

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-methoxy-6-{[2-(methylammonio)ethyl]iminomethyl}phenolato)thiocyanatozinc(II) thiocyanate hemihydrate

Sanjun Peng^a* and Fen Zhang^b

^aDepartment of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410014, People's Republic of China, and ^bSchool of Foreign Language, Jiangsu University, Jiangsu 212013, People's Republic of China

Correspondence e-mail: sanjunpeng@163.com

Received 14 May 2009; accepted 11 June 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.014 Å; disorder in solvent or counterion; R factor = 0.081; wR factor = 0.190; data-to-parameter ratio = 18.2.

The title mononuclear zinc(II) complex, $[Zn(C_{11}H_{16}N_2O_2)_2(NCS)]NCS \cdot 0.5H_2O$, consists of a complex cation, a thiocyanate anion, and half of a water molecule. The Zn^{II} atom in the cation is five-coordinated by two imine N and two phenolate O atoms from two bidentate Schiff base ligands, and by one N atom of a thiocyanate ligand, forming a distorted trigonal-bipyramidal geometry. The ammonio H atoms are involved in hydrogen bonding with the ligand O atoms and the solvent water molecules (site occupation factor 0.5), which partially determines the conformation of the ligands.

Related literature

For background to the properties of zinc(II) complexes, see: Lipscomb & Sträter (1996); Bertini *et al.* (1994); Harrison *et al.* (2006); Tirosh *et al.* (2005); Musie *et al.* (2004); Vallee & Auld (1993). For related structures, see: Li *et al.* (2008); Eltayeb *et al.* (2008); Zhang & Wang (2007); Cai (2009).

Experimental

Crystal data

[Zn(C11H16N2O2)2(NCS)]NCS-- $\beta = 77.95 (3)^{\circ}$ 0.5H2O $\gamma = 72.25 (3)^{\circ}$ $M_r = 607.06$ V = 1577.0 (5) Å³ Triclinic, $P\overline{1}$ Z = 2a = 9.997 (2) Å Mo $K\alpha$ radiation b = 13.017 (3) Å $\mu = 0.95 \text{ mm}^{-1}$ T = 298 Kc = 13.379 (3) Å $\alpha = 73.70(3)^{\circ}$ $0.30 \times 0.28 \times 0.27 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{min} = 0.764, T_{max} = 0.784$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.081$	
$wR(F^2) = 0.190$	
S = 0.99	
5300 reflections	
346 parameters	

R_{int} = 0.057

3199 reflections with $I > 2\sigma(I)$

12467 measured reflections 6300 independent reflections

H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.51 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.37 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4-H4B\cdots O2$	0.90	2.38	3.001 (8)	126
$N4 - H4B \cdot \cdot \cdot O1$	0.90	1.84	2.682 (7)	155
$N4 - H4A \cdots O5$	0.90	1.99	2.839 (14)	157
$N2 - H2B \cdot \cdot \cdot N6$	0.90	1.93	2.834 (11)	179
$N2-H2A\cdots O4$	0.90	2.35	2.889 (8)	119
$N2-H2A\cdots O3$	0.90	1.86	2.691 (7)	153

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We acknowledge Changsha University of Science and Technology for the research grants.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2115).

References

- Bertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). In *Bioinorganic Chemistry*. Mills Valley, CA, USA: University Science Books.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, B.-H. (2009). Acta Cryst. E65, m142.
- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m738–m739.
- Harrison, W. T. A., Ramadevi, P. & Kumaresan, S. (2006). Acta Cryst. E62, m513–m515.
- Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1495. Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375–2434.
- Musie, G. T., Li, X. & Powell, D. R. (2004). Acta Cryst. E60, m471-m472.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tirosh, E., Maman, R. & Goldberg, I. (2005). Acta Cryst. E61, m751-m754.
- Vallee, B. L. & Auld, D. S. (1993). Acc. Chem. Res. 26, 543-551.
- Zhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652-m653.

supporting information

Acta Cryst. (2009). E65, m799 [doi:10.1107/S1600536809022326]

Bis(2-methoxy-6-{[2-(methylammonio)ethyl]iminomethyl}phenolato)thiocyanatozinc(II) thiocyanate hemihydrate

Sanjun Peng and Fen Zhang

S1. Comment

Zinc is the second most abundant transition metal in biology, functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase, where it is in a hard donor coordination of nitrogen and oxygen (Lipscomb & Sträter, 1996; Bertini *et al.*, 1994). Zinc atom can readily adopt four-, five- or six-coordination (Harrison *et al.*, 2006; Tirosh *et al.*, 2005; Musie *et al.*, 2004; Vallee & Auld, 1993). As a continuation of work on this area, we report herein the new title zinc(II) complex, with the Schiff base 2-methoxy-6-[(2-methylaminoethylimino)methyl]phenol.

The title compound consists of a complex cation, a thiocyanate anion, and a half water molecule of crystallization (Fig. 1). The Zn^{II} atom in the cation is five-coordinated by two imine N and two phenolate O atoms, from two Schiff base ligands, and by one N atom of a thiocyanate ligand, so forming a trigonal-bipyramidal geometry. The amine N atom is protonated and does not coordinate to the metal ion. The NH_2^+ hydrogen atoms are involved in hydrogen bonding with the ligand O-atoms which partially determines the conformation of the ligands. The Zn—O and Zn—N bond lengths [1.977 (4) - 1.979 (4) Å and 2.001 (6) - 2.135 (5) Å, respectively] are comparable to the values in similar complexes (Li *et al.*, 2008; Eltayeb *et al.*, 2008; Zhang & Wang, 2007; Cai, 2009).

S2. Experimental

3-Methoxysalicylaldehyde (0.1 mmol, 15.2 mg) and *N*-methylethane-1,2-diamine (0.1 mmol, 7.4 mg) were stirred into 30 ml of methanol. After 1 h, ammonium thiocyanate (0.1 mmol, 7.6 mg) in water (1 ml) and zinc acetate (0.1 mmol, 22.0 mg) in methanol (10 ml) was added, and the stirring continued for a further 1 h. The filtrate was kept at rt for about a week, depositing colorless block-like crystals of the title compound.

S3. Refinement

All H atoms were positioned geometrically and refined as riding atoms: C—H = 0.93–0.97 Å, N—H = 0.90 Å, O—H = 0.85 Å, with U_{iso} (H) set to $1.2U_{eq}$ (C/O) and $1.5U_{eq}$ (methyl C). The structure contains solvent accessible voids of 138.00 A³, which might accommodate a disordered water molecule. The phenyl rings were refined as regular hexagons, with their ADP's made equal to one another.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Bis(2-methoxy-6-{[2- (methylammonio)ethyl]iminomethyl}phenolato)thiocyanatozinc(II) thiocyanate hemihydrate

Crvstal	data
Cryster	cicici

•	
$[Zn(C_{11}H_{16}N_2O_2)_2(NCS)]NCS \cdot 0.5H_2O$	Z = 2
$M_r = 607.06$	F(000) = 634
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.278 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.997 (2) Å	Cell parameters from 1416 reflections
b = 13.017(3) Å	$\theta = 2.4 - 24.1^{\circ}$
c = 13.379 (3) Å	$\mu = 0.95 \text{ mm}^{-1}$
$\alpha = 73.70 (3)^{\circ}$	T = 298 K
$\beta = 77.95(3)^{\circ}$	Block, colorless
$\gamma = 72.25 (3)^{\circ}$	$0.30 \times 0.28 \times 0.27 \text{ mm}$
V = 1577.0 (5) Å ³	
Data collection	
Bruker SMART APEX CCD area-detector	12467 measured reflections
diffractometer	6300 independent reflections
Radiation source: fine-focus sealed tube	3199 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.057$
ωscans	$\theta_{\rm max} = 26.5^\circ, \ \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2000)	$k = -16 \rightarrow 16$
$T_{\rm min} = 0.764, T_{\rm max} = 0.784$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.081$	Hydrogen site location: inferred from
$wR(F^2) = 0.190$	neighbouring sites
S = 0.99	H-atom parameters constrained
6300 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0763P)^2]$
346 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
18 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.51 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	0.76677 (7)	0.52215 (5)	0.74443 (5)	0.0565 (3)	
S1	0.9762 (3)	0.7599 (2)	0.8261 (2)	0.1405 (10)	
S2	0.7074 (3)	0.9701 (2)	0.18236 (19)	0.1322 (9)	
01	0.6935 (4)	0.3968 (3)	0.8352 (3)	0.0743 (12)	
O2	0.6337 (7)	0.2068 (5)	0.8807 (4)	0.113 (2)	
O3	0.7078 (5)	0.5764 (3)	0.6026 (3)	0.0751 (12)	
O4	0.5434 (6)	0.6530 (5)	0.4556 (3)	0.0952 (15)	
O5	0.9890 (14)	0.0589 (13)	0.7592 (16)	0.201 (8)	0.50
H5A	0.9333	0.0169	0.7815	0.241*	0.50
H5B	1.0545	0.0478	0.7084	0.241*	0.50
N1	0.5803 (6)	0.6341 (5)	0.8016 (4)	0.0714 (14)	
N2	0.5448 (7)	0.7845 (4)	0.5970 (4)	0.0893 (18)	
H2A	0.5726	0.7115	0.5985	0.107*	
H2B	0.5746	0.8205	0.5321	0.107*	
N3	0.9438 (6)	0.4057 (4)	0.6861 (5)	0.0735 (15)	
N4	0.9269 (6)	0.2291 (4)	0.8690 (4)	0.0778 (15)	
H4A	0.9646	0.1849	0.8236	0.093*	
H4B	0.8412	0.2707	0.8519	0.093*	
N5	0.8880 (6)	0.5913 (5)	0.7923 (5)	0.0799 (16)	
N6	0.6414 (11)	0.8946 (7)	0.3922 (8)	0.150 (3)	
C1	0.4525 (8)	0.4901 (9)	0.8824 (5)	0.085 (2)	
C2	0.5598 (8)	0.3956 (7)	0.8705 (4)	0.0709 (19)	
C3	0.5227 (10)	0.2965 (9)	0.8983 (5)	0.092 (2)	
C4	0.3836 (12)	0.2933 (12)	0.9369 (6)	0.125 (4)	
H4	0.3624	0.2250	0.9553	0.150*	

C5	0.2823 (13)	0.3802 (15)	0.9484 (8)	0.144 (6)
Н5	0.1903	0.3741	0.9736	0.172*
C6	0.3115 (9)	0.4821 (11)	0.9230 (6)	0.116 (3)
H6	0.2397	0.5451	0.9323	0.139*
C7	0.6075 (13)	0.1001 (8)	0.9051 (9)	0.162 (5)
H7A	0.5748	0.0793	0.9787	0.242*
H7B	0.6936	0.0466	0.8876	0.242*
H7C	0.5367	0.1025	0.8652	0.242*
C8	0.4715 (8)	0.6024 (8)	0.8540 (5)	0.088 (2)
H8	0.3958	0.6569	0.8765	0.105*
С9	0.5723 (8)	0.7536 (6)	0.7858 (6)	0.091 (2)
H9A	0.6326	0.7613	0.8299	0.109*
H9B	0.4757	0.7932	0.8067	0.109*
C10	0.6180 (9)	0.8039 (6)	0.6729 (6)	0.096 (2)
H10A	0.6007	0.8832	0.6640	0.115*
H10B	0.7193	0.7736	0.6565	0.115*
C11	0.3859 (10)	0.8191 (7)	0.6135 (7)	0.114 (3)
H11A	0.3522	0.7958	0.6867	0.171*
H11B	0.3502	0.7854	0.5731	0.171*
H11C	0.3535	0.8984	0.5914	0.171*
C12	0.8471 (10)	0.4272 (7)	0.5243 (6)	0.085 (2)
C13	0.7338 (8)	0.5214 (6)	0.5289 (5)	0.0712 (19)
C14	0.6466 (9)	0.5591 (7)	0.4474 (5)	0.081 (2)
C15	0.6657 (11)	0.5033 (9)	0.3720 (6)	0.104 (3)
H15	0.6036	0.5282	0.3221	0.125*
C16	0.7754 (14)	0.4109 (11)	0.3687 (8)	0.118 (4)
H16	0.7890	0.3745	0.3152	0.142*
C17	0.8643 (11)	0.3716 (7)	0.4418 (8)	0.105 (3)
H17	0.9377	0.3078	0.4389	0.126*
C18	0.4627 (10)	0.7033 (8)	0.3714 (6)	0.122 (3)
H18A	0.5249	0.7180	0.3070	0.183*
H18B	0.3979	0.7716	0.3832	0.183*
H18C	0.4105	0.6543	0.3666	0.183*
C19	0.9490 (8)	0.3819 (5)	0.5987 (7)	0.085 (2)
H19	1.0291	0.3281	0.5803	0.103*
C20	1.0633 (7)	0.3501 (6)	0.7456 (7)	0.097 (2)
H20A	1.1159	0.4029	0.7418	0.117*
H20B	1.1263	0.2913	0.7137	0.117*
C21	1.0177 (7)	0.3020 (6)	0.8579 (7)	0.085 (2)
H21A	1.1008	0.2603	0.8923	0.102*
H21B	0.9667	0.3617	0.8926	0.102*
C22	0.9086 (9)	0.1580 (7)	0.9783 (6)	0.105 (3)
H22A	0.9993	0.1252	1.0028	0.158*
H22B	0.8676	0.1005	0.9775	0.158*
H22C	0.8473	0.2029	1.0243	0.158*
C23	0.9247 (7)	0.6603 (6)	0.8069 (5)	0.0772 (18)
C24	0.6730 (10)	0.9266 (7)	0.3022 (8)	0.112 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
Zn1	0.0650 (5)	0.0525 (4)	0.0489 (4)	-0.0206 (3)	0.0020 (3)	-0.0083 (3)
S 1	0.183 (2)	0.131 (2)	0.153 (2)	-0.0873 (19)	-0.0027 (18)	-0.0688 (17)
S2	0.178 (2)	0.1057 (17)	0.0884 (16)	-0.0077 (16)	-0.0165 (15)	-0.0174 (13)
01	0.072 (3)	0.074 (3)	0.070 (3)	-0.034 (2)	-0.010 (2)	0.010 (2)
O2	0.139 (5)	0.099 (4)	0.120 (4)	-0.080(4)	-0.067 (4)	0.036 (3)
03	0.107 (3)	0.068 (3)	0.047 (2)	-0.025 (2)	0.001 (2)	-0.014 (2)
O4	0.133 (4)	0.111 (4)	0.050(3)	-0.053 (4)	-0.013 (3)	-0.007 (3)
05	0.117 (10)	0.167 (14)	0.36 (3)	-0.047 (10)	-0.001 (12)	-0.148 (16)
N1	0.074 (4)	0.090 (4)	0.044 (3)	-0.008 (3)	-0.009(3)	-0.022 (3)
N2	0.131 (6)	0.059 (3)	0.068 (4)	-0.018 (4)	-0.021 (4)	-0.001 (3)
N3	0.073 (4)	0.063 (3)	0.081 (4)	-0.028 (3)	0.019 (3)	-0.021 (3)
N4	0.096 (4)	0.053 (3)	0.089 (4)	-0.024 (3)	-0.028 (3)	-0.007 (3)
N5	0.076 (4)	0.084 (4)	0.095 (4)	-0.036 (3)	0.004 (3)	-0.038 (3)
N6	0.199 (7)	0.121 (6)	0.124 (6)	-0.057 (5)	0.000 (5)	-0.018 (5)
C1	0.080 (6)	0.151 (8)	0.034 (3)	-0.047 (6)	-0.003 (3)	-0.021 (4)
C2	0.073 (5)	0.111 (6)	0.030 (3)	-0.046 (5)	-0.010 (3)	0.007 (3)
C3	0.114 (7)	0.130 (7)	0.047 (4)	-0.075 (6)	-0.033 (4)	0.021 (4)
C4	0.120 (8)	0.226 (13)	0.056 (5)	-0.121 (9)	-0.014 (6)	0.007 (6)
C5	0.105 (8)	0.31 (2)	0.069 (6)	-0.127 (11)	0.016 (6)	-0.059 (9)
C6	0.074 (5)	0.236 (12)	0.060 (5)	-0.057 (7)	0.012 (4)	-0.067 (6)
C7	0.233 (12)	0.125 (8)	0.174 (10)	-0.131 (8)	-0.104 (9)	0.040 (7)
C8	0.063 (4)	0.146 (8)	0.041 (4)	0.000 (5)	-0.004 (3)	-0.032 (4)
C9	0.113 (6)	0.079 (5)	0.076 (5)	0.007 (4)	-0.023 (4)	-0.039 (4)
C10	0.134 (7)	0.066 (4)	0.093 (6)	-0.021 (4)	-0.032 (5)	-0.021 (4)
C11	0.120 (7)	0.102 (6)	0.115 (7)	-0.005 (5)	-0.038 (5)	-0.029 (5)
C12	0.111 (6)	0.084 (5)	0.064 (4)	-0.053 (5)	0.032 (4)	-0.024 (4)
C13	0.095 (5)	0.070 (4)	0.052 (4)	-0.049 (4)	0.032 (4)	-0.019 (3)
C14	0.119 (6)	0.092 (5)	0.044 (4)	-0.062 (5)	0.012 (4)	-0.015 (4)
C15	0.143 (8)	0.137 (8)	0.058 (5)	-0.086 (7)	0.022 (5)	-0.037 (5)
C16	0.162 (10)	0.148 (9)	0.082 (6)	-0.103 (8)	0.051 (6)	-0.064 (7)
C17	0.134 (7)	0.093 (6)	0.088 (6)	-0.054 (5)	0.047 (6)	-0.043 (5)
C18	0.151 (7)	0.166 (9)	0.066 (5)	-0.080 (7)	-0.028 (5)	-0.003 (5)
C19	0.087 (5)	0.051 (4)	0.103 (6)	-0.031 (4)	0.042 (5)	-0.020 (4)
C20	0.056 (4)	0.068 (5)	0.156 (8)	-0.017 (4)	0.000 (5)	-0.018 (5)
C21	0.072 (4)	0.062 (4)	0.131 (7)	-0.022 (4)	-0.026 (4)	-0.022 (4)
C22	0.139 (7)	0.089 (5)	0.085 (5)	-0.028 (5)	-0.047 (5)	0.004 (4)
C23	0.077 (5)	0.085 (5)	0.072 (4)	-0.022 (4)	-0.002 (3)	-0.029 (4)
C24	0.166 (8)	0.074 (5)	0.092 (6)	-0.041 (5)	-0.002 (6)	-0.015 (5)

Geometric parameters (Å, °)

Zn1—O3	1.977 (4)	С5—Н5	0.9300	
Zn1—01	1.979 (4)	C6—H6	0.9300	
Zn1—N5	2.001 (6)	C7—H7A	0.9600	
Zn1—N3	2.119 (5)	С7—Н7В	0.9600	

Zn1—N1	2.135 (5)	C7—H7C	0.9600
S1—C23	1.632 (8)	С8—Н8	0.9300
S2—C24	1.545 (10)	C9—C10	1.503 (10)
O1—C2	1.325 (7)	С9—Н9А	0.9700
O2—C3	1.381 (10)	С9—Н9В	0.9700
02	1.426 (9)	C10—H10A	0.9700
03—C13	1.314 (7)	C10—H10B	0.9700
04—C14	1 353 (9)	C11—H11A	0.9600
04-C18	1 412 (9)	C11—H11B	0.9600
05—H5A	0.8500	C11—H11C	0.9600
05—H5B	0.8500	C12-C13	1 399 (10)
N1—C8	1 280 (9)	C12 - C17	1.333(10) 1.437(11)
N1	1 489 (9)	C12 - C19	1.157(11) 1.450(11)
N_2 —C10	1 483 (9)	$C_{12} - C_{14}$	1.430(11) 1 423 (10)
N2	1 499 (10)	C14— $C15$	1.123(10) 1.351(10)
N2—H2A	0.9000	C_{15} C_{16} C_{16}	1.363(13)
N2H2B	0.9000	C15H15	0.9300
N3C19	1 278 (9)	C_{16}	1.347(13)
N3_C20	1.270 (9)	C16H16	0.9300
N4—C21	1.462 (8)	C17—H17	0.9300
N4—C22	1 503 (9)	C18—H18A	0.9500
N4—H4A	0.9000	C18—H18B	0.9600
N4—H4B	0.9000	C18—H18C	0.9600
N5-C23	1 144 (8)	C19—H19	0.9300
N6-C24	1 168 (10)	C20—C21	1489(10)
C1-C2	1 387 (10)	C20—H20A	0.9700
C1-C6	1.307(10) 1 425(11)	C20—H20B	0.9700
C1-C8	1 465 (11)	C21—H21A	0.9700
C2-C3	1.380 (10)	C21—H21B	0.9700
C3—C4	1.388 (12)	C22—H22A	0.9600
C4—C5	1.290 (16)	C22—H22B	0.9600
C4—H4	0.9300	C22—H22C	0.9600
C5—C6	1.380 (15)		
O3—Zn1—O1	114.77 (18)	С10—С9—Н9А	109.4
O3—Zn1—N5	122.2 (2)	N1—C9—H9B	109.4
O1—Zn1—N5	123.0 (2)	С10—С9—Н9В	109.4
O3—Zn1—N3	89.1 (2)	H9A—C9—H9B	108.0
O1—Zn1—N3	88.67 (19)	N2—C10—C9	114.0 (7)
N5—Zn1—N3	93.1 (2)	N2-C10-H10A	108.8
O3—Zn1—N1	89.57 (18)	C9—C10—H10A	108.8
O1—Zn1—N1	89.0 (2)	N2—C10—H10B	108.8
N5—Zn1—N1	90.4 (2)	C9—C10—H10B	108.8
N3—Zn1—N1	176.5 (2)	H10A—C10—H10B	107.7
C2—O1—Zn1	128.0 (4)	N2—C11—H11A	109.5
C3—O2—C7	118.9 (8)	N2—C11—H11B	109.5
C13—O3—Zn1	128.1 (4)	H11A—C11—H11B	109.5
C14—O4—C18	116.7 (7)	N2—C11—H11C	109.5

H5A—O5—H5B	120.0	H11A—C11—H11C	109.5
C8—N1—C9	116.2 (6)	H11B—C11—H11C	109.5
C8—N1—Zn1	122.4 (5)	C13—C12—C17	118.7 (9)
C9—N1—Zn1	121.3 (5)	C13—C12—C19	123.6 (7)
C10—N2—C11	116.9 (6)	C17—C12—C19	117.7 (9)
C10—N2—H2A	108.1	O3—C13—C12	123.0 (7)
C11—N2—H2A	108.1	O3—C13—C14	119.9 (7)
C10—N2—H2B	108.1	C12—C13—C14	117.1 (7)
C11—N2—H2B	108.1	C15—C14—O4	124.8 (8)
H2A—N2—H2B	107.3	C15—C14—C13	122.1 (9)
C19—N3—C20	118.3 (7)	O4—C14—C13	113.0 (6)
C19—N3—Zn1	121.3 (5)	C14—C15—C16	120.4 (10)
C20—N3—Zn1	120.4 (5)	C14—C15—H15	119.8
$C_{21} = N_{4} = C_{22}$	113.0 (6)	C16—C15—H15	119.8
C_{21} N4—H4A	109.0	C17 - C16 - C15	120.8 (9)
C^{22} N4—H4A	109.0	C17 - C16 - H16	119.6
C_{21} N4—H4B	109.0	C_{15} C_{16} H_{16}	119.6
C^{22} N4—H4B	109.0	C_{16} $-C_{17}$ $-C_{12}$	120.8 (9)
$H4\Delta NA H4B$	107.8	C_{16} C_{17} H_{17}	119.6
C_{23} N5 T_{n1}	157.9 (6)	$C_{12} = C_{17} = H_{17}$	119.6
$C_2 C_1 C_6$	137.9(0) 120.1(0)	$C_{12} = C_{17} = H_{18}$	109.5
$C_2 = C_1 = C_0$	120.1 (9)	$O_4 = C_{10} = H_{10} R$	109.5
$C_{2} - C_{1} - C_{3}$	124.0(0) 115.3(0)		109.5
$C_0 - C_1 - C_8$	113.3(9) 110.7(9)	118A - C18 - 118D	109.5
01 - 02 - 03	119.7(6) 122.2(7)		109.5
01 - 02 - 01	125.2(7)	$H_{10} = C_{10} = H_{10} C$	109.5
$C_3 = C_2 = C_1$	117.1 (8)	H18B - C18 - H18C	109.5
$C_2 = C_3 = C_2$	113.9 (7)	N3 - C19 - C12	128.9 (7)
$C_2 = C_3 = C_4$	120.6 (11)	N3—C19—H19	115.5
02-C3-C4	125.5 (9)	С12—С19—Н19	115.5
C5—C4—C3	123.3 (12)	N3—C20—C21	112.5 (6)
C5—C4—H4	118.4	N3—C20—H20A	109.1
C3—C4—H4	118.4	С21—С20—Н20А	109.1
C4—C5—C6	119.4 (11)	N3—C20—H20B	109.1
C4—C5—H5	120.3	С21—С20—Н20В	109.1
С6—С5—Н5	120.3	H20A—C20—H20B	107.8
C5—C6—C1	119.5 (11)	N4—C21—C20	111.9 (6)
С5—С6—Н6	120.2	N4—C21—H21A	109.2
C1—C6—H6	120.2	C20—C21—H21A	109.2
O2—C7—H7A	109.5	N4—C21—H21B	109.2
O2—C7—H7B	109.5	C20—C21—H21B	109.2
H7A—C7—H7B	109.5	H21A—C21—H21B	107.9
O2—C7—H7C	109.5	N4—C22—H22A	109.5
H7A—C7—H7C	109.5	N4—C22—H22B	109.5
H7B—C7—H7C	109.5	H22A—C22—H22B	109.5
N1	127.5 (7)	N4—C22—H22C	109.5
N1—C8—H8	116.3	H22A—C22—H22C	109.5
C1—C8—H8	116.3	H22B—C22—H22C	109.5
N1—C9—C10	111.2 (5)	N5—C23—S1	179.2 (7)

supporting information

N1—C9—H9A	109.4	N6—C24—S2	17	77.3 (10)
Hydrogen-bond geometry (Å,	?)			
D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
N4—H4 <i>B</i> …O2	0.90	2.38	3.001 (8)	126
N4—H4 <i>B</i> …O1	0.90	1.84	2.682 (7)	155
N4—H4 <i>A</i> …O5	0.90	1.99	2.839 (14)	157
N2—H2 <i>B</i> ···N6	0.90	1.93	2.834 (11)	179
N2—H2 <i>A</i> ···O4	0.90	2.35	2.889 (8)	119
N2—H2A····O3	0.90	1.86	2.691 (7)	153