

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[4-(dimethylamino)pyridinium] hexakis[bromido/chlorido(0.78/0.22)]stannate(IV)

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 19 May 2009; accepted 25 May 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.023; wR factor = 0.060; data-to-parameter ratio = 20.6.

The Sn atom in the title salt, $(C_7H_{11}N_2)_2[SnBr_{4.67}Cl_{1.33}]$, lies on a center of symmetry within an octahedron of disordered halogen atoms. The three independent halogen atoms are each a mixture of bromine and chlorine atoms [with site occupancies for bromine of 0.614(1), 0.831(1)and 0.888 (1)]. An N-H··· hydrogen bond is present.

Related literature

For the isostructural tribromidotrichloridostannate, see: Lo & Ng (2008); for the isostructural pentabromidochloridostannate, see: Jang et al. (2009).

V = 1145.30 (4) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

10319 measured reflections

2622 independent reflections

2240 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 9.42 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.033$

refinement

 $\Delta \rho_{\rm max} = 0.80 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.87 \text{ e} \text{ Å}^{-3}$

Z = 2

Experimental

Crystal data

(C7H11N2)2[SnBr4.67Cl1.33] $M_r = 785.15$ Monoclinic, $P2_1/c$ a = 8.4530 (2) Å b = 11.9036 (2) Å c = 11.9093 (2) Å $\beta = 107.109 (1)^{\circ}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.504, T_{\max} = 0.746$ (expected range = 0.103–0.152)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	
$wR(F^2) = 0.060$	
S = 0.99	
2622 reflections	
127 parameters	
6 restraints	

Table 1 Hydrogen-bond geometry (Å °)

Hydrogen cond geometry (H,).					
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
N1-H1···Br1	0.88 (1)	2.484 (18)	3.334 (3)	162 (4)	

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the University of Malaya (RG020/09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2458).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jang, Y., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m645.

Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m834.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, m715 [doi:10.1107/S1600536809019734]

Bis[4-(dimethylamino)pyridinium] hexakis-[bromido/chlorido(0.78/0.22)]stannate(IV)

Kong Mun Lo and Seik Weng Ng

S1. Experimental

Dibenzyltin dichloride (0.37 g, 1 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (0.73 g, 2 mmol) were heated in chloroform for 1 hour. Colorless crystals separated from the cool solution after a day. The benzyl groups on tin has been cleaved in the reaction. In the previous study, a heating time of 3 hours gave the pentabromidochloridostannate (Jang *et al.*, 2009).

S2. Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.98, N–H 0.88 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times $U_{eq}(C,N)$.

The three halogen atoms in the stannate are disordered. The sum of the occupancies of the three bromide atoms refined to nearly 2.33Br and 0.67Cl atoms; the total occupancy of the disordered bromide atoms was then fixed as exactly 2.333. The occupancy of the disordered chloride atoms was similarly set to be 0.667. The anisotropic displacement parameters of each pair of Br/Cl atoms were restrained to be identical.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $2[C_7H_{11}N_2]^+$ [SnBr_{4.67}Cl_{1.33}]²⁻ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The bromine atoms are disordered with respect to the chlorine atoms.

Bis[4-(dimethylamino)pyridinium] hexakis[bromido/chlorido(0.78/0.22)]stannate(IV)

F(000) = 740

 $\theta = 2.5 - 28.3^{\circ}$

 $\mu = 9.42 \text{ mm}^{-1}$

T = 100 K

 $D_x = 2.277 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Irregular block, colorless

 $0.30 \times 0.25 \times 0.20$ mm

Cell parameters from 4263 reflections

Crystal data

 $\begin{array}{l} (C_{7}H_{11}N_{2})_{2}[\text{SnBr}_{4.67}\text{Cl}_{1.33}]\\ M_{r}=785.15\\ \text{Monoclinic, }P2_{1}/c\\ \text{Hall symbol: -P 2ybc}\\ a=8.4530 \ (2) \text{ Å}\\ b=11.9036 \ (2) \text{ Å}\\ c=11.9093 \ (2) \text{ Å}\\ \beta=107.109 \ (1)^{\circ}\\ V=1145.30 \ (4) \text{ Å}^{3}\\ Z=2 \end{array}$

Data collection

Bruker SMART APEX diffractometer	10319 measured reflections 2622 independent reflections
Radiation source: fine-focus sealed tube	2240 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.033$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 1996)	$k = -15 \rightarrow 15$
$T_{\min} = 0.504, \ T_{\max} = 0.746$	$l = -14 \rightarrow 15$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: inferred from
$wR(F^2) = 0.060$	neighbouring sites
S = 0.99	H atoms treated by a mixture of independent
2622 reflections	and constrained refinement
127 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0343P)^2 + 0.6005P]$
6 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.80 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.87 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sn1	0.5000	0.5000	0.5000	0.01384 (8)	
Br1	0.50914 (5)	0.63592 (3)	0.66901 (3)	0.02247 (12)	0.6143 (14)
Br2	0.58481 (5)	0.33875 (3)	0.64866 (3)	0.02405 (12)	0.8309 (9)
Br3	0.80683 (4)	0.53911 (3)	0.52227 (3)	0.02760 (12)	0.8878 (10)
Cl1	0.50914 (5)	0.63592 (3)	0.66901 (3)	0.02247 (12)	0.3858 (14)
C12	0.58481 (5)	0.33875 (3)	0.64866 (3)	0.02405 (12)	0.1122 (10)
C13	0.80683 (4)	0.53911 (3)	0.52227 (3)	0.02760 (12)	0.1691 (9)
N1	0.6521 (4)	0.8743 (2)	0.5886 (3)	0.0309 (7)	
H1	0.598 (5)	0.812 (2)	0.593 (4)	0.061 (14)*	
N2	0.9135 (3)	1.1561 (2)	0.5550 (2)	0.0231 (6)	
C1	0.7281 (4)	0.9350 (3)	0.6844 (3)	0.0304 (8)	
H1A	0.7212	0.9116	0.7590	0.036*	

C2	0.8143 (4)	1.0288 (3)	0.6765 (3)	0.0259 (7)	
H2	0.8683	1.0696	0.7457	0.031*	
C3	0.8251 (4)	1.0670 (3)	0.5661 (3)	0.0190 (6)	
C4	0.7363 (4)	1.0019 (3)	0.4663 (3)	0.0228 (7)	
H4	0.7345	1.0249	0.3896	0.027*	
C5	0.6553 (4)	0.9080 (3)	0.4810(3)	0.0297 (8)	
H5	0.5994	0.8645	0.4142	0.036*	
C6	1.0103 (4)	1.2201 (3)	0.6573 (3)	0.0349 (8)	
H6A	0.9356	1.2652	0.6883	0.052*	
H6B	1.0876	1.2697	0.6340	0.052*	
H6C	1.0725	1.1680	0.7182	0.052*	
C7	0.9124 (4)	1.1989 (3)	0.4397 (3)	0.0293 (7)	
H7A	0.9577	1.1418	0.3985	0.044*	
H7B	0.9802	1.2670	0.4496	0.044*	
H7C	0.7985	1.2166	0.3937	0.044*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Sn1	0.01350 (14)	0.01560 (14)	0.01208 (14)	-0.00189 (10)	0.00326 (11)	-0.00020 (11)
Br1	0.0329 (2)	0.0187 (2)	0.0178 (2)	-0.00322 (16)	0.01055 (17)	-0.00423 (15)
Br2	0.0329 (2)	0.01902 (19)	0.01671 (19)	-0.00065 (14)	0.00180 (15)	0.00479 (13)
Br3	0.01394 (18)	0.0409 (2)	0.0279 (2)	-0.00705 (13)	0.00609 (14)	-0.00114 (15)
Cl1	0.0329 (2)	0.0187 (2)	0.0178 (2)	-0.00322 (16)	0.01055 (17)	-0.00423 (15)
Cl2	0.0329 (2)	0.01902 (19)	0.01671 (19)	-0.00065 (14)	0.00180 (15)	0.00479 (13)
C13	0.01394 (18)	0.0409 (2)	0.0279 (2)	-0.00705 (13)	0.00609 (14)	-0.00114 (15)
N1	0.0277 (16)	0.0246 (15)	0.0427 (19)	0.0002 (12)	0.0141 (14)	0.0088 (14)
N2	0.0235 (14)	0.0244 (14)	0.0195 (14)	-0.0029 (11)	0.0032 (11)	-0.0017 (11)
C1	0.0298 (19)	0.037 (2)	0.0273 (18)	0.0121 (15)	0.0138 (15)	0.0114 (16)
C2	0.0256 (17)	0.0335 (18)	0.0190 (17)	0.0045 (14)	0.0071 (14)	0.0010 (13)
C3	0.0157 (14)	0.0217 (15)	0.0185 (15)	0.0046 (11)	0.0036 (12)	0.0009 (12)
C4	0.0214 (15)	0.0252 (16)	0.0198 (16)	-0.0003 (13)	0.0030 (13)	-0.0026 (13)
C5	0.0238 (17)	0.0282 (18)	0.033 (2)	-0.0001 (13)	0.0021 (15)	-0.0037 (15)
C6	0.033 (2)	0.035 (2)	0.033 (2)	-0.0101 (15)	0.0035 (16)	-0.0085 (16)
C7	0.0300 (18)	0.0285 (18)	0.0270 (18)	-0.0048 (14)	0.0045 (14)	0.0082 (14)

Geometric parameters (Å, °)

Sn1—Br1	2.5658 (4)	C1—C2	1.351 (5)	
Sn1—Cl1 ⁱ	2.5658 (4)	C1—H1A	0.9500	
Sn1—Br1 ⁱ	2.5658 (4)	C2—C3	1.419 (4)	
Sn1—Br2	2.5663 (3)	C2—H2	0.9500	
Sn1—Cl2 ⁱ	2.5663 (3)	C3—C4	1.433 (4)	
Sn1—Br2 ⁱ	2.5663 (3)	C4—C5	1.349 (5)	
Sn1—Cl3 ⁱ	2.5709 (3)	C4—H4	0.9500	
Sn1—Br3 ⁱ	2.5709 (3)	С5—Н5	0.9500	
Sn1—Br3	2.5709 (3)	C6—H6A	0.9800	
N1—C1	1.343 (5)	C6—H6B	0.9800	

N1—C5	1.351 (5)	С6—Н6С	0.9800
N1—H1	0.882 (10)	C7—H7A	0.9800
N2—C3	1.327 (4)	С7—Н7В	0.9800
N2—C6	1.466 (4)	C7—H7C	0.9800
N2—C7	1.462 (4)		
Br1—Sn1—Cl1 ⁱ	180.0	Br3 ⁱ —Sn1—Br3	180.000 (17)
Br1—Sn1—Br1 ⁱ	180.0	C1—N1—C5	120.5 (3)
Cl1 ⁱ —Sn1—Br1 ⁱ	0.000 (14)	C1—N1—H1	122 (3)
Br1—Sn1—Br2	89.576 (13)	C5—N1—H1	118 (3)
Cl1 ⁱ —Sn1—Br2	90.424 (13)	C3—N2—C6	121.7 (3)
Br1 ⁱ —Sn1—Br2	90.424 (13)	C3—N2—C7	121.6 (3)
Br1—Sn1—Cl2 ⁱ	90.424 (13)	C6—N2—C7	116.6 (3)
$Cl1^{i}$ — $Sn1$ — $Cl2^{i}$	89.576 (12)	N1—C1—C2	121.2 (3)
$Br1^{i}$ — $Sn1$ — $C12^{i}$	89.576 (12)	N1—C1—H1A	119.4
Br2—Sn1—Cl2 ⁱ	180.0	C2—C1—H1A	119.4
Br1—Sn1—Br2 ⁱ	90.424 (13)	C1—C2—C3	120.8 (3)
$Cl1^{i}$ — $Sn1$ — $Br2^{i}$	89.576 (12)	C1—C2—H2	119.6
$Br1^{i}$ — $Sn1$ — $Br2^{i}$	89.576 (12)	C3—C2—H2	119.6
Br2—Sn1—Br2 ⁱ	180.0	N2—C3—C2	122.7 (3)
$Cl2^{i}$ — $Sn1$ — $Br2^{i}$	0.00(2)	N2—C3—C4	121.5 (3)
Br1—Sn1—Cl3 ⁱ	89.529 (12)	C2—C3—C4	115.7 (3)
$Cl1^{i}$ — $Sn1$ — $Cl3^{i}$	90.471 (12)	C5—C4—C3	120.2 (3)
$Br1^{i}$ — $Sn1$ — $C13^{i}$	90.471 (12)	C5—C4—H4	119.9
Br2—Sn1—Cl3 ⁱ	90.248 (12)	C3—C4—H4	119.9
Cl2 ⁱ —Sn1—Cl3 ⁱ	89.752 (12)	C4—C5—N1	121.4 (3)
Br2 ⁱ —Sn1—Cl3 ⁱ	89.752 (12)	C4—C5—H5	119.3
Br1—Sn1—Br3 ⁱ	89.529 (12)	N1—C5—H5	119.3
Cl1 ⁱ —Sn1—Br3 ⁱ	90.471 (12)	N2—C6—H6A	109.5
Br1 ⁱ —Sn1—Br3 ⁱ	90.471 (12)	N2—C6—H6B	109.5
Br2—Sn1—Br3 ⁱ	90.248 (12)	H6A—C6—H6B	109.5
Cl2 ⁱ —Sn1—Br3 ⁱ	89.752 (12)	N2—C6—H6C	109.5
Br2 ⁱ —Sn1—Br3 ⁱ	89.752 (12)	H6A—C6—H6C	109.5
Cl3 ⁱ —Sn1—Br3 ⁱ	0.00 (2)	H6B—C6—H6C	109.5
Br1—Sn1—Br3	90.471 (12)	N2—C7—H7A	109.5
Cl1 ⁱ —Sn1—Br3	89.529 (12)	N2—C7—H7B	109.5
Br1 ⁱ —Sn1—Br3	89.529 (12)	H7A—C7—H7B	109.5
Br2—Sn1—Br3	89.752 (12)	N2—C7—H7C	109.5
Cl2 ⁱ —Sn1—Br3	90.248 (12)	H7A—C7—H7C	109.5
Br2 ⁱ —Sn1—Br3	90.248 (12)	H7B—C7—H7C	109.5
Cl3 ⁱ —Sn1—Br3	180.000 (17)		
C5 N1 C1 C2	22(5)	C1 $C2$ $C2$ $N2$	177 4 (2)
C_3 — N_1 — C_1 — C_2	-2.5(3)	$C_1 = C_2 = C_3 = N_2$	-1/1.4(3)
1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0.9 (3)	$C_1 - C_2 - C_3 - C_4$	1.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0(3)	$N_2 = C_3 = C_4 = C_5$	1/0.1(3)
$C_1 - N_2 - C_3 - C_2$	-1/3.2(3)	U2-U3-U4-U3	-2.8(3)

supporting information

C6—N2—C3—C4	-177.3 (3)	C3—C4—C5—N1	1.6 (5)
C7—N2—C3—C4	5.9 (5)	C1—N1—C5—C4	1.0 (5)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…Br1	0.88 (1)	2.48 (2)	3.334 (3)	162 (4)