bonds are indicated by dashed lines.

Ammonium 2-(2,4-dichlorophenoxy)acetate hemihydrate

Crystal data	
$NH_4^+ \cdot C_8H_5Cl_2O_3^- \cdot 0.5H_2O$	F(000) = 1016
$M_r = 247.07$	$D_{\rm x} = 1.582 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 2216 reflections
a = 37.738 (8) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 4.3889 (9) Å	$\mu = 0.61 \text{ mm}^{-1}$
c = 12.900 (3) Å	T = 293 K
$\beta = 103.83 \ (3)^{\circ}$	Bar, colourless
V = 2074.7 (8) Å ³	$0.15 \times 0.12 \times 0.10 \text{ mm}$
Z = 8	

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 9447 measured reflections	2216 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ $h = -48 \rightarrow 48$ $k = -5 \rightarrow 5$ $l = -16 \rightarrow 16$
2385 independent reflections	
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.023$ wR(F^2) = 0.060	Hydrogen site location: inferred from neighbouring sites
S = 1.07	H-atom parameters constrained
2385 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0294P)^2 + 1.6158P]$
137 parameters	where $P = (F_o^2 + 2F_c^2)/3$
90 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl2	0.252351 (7)	0.68291 (7)	0.14126 (2)	0.01935 (8)	
Cl1	0.120306 (7)	0.46470 (7)	0.21755 (2)	0.01934 (8)	
03	0.04445 (2)	-0.21277 (17)	-0.01018 (6)	0.01408 (16)	
O2	0.05453 (2)	-0.41964 (18)	-0.15912 (6)	0.01545 (16)	
01	0.10714 (2)	0.10909 (18)	0.02392 (6)	0.01371 (16)	
C4	0.14091 (3)	0.2393 (2)	0.04524 (8)	0.0119 (2)	
C6	0.18475 (3)	0.5588 (2)	0.16711 (8)	0.0146 (2)	
H6A	0.1910	0.6774	0.2285	0.018*	
C7	0.09822 (3)	-0.0753 (2)	-0.07012 (8)	0.0122 (2)	
H7A	0.1178	-0.2195	-0.0687	0.015*	
H7B	0.0961	0.0534	-0.1324	0.015*	
C3	0.16595 (3)	0.2075 (2)	-0.01809 (9)	0.0141 (2)	
H3A	0.1598	0.0924	-0.0803	0.017*	
C8	0.06265 (3)	-0.2485 (2)	-0.07926 (8)	0.0113 (2)	
C5	0.15090 (3)	0.4193 (2)	0.13763 (8)	0.0130 (2)	
C2	0.20009 (3)	0.3460 (3)	0.01088 (9)	0.0152 (2)	
H2A	0.2166	0.3227	-0.0316	0.018*	

C1	0.20925 (3)	0.5183 (2)	0.10313 (9)	0.0142 (2)	
N1	0.03308 (2)	0.2772 (2)	0.11575 (7)	0.01333 (18)	
O1W	0.0000	-0.1574 (3)	0.2500	0.0237 (3)	
H1A	0.0399	0.2902	0.1824	0.024 (4)*	
H1B	0.0378	0.4414	0.0872	0.024 (4)*	
H1WA	-0.0158	-0.2797	0.2154	0.044 (5)*	
H1C	0.0093	0.2577	0.0997	0.029 (4)*	
H1D	0.0423	0.1190	0.0853	0.029 (4)*	

Atomic displacement parameters	$(Å^2)$	
--------------------------------	---------	--

	1/11	1/22	<i>L</i> /33	<i>U</i> ¹²	1/13	1/23
~						
Cl2	0.01261 (13)	0.02457 (15)	0.02073 (14)	-0.00724 (10)	0.00367 (10)	-0.00251 (10)
Cl1	0.01548 (13)	0.02906 (16)	0.01553 (13)	-0.00433 (11)	0.00777 (10)	-0.00675 (10)
O3	0.0133 (3)	0.0140 (4)	0.0165 (4)	-0.0013 (3)	0.0066 (3)	-0.0002 (3)
O2	0.0164 (4)	0.0157 (4)	0.0137 (4)	-0.0026 (3)	0.0024 (3)	-0.0021 (3)
01	0.0108 (3)	0.0175 (4)	0.0137 (4)	-0.0038 (3)	0.0047 (3)	-0.0044 (3)
C4	0.0099 (4)	0.0119 (5)	0.0134 (5)	-0.0002 (4)	0.0019 (4)	0.0022 (4)
C6	0.0150 (5)	0.0155 (5)	0.0125 (5)	-0.0014 (4)	0.0013 (4)	-0.0006 (4)
C7	0.0119 (5)	0.0132 (5)	0.0121 (5)	-0.0014 (4)	0.0042 (4)	-0.0020 (4)
C3	0.0137 (5)	0.0150 (5)	0.0140 (5)	-0.0012 (4)	0.0040 (4)	-0.0013 (4)
C8	0.0101 (4)	0.0101 (4)	0.0130 (5)	0.0014 (4)	0.0016 (4)	0.0033 (4)
C5	0.0125 (5)	0.0154 (5)	0.0121 (5)	0.0007 (4)	0.0048 (4)	0.0012 (4)
C2	0.0130 (5)	0.0171 (5)	0.0170 (5)	-0.0006 (4)	0.0064 (4)	0.0010 (4)
C1	0.0102 (5)	0.0151 (5)	0.0167 (5)	-0.0028 (4)	0.0019 (4)	0.0021 (4)
N1	0.0131 (4)	0.0134 (4)	0.0143 (4)	-0.0009 (3)	0.0050 (3)	0.0001 (3)
O1W	0.0199 (6)	0.0128 (5)	0.0358 (7)	0.000	0.0014 (5)	0.000

Geometric parameters (Å, °)

Cl2—C1	1.7400 (11)	C7—H7A	0.9700
Cl1—C5	1.7336 (12)	С7—Н7В	0.9700
O3—C8	1.2584 (13)	C3—C2	1.3924 (15)
O2—C8	1.2523 (13)	С3—НЗА	0.9300
01—C4	1.3635 (13)	C2—C1	1.3824 (16)
01—C7	1.4298 (12)	C2—H2A	0.9300
C4—C3	1.3962 (15)	N1—H1A	0.8385
C4—C5	1.4042 (15)	N1—H1B	0.8474
C6—C5	1.3851 (15)	N1—H1C	0.8757
C6—C1	1.3901 (16)	N1—H1D	0.9069
С6—Н6А	0.9300	O1W—H1WA	0.8458
С7—С8	1.5225 (14)		
C4—O1—C7	115.30 (8)	O2—C8—C7	113.65 (9)
O1—C4—C3	124.81 (10)	O3—C8—C7	120.22 (9)
O1—C4—C5	117.10 (9)	C6—C5—C4	121.65 (10)
C3—C4—C5	118.09 (10)	C6—C5—Cl1	119.18 (8)
C5—C6—C1	118.74 (10)	C4—C5—Cl1	119.17 (8)

С5—С6—Н6А	120.6	C1—C2—C3	119.65 (10)
С1—С6—Н6А	120.6	C1—C2—H2A	120.2
O1—C7—C8	111.88 (9)	C3—C2—H2A	120.2
O1—C7—H7A	109.2	C2—C1—C6	121.08 (10)
С8—С7—Н7А	109.2	C2-C1-Cl2	119.67 (9)
O1—C7—H7B	109.2	C6—C1—Cl2	119.24 (9)
С8—С7—Н7В	109.2	H1A—N1—H1B	110.0
H7A—C7—H7B	107.9	H1A—N1—H1C	107.2
C2—C3—C4	120.77 (10)	H1B—N1—H1C	106.9
С2—С3—НЗА	119.6	H1A—N1—H1D	116.2
С4—С3—НЗА	119.6	H1B—N1—H1D	108.7
O2—C8—O3	126.13 (10)	H1C—N1—H1D	107.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01 <i>W</i> —H1…O2 ⁱ	0.85	1.97	3.2969 (15)	170
N1—H1A····O2 ⁱ	0.84	2.07	2.8908 (14)	168
N1—H1 <i>B</i> ···O3 ⁱⁱ	0.85	2.02	2.8578 (13)	168
N1—H1 <i>C</i> ···O3 ⁱⁱⁱ	0.88	2.09	2.9310 (15)	161

Symmetry codes: (i) *x*, *-y*, *z*+1/2; (ii) *x*, *y*+1, *z*; (iii) *-x*, *-y*, *-z*.