metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(1*H*-imidazole- κN^3)(7-oxabicyclo-[2.2.1]heptane-2,3-dicarboxylato- $\kappa^3 O^2, O^3, O^7$)cobalt(II) 3.35-hydrate

Yan-Jun Wang, Rui-Ding Hu, Qiu-Yue Lin* and Jian-Ping Cheng

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China Correspondence e-mail: sky51@zjnu.cn

Received 25 May 2009; accepted 23 June 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.071; wR factor = 0.241; data-to-parameter ratio = 17.6.

In the crystal structure of the title compound, $[Co(C_8H_8O_5)-(C_3H_4N_2)_3]\cdot 3.35H_2O$, the central Co^{II} ion is in a slightly distorted octahedral environment, coordinated by the bridging O atom from the bicyclo[2.2.1]heptane ligand, by two carboxylate O atoms from two different carboxylate groups and by three N atoms from imidazole ligands. Uncoordinated water molecules, some of them disordered, are present in the crystal structure. In the crystal structure, molecules are linked by $O-H\cdots O$, $N-H\cdots O$ and $O-H\cdots N$ hydrogen-bonding interactions.

Related literature

For several cobalt complexes of norcantharidin, see: Wang *et al.* (1988) and of imidazole, see: Furenlid *et al.* (1986); Zhu *et al.* (2003).

Experimental

Crystal data

 $\begin{array}{ll} [\mathrm{Co}(\mathrm{C_8H_8O_5})(\mathrm{C_3H_4N_2})_3]\cdot 3.35\mathrm{H_2O} & \gamma = 95.354~(2)^\circ \\ M_r = 507.67 & V = 1188.23~(6)~\text{Å}^3 \\ \mathrm{Triclinic}, P\overline{1} & Z = 2 \\ a = 8.2666~(2)~\text{Å} & \mathrm{Mo}~\mathrm{Ka}~\mathrm{radiation} \\ b = 12.6522~(5)~\text{\AA} & \mu = 0.78~\mathrm{mm}^{-1} \\ c = 12.7200~(3)~\text{\AA} & T = 296~\mathrm{K} \\ a = 109.912~(2)^\circ & 0.41~\times~0.36~\times~0.29~\mathrm{mm} \\ \beta = 104.394~(1)^\circ \end{array}$

Data collection

Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.735, T_{\max} = 0.798$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.071$	
$wR(F^2) = 0.241$	
S = 1.11	
5402 reflections	

Table 1

Hydrogen-bond	geometry	(Å, '	°)
2 0	0 2	× /	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1WA\cdots O2W^{i}$	0.85	2.33	3.161 (6)	167
$O2W - H2WA \cdots N5^{ii}$	0.85	2.59	3.133 (5)	123
$O2W - H2WB \cdots O2W^{i}$	0.85	2.69	3.084 (7)	110
$O1W - H1WB \cdots O4$	0.85	2.17	2.690 (6)	119
N5-H5 B ···O2 W^{ii}	0.86	2.29	3.133 (5)	165

18153 measured reflections 5402 independent reflections

 $R_{\rm int} = 0.024$

307 parameters

 $\Delta \rho_{\text{max}} = 1.54 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.74 \text{ e} \text{ Å}^{-3}$

4712 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge financial support from the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2795).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Furenlid, L. R., Van Derveer, D. G. & Felton, R. H. (1986). Acta Cryst. C42, 806–809.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20–27.
- Zhu, H.-L., Yang, S., Qiu, X.-Y., Xiong, Z.-D., You, Z.-L. & Wang, D.-Q. (2003). Acta Cryst. E**59**, m1089–m1090.

supporting information

Acta Cryst. (2009). E65, m854 [doi:10.1107/S1600536809024039]

Tris(1*H*-imidazole- κN^3)(7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato- $\kappa^3 O^2, O^3, O^7$)cobalt(II) 3.35-hydrate

Yan-Jun Wang, Rui-Ding Hu, Qiu-Yue Lin and Jian-Ping Cheng

S1. Comment

7-Oxabicyclo(2,2,1) heptane-2,3-dicarboxylic anhydride (norcantharidin), a traditional Chinese drug, has a great inhibitive effect on common cancer cells. Imidazole is reputed as biocatalyst and biological ligand. Several cobalt complexes of norcantharidin (Wang *et al.*, 1988) and of imidazole (Furenlid *et al.*, 1986; Zhu *et al.*, 2003) have been reported. However, there are no ternary complexes reported about them. So a novel cobalt(II) ternary complex of norcantharidin with imidazole has been synthesized and its single crystals were obtained.

In the title complex, each Co^{II} ion is six-coordinated by one bridge oxygen, two carboxylate oxygen atoms in two different carboxylate groups and three nitrogen atom from imidazoles. O1, O5, N3 and N2 lie in the equatorial plane with the torsion angle 0.06 °. O2 and the nitrogen atom N1 from imidazole are in the axial positions. The bond angle of O2— Co1—N1 is 172.12 (13)°, so it forms a distorted octahedral. Owing to the binding of the bridge oxygen atom with Co, two six-membered rings (Co1/O5/C5/C6/C8/O2 and Co1/O5/C2/C1/C7/O1) are created. In addition, a seven-membered ring (Co1/O2/C8/C6/C1/C7/O1) is formed because of the coordination of carboxylate oxygen atoms O1 and O2, which makes the compound more stable.

In the crystal structure, there are O—H…O and N—H…O and O—H…N hydrogen bonds interactions (Table 1).

S2. Experimental

A mixture of 0.5 mmol norcantharidin, 0.5 mmol CoCl₂6H₂O, 2.5 mmol imidazole and 15 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. The solution was filtered and after two weeks block orange single crystals were obtained.

S3. Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97 (2) Å and N—H = 0.86 Å, $U_{iso}(H) = 1.2U_{eq}(C)$]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.

Tris(1*H*-imidazole- κN^3)(7-oxabicyclo[2.2.1]heptane-2,3- dicarboxylato- $\kappa^3 O^2, O^3, O^7$)cobalt(II)

Crystal data	
$[Co(C_8H_8O_5)(C_3H_4N_2)_3]$ ·3.35H ₂ O	Z = 2
$M_r = 507.67$	F(000) = 529
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.419 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.2666 (2) Å	Cell parameters from 8576 reflections
b = 12.6522 (5) Å	$\theta = 1.8 - 27.7^{\circ}$
c = 12.7200 (3) Å	$\mu=0.78~\mathrm{mm^{-1}}$
$\alpha = 109.912 \ (2)^{\circ}$	T = 296 K
$\beta = 104.394(1)^{\circ}$	Block, orange
$\gamma = 95.354 (2)^{\circ}$	$0.41 \times 0.36 \times 0.29 \text{ mm}$
V = 1188.23 (6) Å ³	

Data collection

Bruker APEXII area-detector	18153 measured reflections
diffractometer	5402 independent reflections
Radiation source: fine-focus sealed tube	4712 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.024$
ω scans	$\theta_{max} = 27.7^{\circ}, \ \theta_{min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -15 \rightarrow 16$
$T_{\min} = 0.735, T_{\max} = 0.798$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.071$	Hydrogen site location: inferred from
$wR(F^2) = 0.241$	neighbouring sites
S = 1.11	H-atom parameters constrained
5402 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1424P)^2 + 2.537P]$
307 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.54$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.74$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Co1	0.63081 (6)	0.68205 (4)	0.83619 (4)	0.0284 (2)	
N1	0.7319 (4)	0.7409 (3)	1.0204 (3)	0.0341 (7)	
N2	0.6963 (5)	0.5190 (3)	0.8077 (3)	0.0346 (7)	
N3	0.3830 (4)	0.6199 (3)	0.8333 (3)	0.0349 (7)	
N4	0.9131 (7)	0.8220 (5)	1.2013 (5)	0.0693 (14)	
H4C	1.0039	0.8564	1.2590	0.083*	
N5	0.6939 (6)	0.3370 (3)	0.7193 (5)	0.0574 (12)	
H5B	0.6793	0.2715	0.6638	0.069*	
N6	0.1391 (6)	0.5038 (5)	0.7969 (5)	0.0643 (13)	
H6B	0.0643	0.4437	0.7798	0.077*	
01	0.8683 (4)	0.7508 (3)	0.8304 (3)	0.0391 (7)	
O1W	0.7281 (7)	0.8341 (4)	0.4258 (4)	0.0742 (13)	
H1WA	0.7302	0.9031	0.4678	0.089*	
H1WB	0.6385	0.7925	0.4222	0.089*	
O2W	0.3268 (4)	0.9162 (3)	0.4450 (2)	0.0376 (7)	
H2WA	0.2966	0.8498	0.4443	0.045*	

H2WB	0.4062	0.9147	0.4132	0.045*	
O2	0.5497 (5)	0.6445 (3)	0.6545 (3)	0.0451 (8)	
O3	1.0444 (5)	0.8533 (4)	0.7804 (5)	0.0725 (14)	
O3W	1.091 (2)	0.5698 (11)	0.5348 (6)	0.191 (9)	0.62
H3WA	1.1554	0.5213	0.5352	0.229*	0.62
H3WB	1.1423	0.6254	0.5251	0.229*	0.62
O3W′	0.9060 (13)	0.5536 (8)	0.5087 (6)	0.044 (2)	0.38
H4WA	0.8377	0.5995	0.5196	0.052*	0.38
H4WB	0.8626	0.4913	0.5114	0.052*	0.38
O4W	1.0657 (12)	0.8869 (16)	0.5732 (9)	0.091 (6)	0.35
H5WA	1.0732	0.9208	0.6450	0.110*	0.35
H5WB	1.0588	0.8156	0.5590	0.110*	0.35
04	0.6568 (6)	0.6890 (3)	0.5285 (3)	0.0546 (9)	
05	0.5636 (4)	0.8523 (2)	0.8560 (2)	0.0317 (6)	
C1	0.7756 (5)	0.9070 (3)	0.7836 (4)	0.0356 (8)	
H1A	0.8265	0.9744	0.7730	0.043*	
C2	0.7068 (5)	0.9451 (3)	0.8892 (4)	0.0362 (9)	
H2A	0.7914	0.9584	0.9640	0.043*	
C3	0.6172 (7)	1.0455 (4)	0.8901 (5)	0.0495 (12)	
H3A	0.6853	1.1039	0.8772	0.059*	
H3B	0.5916	1.0798	0.9634	0.059*	
C4	0.4520(7)	0.9865 (4)	0.7860 (5)	0.0472 (11)	
H4A	0.3510	0.9953	0.8114	0.057*	
H4B	0.4464	1.0163	0.7246	0.057*	
C5	0.4739 (5)	0.8612 (3)	0.7458 (4)	0.0343 (8)	
H5A	0.3661	0.8060	0.7038	0.041*	
C6	0.6067 (5)	0.8427 (3)	0.6801 (4)	0.0342 (8)	
H6A	0.5887	0.8810	0.6241	0.041*	
C7	0.9075 (5)	0.8317 (4)	0.7984 (4)	0.0385 (9)	
C8	0.6040 (6)	0.7161 (4)	0.6169 (4)	0.0371 (9)	
C9	0.3052 (6)	0.5083 (4)	0.8036 (5)	0.0453 (11)	
H9A	0.3589	0.4457	0.7901	0.054*	
C10	0.1132 (5)	0.6143 (4)	0.8230 (4)	0.0339 (8)	
H10A	0.0110	0.6385	0.8261	0.041*	
C11	0.2615 (5)	0.6804 (4)	0.8431 (4)	0.0380 (9)	
H11A	0.2776	0.7591	0.8617	0.046*	
C12	0.6597 (6)	0.4343 (4)	0.7060 (5)	0.0455 (10)	
H12A	0.6159	0.4406	0.6341	0.055*	
C13	0.7553 (8)	0.3606 (5)	0.8352 (6)	0.0592 (15)	
H13A	0.7900	0.3096	0.8703	0.071*	
C14	0.7564 (7)	0.4729 (4)	0.8902 (5)	0.0479 (11)	
H14A	0.7921	0.5128	0.9709	0.057*	
C15	0.8950 (6)	0.7955 (5)	1.0852 (4)	0.0519 (12)	
H15A	0.9810	0.8122	1.0548	0.062*	
C16	0.7597 (6)	0.7835 (4)	1.2069 (3)	0.0349 (8)	
H16A	0.7321	0.7890	1.2749	0.042*	
C17	0.6539 (6)	0.7360 (4)	1.0978 (4)	0.0404(9)	
H17A	0.5397	0.7035	1.0787	0.048*	
***/**	0.0071	0.,000	1.0707	0.010	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Col	0.0262 (3)	0.0286 (3)	0.0308 (3)	0.0069 (2)	0.0089 (2)	0.0113 (2)
N1	0.0325 (17)	0.0372 (17)	0.0323 (17)	0.0075 (14)	0.0079 (14)	0.0141 (14)
N2	0.0330 (17)	0.0310 (16)	0.0418 (18)	0.0094 (13)	0.0126 (14)	0.0142 (14)
N3	0.0270 (16)	0.0350 (17)	0.0418 (18)	0.0065 (13)	0.0086 (14)	0.0148 (15)
N4	0.070 (3)	0.075 (3)	0.048 (3)	0.001 (3)	0.001 (2)	0.019 (2)
N5	0.059 (3)	0.0284 (19)	0.078 (3)	0.0115 (18)	0.023 (2)	0.009 (2)
N6	0.046 (2)	0.061 (3)	0.086 (4)	0.000 (2)	0.021 (2)	0.030 (3)
01	0.0350 (15)	0.0425 (16)	0.0522 (18)	0.0137 (13)	0.0216 (14)	0.0251 (14)
O1W	0.099 (4)	0.078 (3)	0.060 (3)	0.020 (3)	0.043 (3)	0.029 (2)
O2W	0.0422 (16)	0.0350 (14)	0.0265 (13)	0.0221 (13)	0.0029 (12)	0.0021 (11)
O2	0.066 (2)	0.0317 (15)	0.0354 (16)	0.0101 (14)	0.0132 (15)	0.0111 (12)
O3	0.040 (2)	0.081 (3)	0.134 (4)	0.0207 (19)	0.043 (2)	0.071 (3)
O3W	0.271 (17)	0.180 (11)	0.027 (3)	-0.178 (12)	-0.009 (6)	0.020 (5)
O3W′	0.069 (6)	0.063 (5)	0.022 (3)	0.060 (5)	0.029 (4)	0.021 (3)
O4W	0.027 (5)	0.205 (17)	0.031 (5)	-0.031 (7)	-0.004 (4)	0.054 (8)
O4	0.080 (3)	0.050(2)	0.0413 (18)	0.0216 (18)	0.0306 (18)	0.0152 (15)
05	0.0320 (14)	0.0287 (13)	0.0330 (14)	0.0067 (11)	0.0086 (11)	0.0103 (11)
C1	0.037 (2)	0.0283 (18)	0.044 (2)	0.0063 (15)	0.0145 (17)	0.0140 (16)
C2	0.035 (2)	0.0288 (18)	0.038 (2)	0.0029 (15)	0.0080 (17)	0.0069 (16)
C3	0.057 (3)	0.027 (2)	0.059 (3)	0.0092 (19)	0.019 (2)	0.0073 (19)
C4	0.052 (3)	0.040 (2)	0.055 (3)	0.024 (2)	0.018 (2)	0.019 (2)
C5	0.034 (2)	0.0325 (19)	0.035 (2)	0.0105 (15)	0.0073 (16)	0.0122 (16)
C6	0.041 (2)	0.0323 (19)	0.0319 (19)	0.0131 (16)	0.0100 (16)	0.0139 (16)
C7	0.032 (2)	0.038 (2)	0.046 (2)	0.0063 (16)	0.0137 (18)	0.0167 (18)
C8	0.044 (2)	0.037 (2)	0.0276 (18)	0.0141 (17)	0.0061 (16)	0.0104 (16)
C9	0.038 (2)	0.038 (2)	0.067 (3)	0.0092 (18)	0.022 (2)	0.024 (2)
C10	0.0213 (16)	0.040 (2)	0.040 (2)	0.0085 (15)	0.0111 (15)	0.0134 (17)
C11	0.033 (2)	0.039 (2)	0.041 (2)	0.0093 (17)	0.0128 (17)	0.0109 (17)
C12	0.046 (3)	0.037 (2)	0.049 (3)	0.0099 (19)	0.014 (2)	0.0108 (19)
C13	0.069 (4)	0.046 (3)	0.086 (4)	0.026 (3)	0.036 (3)	0.041 (3)
C14	0.054 (3)	0.049 (3)	0.055 (3)	0.022 (2)	0.022 (2)	0.030 (2)
C15	0.036 (2)	0.071 (3)	0.041 (2)	-0.004 (2)	0.0040 (19)	0.021 (2)
C16	0.047 (2)	0.035 (2)	0.0255 (17)	0.0134 (17)	0.0125 (16)	0.0135 (15)
C17	0.043 (2)	0.041 (2)	0.041 (2)	0.0109 (18)	0.0162 (19)	0.0179 (19)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Co1-01	2.101 (3)	O4W—H5WB	0.8502
Co1—O2	2.107 (3)	O4—C8	1.258 (5)
Co1—N3	2.112 (3)	O5—C2	1.453 (5)
Co1—N1	2.113 (3)	O5—C5	1.461 (5)
Co1—N2	2.116 (3)	C1—C7	1.531 (6)
Co105	2.222 (3)	C1—C2	1.534 (6)
N1—C17	1.319 (6)	C1—C6	1.578 (6)
N1-C15	1.364 (6)	C1—H1A	0.9800

			/
N2—C12	1.310 (6)	C2—C3	1.528 (6)
N2	1.378 (6)	C2—H2A	0.9800
N3—C11	1.323 (5)	C3—C4	1.553 (8)
N3—C9	1 377 (6)	С3—НЗА	0 9700
NA C16	1.3/7(0) 1.3/3(7)	C3 H3B	0.9700
N4 C15	1.343(7)	C4_C5	1.524(6)
	1.505 (7)		1.334 (0)
N4—H4C	0.8600	C4—H4A	0.9700
N5—C12	1.344 (7)	C4—H4B	0.9700
N5—C13	1.350 (8)	C5—C6	1.526 (6)
N5—H5B	0.8600	С5—Н5А	0.9800
N6—C9	1.349 (7)	C6—C8	1.523 (6)
N6—C10	1.374 (7)	С6—Н6А	0.9800
N6—H6B	0.8600	С9—Н9А	0.9300
O1—C7	1.268 (5)	C10—C11	1.333 (6)
O1W—H1WA	0.8501	C10—H10A	0.9300
O1W—H1WB	0 8499	C11—H11A	0.9300
O^{2W} H ^{2WA}	0.8500	C_{12} H_{12A}	0.9300
	0.8500	C12— $III2AC12$ — $C14$	0.9300
	0.8303		1.551 (7)
02	1.257 (6)	CI3—HI3A	0.9300
O3—C7	1.234 (6)	C14—H14A	0.9300
O3W—H3WA	0.8500	C15—H15A	0.9300
O3W—H3WB	0.8498	C16—C17	1.336 (6)
O3W'—H4WA	0.8499	C16—H16A	0.9300
O3W'—H4WB	0.8502	C17—H17A	0.9300
O4W—H5WA	0.8500		
$01 C_{2}1 02$	95 20 (14)	$C_2 C_2 U_2 \lambda$	111 4
01 - 01 - 02	33.20(14)	$C_2 = C_3 = H_3 A$	111.4
OI-CoI-N3	1/5.35 (12)	C4—C3—H3A	111.4
02—Co1—N3	91.49 (15)	С2—С3—Н3В	111.4
Ol—Col—Nl	88.60 (14)	C4—C3—H3B	111.4
O2—Co1—N1	172.12 (13)	НЗА—СЗ—НЗВ	109.2
N3—Co1—N1	94.41 (14)	C5—C4—C3	101.3 (4)
O1—Co1—N2	91.64 (13)	C5—C4—H4A	111.5
O2—Co1—N2	91.04 (13)	C3—C4—H4A	111.5
N3—Co1—N2	91.68 (14)	C5—C4—H4B	111.5
N1 - Co1 - N2	93.99 (14)	C3—C4—H4B	111.5
$01 - C_0 - 05$	86 79 (11)	H4A—C4—H4B	109.3
$0^{2}-C_{0}1-0^{5}$	85.90 (11)	05	101.7(3)
$N_{2}^{2} = Co_{1}^{2} = O_{2}^{2}$	80.72 (12)	05 C5 C4	101.7(3) 102.2(2)
$N_{1} = C_{01} = O_{5}$	89.72 (12) 88.01 (12)	05-05-04	102.2(3)
N1 = C01 = 05	88.91(12)	C_{0}	111.2 (4)
N2—Co1—O5	1/6.6/(12)	US-US-HSA	113.5
C17—N1—C15	104.9 (4)	С6—С5—Н5А	113.5
C17—N1—Co1	128.7 (3)	C4—C5—H5A	113.5
C15—N1—Co1	1264(3)	C8—C6—C5	112.3 (4)
C10 NO C14	120.4 (5)		
C12 - N2 - C14	105.6 (4)	C8—C6—C1	113.4 (3)
C12—N2—C14 C12—N2—Co1	105.6 (4) 125.7 (3)	C8—C6—C1 C5—C6—C1	113.4 (3) 101.0 (3)
C12—N2—C01 C12—N2—C01 C14—N2—C01	125.7 (3) 127.8 (3)	C8—C6—C1 C5—C6—C1 C8—C6—H6A	113.4 (3) 101.0 (3) 110.0
C12—N2—C14 C12—N2—Co1 C14—N2—Co1 C11—N3—C9	125.7 (3) 125.7 (3) 127.8 (3) 105.4 (4)	C8—C6—C1 C5—C6—C1 C8—C6—H6A C5—C6—H6A	113.4 (3) 101.0 (3) 110.0 110.0

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—N3—Co1	125.4 (3)	C1—C6—H6A	110.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N3—Co1	128.4 (3)	O3—C7—O1	124.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—N4—C15	105.8 (5)	O3—C7—C1	119.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—N4—H4C	127.1	O1—C7—C1	116.9 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—N4—H4C	127.1	O2—C8—O4	123.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—N5—C13	107.7 (4)	O2—C8—C6	119.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—N5—H5B	126.2	O4—C8—C6	117.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—N5—H5B	126.2	N6—C9—N3	109.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N6—C10	106.3 (4)	N6—C9—H9A	125.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N6—H6B	126.9	N3—C9—H9A	125.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—N6—H6B	126.9	C11—C10—N6	107.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—O1—Co1	129.5 (3)	C11—C10—H10A	126.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H1WA—O1W—H1WB	108.4	N6-C10-H10A	126.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H2WA—O2W—H2WB	108.8	N3—C11—C10	111.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—O2—Co1	118.5 (3)	N3—C11—H11A	124.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3WA—O3W—H3WB	108.3	C10-C11-H11A	124.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H4WA—O3W'—H4WB	108.1	N2—C12—N5	111.1 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H5WA—O4W—H5WB	108.2	N2—C12—H12A	124.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—O5—C5	96.4 (3)	N5—C12—H12A	124.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—O5—Co1	115.2 (2)	N5-C13-C14	106.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—O5—Co1	114.1 (2)	N5-C13-H13A	126.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C1—C2	111.4 (4)	C14—C13—H13A	126.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C1—C6	114.2 (3)	C13—C14—N2	109.2 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—C6	101.4 (3)	C13—C14—H14A	125.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C1—H1A	109.9	N2—C14—H14A	125.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—H1A	109.9	N4—C15—N1	109.9 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—H1A	109.9	N4—C15—H15A	125.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—C2—C3	101.6 (3)	N1—C15—H15A	125.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—C2—C1	102.2 (3)	C17—C16—N4	108.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C1	110.4 (4)	C17—C16—H16A	126.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—C2—H2A	113.8	N4—C16—H16A	126.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—H2A	113.8	N1—C17—C16	111.4 (4)
C2—C3—C4102.0 (3)C16—C17—H17A124.3O1—Co1—N1—C17176.2 (4)C1—C2—C3—C471.7 (N3—Co1—N1—C17 -0.2 (4)C2—C3—C4—C51.5 (5)N2—Co1—N1—C17 -92.2 (4)C2—O5—C5—C658.6 (O5—Co1—N1—C1789.4 (4)Co1—O5—C5—C6 -62.7 O1—Co1—N1—C15 -2.2 (4)C2—O5—C5—C4 -56.5 N3—Co1—N1—C15 -178.6 (4)Co1—O5—C5—C4 -177.1 N2—Co1—N1—C15 89.4 (4)C3—C4—C5—O533.4 (O5—Co1—N1—C15 -89.0 (4)C3—C4—C5—C6 -74.5	C1—C2—H2A	113.8	N1—C17—H17A	124.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4	102.0 (3)	C16—C17—H17A	124.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Co1—N1—C17	176.2 (4)	C1—C2—C3—C4	71.7 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—Co1—N1—C17	-0.2 (4)	C2—C3—C4—C5	1.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—Co1—N1—C17	-92.2 (4)	C2—O5—C5—C6	58.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Co1—N1—C17	89.4 (4)	Co1—O5—C5—C6	-62.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Co1—N1—C15	-2.2 (4)	C2—O5—C5—C4	-56.5 (4)
N2—Co1—N1—C15 89.4 (4) C3—C4—C5—O5 33.4 (O5—Co1—N1—C15 -89.0 (4) C3—C4—C5—C6 -74.5	N3—Co1—N1—C15	-178.6 (4)	Co1—O5—C5—C4	-177.8 (3)
O5—Co1—N1—C15 -89.0 (4) C3—C4—C5—C6 -74.5	N2—Co1—N1—C15	89.4 (4)	C3—C4—C5—O5	33.4 (5)
	O5—Co1—N1—C15	-89.0 (4)	C3—C4—C5—C6	-74.5 (5)
O1—Co1—N2—C12 -94.7 (4) O5—C5—C6—C8 84.1 (O1-Co1-N2-C12	-94.7 (4)	O5—C5—C6—C8	84.1 (4)
O2—Co1—N2—C12 –9.4 (4) C4—C5—C6—C8 –167.	O2-Co1-N2-C12	-9.4 (4)	C4—C5—C6—C8	-167.7 (4)
N3—Co1—N2—C12 82.1 (4) O5—C5—C6—C1 -37.0	N3—Co1—N2—C12	82.1 (4)	O5—C5—C6—C1	-37.0 (4)
N1—Co1—N2—C12 176.6 (4) C4—C5—C6—C1 71.2 (N1-Co1-N2-C12	176.6 (4)	C4—C5—C6—C1	71.2 (4)
O1-Co1-N2-C14 98 0 (4) $C7-C1-C6-C8$ 2 1 (5	O1—Co1—N2—C14	98.0 (4)	C7—C1—C6—C8	2.1 (5)

O2—Co1—N2—C14	-176.7 (4)	C2-C1-C6-C8	-117.8 (4)
N3—Co1—N2—C14	-85.2 (4)	C7—C1—C6—C5	122.4 (4)
N1—Co1—N2—C14	9.3 (4)	C2-C1-C6-C5	2.4 (4)
O2—Co1—N3—C11	-86.7 (4)	Co1-01-C7-03	-167.8 (4)
N1—Co1—N3—C11	88.1 (4)	Co1-01-C7-C1	13.2 (6)
N2—Co1—N3—C11	-177.7 (4)	C2-C1-C7-O3	-131.4 (5)
O5—Co1—N3—C11	-0.8 (4)	C6—C1—C7—O3	114.4 (5)
O2—Co1—N3—C9	82.4 (4)	C2-C1-C7-O1	47.7 (5)
N1—Co1—N3—C9	-102.9 (4)	C6-C1-C7-O1	-66.4 (5)
N2—Co1—N3—C9	-8.7 (4)	Co1—O2—C8—O4	135.3 (4)
O5—Co1—N3—C9	168.3 (4)	Co1-02-C8-C6	-44.8 (5)
O2—Co1—O1—C7	59.9 (4)	C5—C6—C8—O2	-25.7 (5)
N1—Co1—O1—C7	-115.3 (4)	C1—C6—C8—O2	88.0 (5)
N2—Co1—O1—C7	150.8 (4)	C5—C6—C8—O4	154.1 (4)
O5—Co1—O1—C7	-26.3 (4)	C1—C6—C8—O4	-92.2 (5)
O1—Co1—O2—C8	-38.7 (3)	C10—N6—C9—N3	0.0 (6)
N3—Co1—O2—C8	138.0 (4)	C11—N3—C9—N6	-0.5 (6)
N2—Co1—O2—C8	-130.3 (3)	Co1—N3—C9—N6	-171.2 (4)
O5—Co1—O2—C8	48.4 (3)	C9—N6—C10—C11	0.5 (6)
O1—Co1—O5—C2	-16.1 (3)	C9—N3—C11—C10	0.8 (5)
O2—Co1—O5—C2	-101.6 (3)	Co1—N3—C11—C10	171.9 (3)
N3—Co1—O5—C2	166.9 (3)	N6-C10-C11-N3	-0.9 (6)
N1—Co1—O5—C2	72.5 (3)	C14—N2—C12—N5	-0.2 (6)
O1—Co1—O5—C5	94.0 (3)	Co1—N2—C12—N5	-169.8 (3)
O2—Co1—O5—C5	8.6 (3)	C13—N5—C12—N2	0.0 (6)
N3—Co1—O5—C5	-82.9 (3)	C12—N5—C13—C14	0.2 (6)
N1—Co1—O5—C5	-177.3 (3)	N5-C13-C14-N2	-0.3 (6)
C5—O5—C2—C3	57.3 (4)	C12—N2—C14—C13	0.4 (6)
Co1—O5—C2—C3	177.8 (3)	Co1—N2—C14—C13	169.7 (4)
C5—O5—C2—C1	-56.8 (3)	C16—N4—C15—N1	-0.2 (7)
Co1	63.7 (3)	C17—N1—C15—N4	0.4 (6)
C7—C1—C2—O5	-88.8 (4)	Co1—N1—C15—N4	179.2 (4)
C6-C1-C2-O5	33.1 (4)	C15—N4—C16—C17	-0.2 (6)
C7—C1—C2—C3	163.7 (4)	C15—N1—C17—C16	-0.6 (5)
C6—C1—C2—C3	-74.4 (4)	Co1—N1—C17—C16	-179.2 (3)
O5—C2—C3—C4	-36.2 (5)	N4-C16-C17-N1	0.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H··· A
$O1W$ —H1 WA ···O2 W^{i}	0.85	2.33	3.161 (6)	167
O2 <i>W</i> —H2 <i>WA</i> ···N5 ⁱⁱ	0.85	2.59	3.133 (5)	123
$O2W - H2WB - O2W^{i}$	0.85	2.69	3.084 (7)	110
O1 <i>W</i> —H1 <i>WB</i> ···O4	0.85	2.17	2.690 (6)	119
N5—H5 B ····O2 W ⁱⁱ	0.86	2.29	3.133 (5)	165

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.