organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

8-Bromo-2-methylquinoline

Lin-Tao Yang, Fang Shen, Jiao Ye, Tian-Quan Wu and Ai-Xi Hu*

College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China Correspondence e-mail: axhu0731@yahoo.com.cn

Received 26 May 2009; accepted 30 May 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.009 Å; R factor = 0.071; wR factor = 0.195; data-to-parameter ratio = 16.0.

In the crystal structure of the title compound, $C_{10}H_8BrN$, the dihedral angle between the two six-membered rings of the quinoline system is 0.49 (16)°. The molecules are packed in a face-to-face arrangement fashion, with a centroid–centroid distance of 3.76 Å between the benzene and pyridine rings of adjacent molecules. No hydrogen bonding is found in the crystal structure.

Related literature

The title compound is an important intermediate in the pharmaceutical industry, see: Shen & Hartwig (2006); Ranu *et al.* (2000); Lee & Hartwig (2005). For related structures, see: Amini *et al.* (2008); Fazaeli *et al.* (2008); Sattarzadeh *et al.* (2009).

Experimental

Crystal data C₁₀H₈BrN

 $M_r=222.08$

a = 5.0440 (17)Å	Mo $K\alpha$ radiation
b = 13.467 (4) Å	$\mu = 4.50 \text{ mm}^{-1}$
c = 13.391 (4) Å	T = 291 K
$\beta = 97.678 \ (4)^{\circ}$	$0.36 \times 0.31 \times 0.28 \text{ mm}$
V = 901.4 (5) Å ³	
Data collection	
Bruker SMART APEX CCD diffractometer	4668 measured reflections 1765 independent reflections
Absorption correction: multi-scan	1039 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.156$
$T_{\min} = 0.235, \ T_{\max} = 0.286$	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.071$	110 parameters
$wR(F^2) = 0.195$	H-atom parameters constrained

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

 $\Delta \rho_{\rm max} = 0.88 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.91 \text{ e} \text{ Å}^{-3}$

Z = 4

This work was funded by the SIT program of Hunan University, China (2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2533).

References

Monoclinic, $P2_1/c$

S = 1.01

1765 reflections

Amini, M. M., Mohammadnezhad, Sh. G. & Khavasi, H. R. (2008). Acta Cryst. E64, o203.

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Fazaeli, Y., Amini, M. M., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, 097.

Lee, D.-Y. & Hartwig, J.-F. (2005). Org. Lett. 7, 1169–1172.

Ranu, B. C., Hajra, A. & Jana, U. (2000). *Tetrahedron Lett.* **41**, 531–533.

Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shen, Q.-L. & Hartwig, F. (2006). J. Am Chem Soc. 128, 10028-10029.

supporting information

Acta Cryst. (2009). E65, o1490 [doi:10.1107/S1600536809020625]

8-Bromo-2-methylquinoline

Lin-Tao Yang, Fang Shen, Jiao Ye, Tian-Quan Wu and Ai-Xi Hu

S1. Comment

The title compound, 8-bromo-2-methylquinoline, is an important intermediate of medcine industry (Shen & Hartwig, 2006; Ranu *et al.*, 2000; Lee & Hartwig, 2005). The unit-cell of the title compound contains four molecules, and the corresponding bond lengths and angles of these molecules are agree with each other. The molecules are stablizated by π - π stacking (centroids distance is 3.76 Å). Herein we report the synthesis and crystal structure of 8-bromo-2-methyl-quinoline. For more related structures, see: Amini *et al.* (2008), Fazaeli *et al.* (2008), Sattarzadeh *et al.* (2009).

S2. Experimental

A solution of 2-bromoaniline (0.05 mol), boric acid (3.10 g) and 18% HCl (50 ml) was heated to reflux. Then a mixture of crotonaldehyde (0.06 mol) and 2-bromonitrobenzene (0.01 mol) was slowly added with stirring in 1 h. The reaction mixture was subsequently stirred at 373 K for another 2.5 h, and then an equimolar amount of anhydrous ZnCl₂ was added with vigorous stirring for 0.5 h. After the reaction was completed, the reaction solution was cooled in an ice bath and the crude brown solid was filtered, washed with 2-propanol, dissolved in the water, and neutralized with concentrated NH₃,H₂O solution to pH of 8. After cool immersed, filtrated and air dried, the product was obtained as a grey solid. Yield: 52.0%. m.p. 342–343 K. Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

S3. Refinement

The H-atoms were positioned geometrically, with C—H = 0.93 Å for aromatic, 0.96 Å for methyl, and refined as riding with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$.

Figure 1

Molecular structure showing 30% probability displacement ellipsoids.

8-bromo-2-methylquinoline

Crystal data

 $C_{10}H_8BrN$ $M_r = 222.08$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.0440 (17) Å*b* = 13.467 (4) Å c = 13.391 (4) Å $\beta = 97.678 \ (4)^{\circ}$ $V = 901.4 (5) Å^3$ Z = 4

Data collection

Bruker SMART APEX CCD	4668 measured reflections
diffractometer	1765 independent reflection
Radiation source: fine-focus sealed tube	1039 reflections with $I > 2a$
Graphite monochromator	$R_{\rm int} = 0.156$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(SADABS; Sheldrick, 2004)	$k = -13 \rightarrow 16$
$T_{\min} = 0.235, \ T_{\max} = 0.286$	$l = -15 \rightarrow 16$

F(000) = 440 $D_{\rm x} = 1.636 {\rm ~Mg} {\rm ~m}^{-3}$ Melting point: 343 K Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1765 reflections $\theta = 2.2 - 26.0^{\circ}$ $\mu = 4.50 \text{ mm}^{-1}$ T = 291 KBlock, colourless $0.36 \times 0.31 \times 0.28 \text{ mm}$

ns $\sigma(I)$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.195$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.01	H-atom parameters constrained
1765 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0989P)^2]$
110 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.88 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.91 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. 1H NMR (CDCl₃, 400 MHz) δ: 2.82 (s, 3H, CH₃), 7.33(m, 2H, quinoline 3,6-H), 7.73 (dd, J=8.0 Hz, J=1.2 Hz, 1H, quinoline 7-H), 8.02 (m, 2H, quinoline 4,5-H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	<i>x</i>	У	<i>Z</i>	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	1.04425 (17)	0.41478 (5)	0.40291 (5)	0.0783 (4)	
N1	0.6713 (11)	0.2556 (3)	0.2991 (3)	0.0507 (12)	
C1	0.9974 (14)	0.3782 (4)	0.2655 (4)	0.0536 (16)	
C8	0.8122 (12)	0.3021 (4)	0.2325 (4)	0.0429 (13)	
С9	0.7845 (13)	0.2775 (4)	0.1287 (4)	0.0517 (15)	
C7	0.5039 (14)	0.1846 (4)	0.2646 (5)	0.0568 (16)	
C2	1.1397 (14)	0.4256 (4)	0.2022 (6)	0.0586 (16)	
H2	1.2578	0.4757	0.2266	0.070*	
C5	0.6014 (14)	0.2003 (5)	0.0957 (5)	0.0643 (18)	
Н5	0.5778	0.1807	0.0285	0.077*	
C3	1.1122 (15)	0.4004 (5)	0.0989 (5)	0.0621 (18)	
H3	1.2156	0.4321	0.0561	0.074*	
C6	0.4624 (16)	0.1559 (5)	0.1622 (5)	0.070 (2)	
H6	0.3394	0.1064	0.1408	0.084*	
C4	0.9318 (15)	0.3287 (5)	0.0624 (5)	0.068 (2)	
H4	0.9066	0.3138	-0.0061	0.082*	
C10	0.3468 (14)	0.1364 (5)	0.3370 (6)	0.0694 (19)	
H10A	0.3969	0.0677	0.3444	0.104*	
H10B	0.1596	0.1412	0.3123	0.104*	
H10C	0.3821	0.1690	0.4011	0.104*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1139 (9)	0.0735 (6)	0.0436 (4)	-0.0082 (4)	-0.0042 (4)	-0.0114 (3)
N1	0.059 (3)	0.050 (3)	0.042 (3)	0.011 (3)	0.004 (2)	0.005 (2)
C1	0.074 (5)	0.044 (3)	0.040 (3)	0.005 (3)	-0.001 (3)	-0.001 (2)
C8	0.037 (3)	0.050 (3)	0.040 (3)	0.012 (3)	0.001 (2)	-0.001 (2)
C9	0.054 (4)	0.063 (3)	0.037 (3)	0.009 (3)	0.002 (3)	-0.001 (3)
C7	0.059 (4)	0.053 (3)	0.059 (4)	0.011 (3)	0.009 (3)	0.007 (3)
C2	0.051 (4)	0.055 (3)	0.070 (4)	0.002 (3)	0.010 (3)	0.004 (3)
C5	0.057 (5)	0.083 (4)	0.050 (4)	0.003 (4)	-0.006 (3)	-0.015 (3)
C3	0.054 (5)	0.073 (4)	0.063 (4)	0.004 (4)	0.021 (3)	0.013 (3)
C6	0.080 (6)	0.063 (4)	0.062 (4)	-0.002 (4)	-0.008 (4)	-0.007 (3)
C4	0.081 (6)	0.085 (5)	0.039 (3)	0.013 (4)	0.012 (3)	0.004 (3)
C10	0.054 (4)	0.068 (4)	0.088 (5)	0.002 (4)	0.015 (4)	0.007 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—C1	1.889 (6)	С2—Н2	0.9300
N1—C7	1.318 (8)	C5—C6	1.344 (10)
N1—C8	1.365 (7)	С5—Н5	0.9300
C1—C2	1.344 (9)	C3—C4	1.371 (10)
C1—C8	1.416 (8)	С3—Н3	0.9300
C8—C9	1.418 (7)	С6—Н6	0.9300
C9—C4	1.411 (9)	C4—H4	0.9300
C9—C5	1.422 (9)	C10—H10A	0.9600
C7—C6	1.414 (8)	C10—H10B	0.9600
C7—C10	1.481 (9)	C10—H10C	0.9600
C2—C3	1.412 (10)		
C7—N1—C8	118.0 (5)	С6—С5—Н5	120.2
C2—C1—C8	122.1 (6)	С9—С5—Н5	120.2
C2-C1-Br1	118.9 (5)	C4—C3—C2	119.5 (6)
C8—C1—Br1	119.0 (4)	С4—С3—Н3	120.2
N1—C8—C1	120.5 (5)	С2—С3—Н3	120.2
N1—C8—C9	122.8 (5)	C5—C6—C7	119.9 (7)
C1—C8—C9	116.7 (5)	С5—С6—Н6	120.1
C4—C9—C8	120.8 (6)	С7—С6—Н6	120.1
C4—C9—C5	122.4 (6)	C3—C4—C9	119.9 (6)
C8—C9—C5	116.8 (5)	C3—C4—H4	120.1
N1—C7—C6	122.9 (6)	С9—С4—Н4	120.1
N1—C7—C10	117.6 (6)	C7—C10—H10A	109.5
C6—C7—C10	119.5 (7)	C7—C10—H10B	109.5
C1—C2—C3	120.9 (6)	H10A-C10-H10B	109.5
C1—C2—H2	119.6	C7—C10—H10C	109.5
С3—С2—Н2	119.6	H10A—C10—H10C	109.5
C6—C5—C9	119.6 (6)	H10B—C10—H10C	109.5