

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(acetylacetonato- $\kappa^2 O, O'$)(2-amino-1methyl-1*H*-benzimidazole- κN^3)oxidovanadium(IV)

Zukhra Ch. Kadirova,^a* Dilnoza S. Rahmonova,^a Samat A. Talipov,^b Jamshid M. Ashurov^b and Nusrat A. Parpiev^a

^aNational University of Uzbekistan, Tashkent 100123, Uzbekistan, and ^bInstitute of Biorganic Chemistry, Mirzo-Ulugbek St. 83, Tashkent 100125, Uzbekistan Correspondence e-mail: zuhra_kadirova@yahoo.com

Received 5 May 2009; accepted 16 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.106; data-to-parameter ratio = 14.9.

The title mixed-ligand oxidovanadium(IV) compound, $[VO(C_5H_7O_2)_2(C_8H_9N_3)]$, contains a V^{IV} atom in a distorted octahedral coordination, which is typical for such complexes. The vanadyl group and the N-heterocyclic ligand are cis to each other. The coordination bond is located at the endocyclic N atom of the benzimidazole ligand. Intramolecular hydrogen bonds between the exo-NH₂ group H atoms and acetylacetonate O atoms stabilize the crystal structure.

Related literature

For the activity of vanadium complexes, see: Rehder (1999). For the crystal structures of acetylacetonate and benzimidazole oxidovanadium(IV) and (V) complexes, see: Maurya (2002); Caira et al. (1972); Shao et al. (1984); Crans et al. (1997); Maurya et al. (2006); Akhmed et al. (2004). For 1methyl- 2-aminobenzimidazole compounds, see: Borodkina et al. (2003); Chekhlov (2004).

Experimental

Crystal data [V(C₅H₇O₂)₂O(C₈H₉N₃)]

 $M_r = 412.33$

Cu $K\alpha$ radiation

 $0.25 \times 0.12 \times 0.08 \text{ mm}$

 $\mu = 4.57 \text{ mm}^{-1}$

T = 293 K

Z = 4

Monoclinic, $P2_1/n$	
a = 8.27120 (10) Å	
b = 15.0472 (2) Å	
c = 16.1078 (2) Å	
$\beta = 104.2646 \ (14)^{\circ}$	
V = 1942.94 (4) Å ³	

Data collection

Oxford Diffraction Xcalibur	8892 measured reflections
diffractometer	3720 independent reflections
Absorption correction: multi-scan	2983 reflections with $I > 2\sigma(I)$
(CrysAlisPro; Oxford	$R_{\rm int} = 0.028$
Diffraction, 2007)	
$T_{\min} = 0.544, \ T_{\max} = 0.694$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	249 parameters
$wR(F^2) = 0.106$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
3720 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3A - H3AA \cdots O2B$	0.86	2.38	2.972 (3)	127
$N3A - H3AA \cdots O2C$	0.86	2.47	3.034 (2)	124

Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. F 3-142).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2113).

References

- Akhmed, M. A. K., Fjellvåg, H., Kjekshus, H. & Klewe, B. (2004). Z. Anorg. Allg. Chem. 630, 2311-2318.
- Borodkina, I. G., Antsnshkina, A. S., Sadikov, G. G., Mistrnukov, A. E., Garnovskii, D. A., Uraev, A. I., Borodkin, G. S., Garnovskana, E. D., Sergienko, V. S. & Garnovskii, A. D. (2003). Russ. J. Coord. Chem. 29, 519-523
- Caira, M. R., Haigh, J. M. & Nassimbeni, L. R. (1972). Inorg. Nucl. Chem. Lett. 8, 109-112.
- Chekhlov, A. N. (2004). Russ. J. Inorg. Chem. 49, 1373-1377.
- Crans, D. C., Keramidas, A. D., Amin, S. S., Anderson, O. P. & Miller, S. M. (1997). J. Chem. Soc. Dalton Trans. 16, 2799-2812.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Maurya, M. R. (2002). Coord. Chem. Rev. 237, 163-181.
- Maurya, M. R., Kumar, A., Ebel, M. & Rehder, D. (2006). Inorg. Chem. 45, 5924-5937
- Oxford Diffraction (2007). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Rehder, D. (1999). Coord. Chem. Rev. 182, 297-322.
- Shao, M., Wang, L. & Tang, N. (1984). Kexue Tongbao (Chin. Sci. Bull.), 29, 759-764
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m819 [doi:10.1107/S1600536809023113]

Bis(acetylacetonato- $\kappa^2 O, O'$)(2-amino-1-methyl-1*H*-benzimidazole- κN^3)oxidovanadium(IV)

Zukhra Ch. Kadirova, Dilnoza S. Rahmonova, Samat A. Talipov, Jamshid M. Ashurov and Nusrat A. Parpiev

S1. Comment

Vanadium complexes have attracted interest in recent nears due to their insulin-mimetic action, and to their activity in nitrogen fixation and haloperoxidation (Rehder, 1999). The vanadium atom can have different coordination numbers and forms coordination compounds with a variety of coordination geometries and oxidation states (Maurya, 2002). Limited information is available on the crystal structure of the vanadium complexes of substituted benzimidazoles (Crans *et al.*, 1997; Maurya *et al.*, 2006). Bis(acetylacetonato)oxovanadium, [VO(acac)₂], is a common precursor for the synthesis of the mixed ligand vanadium(IV) and vanadium(V) complexes with the N-containing monodentate ligands (*L*), [VO(acac)₂L]. Usually these bis-chelated complexes can be *cis*- or *trans*- with distorted octahedral configurations (Caira *et al.*, 1972; Shao *et al.*, 1984). In this study, we prepared the mixed-ligand complex of oxovanadium(IV) with bidentate acetylacetonate and the monodentate benzimidazole, 2-amino-1-methylbenzimidazole, and report herein on its crystal structure.

The molecular structure of the title compound is shown in Fig. 1, and geometrical parameters are available from the archived CIF. In this *cis*-complex, [VO(acac)₂L], the metal center has a slightly distorted octahedral N₁O₅ coordination sphere, assembled by the O—O-donor acetylacetonate, the oxo-group and the pyridine N-atom of the benzimidazole. The angles around the vanadium atom deviate from 90°, being in the range of 80.85 (6) - 99.91 (7) °, and from 180°, being in the range of 164.96 (7) - 179.18 (7)°, due to coordination of the sterically large ligand to the five-coordinate square-pyramidal [VO(acac)₂] complex (Akhmed *et al.*, 2004).

The coordination bond is localized at the *endo*-cyclic N-atom of the benzimidazole ligand and the bond lengths and angles are similar to those reported for 2-amino-1-methylbenzimidazolium chloride hydrate (Borodkina *et al.*, 2003), and bis(2-amino-1-methylbenzimidazole-N) dichlorocobalt(II) (Chekhlov *et al.*, 2004). The amino-group is coplanar with the methyl-group [torsion angle C8A—N2A—C7A—N3A is 4.3 (4)°] and participates in intramolecular hydrogen bonds with the carbonyl O-atoms (Fig.2 and Table 1).

The V—O bond (V1—O2B) *trans* to the *oxo*-group is significally longer (2.1523 (17) Å) than the V—O bonds which are *cis* to the oxo-group (1.9927 (14) - 2.0139 (14) Å). In contrast the carbonyl bond involving atom O2B (C4B?O2B) is shorter, (1.252 (3) Å), than the other acetylacetonate C?O bonds [1.264 (3) - 1.273 (3) Å]. The V—N bond length, the *cis*- and *trans*- V—O bond lengths are comparable to those reported for oxovanadium(IV) species containing acac⁻ as ligand in a similar orientation (Crans *et al.*, 1997).

S2. Experimental

Equimolar quantities of $[VO(acac)_2]$ (acac = acetnlacetonate) and 2-amine-1-methylbenzimidazole (0.53 g, 1.9 mmol) were refluxed in ethanol for 3 h. The resulting green solution yielded green crystals which were filtered off and washed twice with acetone. Elem. Analysis found: C 52.4, H 6.0, N 10.3, V 12.4%; C₁₈H₂₃N₃O₅V requires: C 52.4, H 5.6, N 10.2, V 12.4%. IR (BRUKER spectrometer, KBr, cm⁻¹): 3415 s, 3326 s, 1641 s, 1591 s, 1556 s, 1462*m*, 1373 s, 1273*m*, 1018*m*, 1252w, 1198w, 1132w,1052*m*, 983*m*, 939*m*, 787w, 746*m*, 669w, 590w, 557w, 455w). Crystals of the title compound, suitable X-ray diffraction analysis, were selected directly from the sample as prepared.

S3. Refinement

All the H-atoms were included in calculated positions [N—H = 0.88 Å, C—H = 0.93 - 0.96 Å] and treated as riding atoms [$U_{iso}(H) = k \times U_{eq}$ (parent atom], where k = 1.2 for NH₂ and CH H atoms and 1.5 for methyl H atoms].

Figure 1

A view of the molecuar structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view of the crystal packing of the title compound, with the intramolecuéar N—H…O hydrogen bonds shown as pale blue dashed lines (see Table 1 for details).

Bis(acetylacetonato- $\kappa^2 O, O'$)(2-amino-1-methyl-1*H*- benzimidazole- κN^3)oxidovanadium(IV)

Crystal data	
$[V(C_{5}H_{7}O_{2})_{2}O(C_{8}H_{9}N_{3})]$	F(000) = 860
$M_{r} = 412.33$	$D_x = 1.410 \text{ Mg m}^{-3}$
Monoclinic, $P2_{1}/n$	Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$
Hall symbol: -P 2yn	Cell parameters from 3720 reflections
a = 8.2712 (1) Å	$\theta = 4.1-76.0^{\circ}$
b = 15.0472 (2) Å	$\mu = 4.57 \text{ mm}^{-1}$
c = 16.1078 (2) A $\beta = 104.2646$ (14)° V = 1942.94 (4) Å ³ Z = 4 Data collection	T = 293 K Monoclinic, green $0.25 \times 0.12 \times 0.08$ mm
Oxford Diffraction Xcalibur	3720 independent reflections
diffractometer	2983 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{int} = 0.028$
Graphite monochromator	$\theta_{max} = 76.0^{\circ}, \theta_{min} = 4.1^{\circ}$
heavy atom scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -18 \rightarrow 17$
(<i>CrysAlis PRO</i> ; Oxford Diffraction, 2007)	$l = -20 \rightarrow 20$
$T_{min} = 0.544, T_{max} = 0.694$	3 standard reflections every 120 reflections
8892 measured reflections	intensity decay: none

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.106$	neighbouring sites
S = 1.00	H-atom parameters constrained
3720 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0695P)^2]$
249 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.20 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
V1	0.72939 (4)	0.84139 (2)	0.15879 (2)	0.0439 (1)
O1B	0.85987 (19)	0.94296 (8)	0.22441 (9)	0.0495 (5)
O1C	0.7792 (2)	0.89026 (9)	0.05202 (9)	0.0572 (5)
O1V	0.5517 (2)	0.88731 (10)	0.14793 (10)	0.0590 (5)
O2B	0.9707 (2)	0.78057 (10)	0.17502 (10)	0.0556 (5)
O2C	0.6598 (2)	0.72797 (9)	0.09633 (9)	0.0559 (5)
N1A	0.7312 (2)	0.77605 (10)	0.27641 (10)	0.0450 (5)
N2A	0.7430 (3)	0.67520 (11)	0.37942 (11)	0.0579 (7)
N3A	0.8363 (3)	0.63142 (12)	0.25875 (13)	0.0667 (8)
C1A	0.6736 (3)	0.81453 (13)	0.34241 (12)	0.0475 (6)
C1B	1.0649 (4)	1.03962 (17)	0.3018 (2)	0.0777 (10)
C1C	0.7707 (5)	0.9161 (2)	-0.09262 (17)	0.0869 (13)
C2A	0.6149 (3)	0.89931 (15)	0.35119 (14)	0.0577 (8)
C2B	1.0157 (3)	0.95299 (13)	0.25591 (12)	0.0497 (7)
C2C	0.7364 (3)	0.85815 (15)	-0.02274 (15)	0.0574 (8)
C3A	0.5629 (4)	0.91763 (18)	0.42447 (17)	0.0732 (10)
C3B	1.1380 (3)	0.89314 (15)	0.25154 (17)	0.0630 (8)
C3C	0.6646 (4)	0.77473 (16)	-0.04198 (15)	0.0637 (8)
C4A	0.5667 (5)	0.8537 (2)	0.48746 (18)	0.0844 (13)
C4B	1.1117 (3)	0.80980 (14)	0.21204 (13)	0.0505 (7)
C4C	0.6354 (3)	0.71403 (14)	0.01637 (14)	0.0523 (7)
C5A	0.6251 (4)	0.76985 (18)	0.47967 (16)	0.0768 (12)
C5B	1.2601 (3)	0.75171 (16)	0.21416 (18)	0.0698 (9)
C5C	0.5724 (4)	0.62284 (17)	-0.01264 (17)	0.0725 (9)
C6A	0.6788 (3)	0.75212 (14)	0.40690 (13)	0.0562 (7)
C7A	0.7706 (3)	0.69247 (13)	0.30215 (13)	0.0504 (7)

C8A	0.7863 (4)	0.59453 (16)	0.43059 (17)	0.0768 (9)
H3AA	0.85610	0.64500	0.21040	0.0800*
H3AB	0.85830	0.57890	0.27940	0.0800*
H2AA	0.61060	0.94230	0.30920	0.0690*
H3AC	0.52420	0.97440	0.43200	0.0880*
H4A	0.52880	0.86830	0.53550	0.1020*
H5AA	0.62850	0.72680	0.52150	0.0920*
H8AA	0.86740	0.56120	0.41000	0.1150*
H8AB	0.68810	0.55900	0.42600	0.1150*
H8AC	0.83190	0.61030	0.48950	0.1150*
H1BA	1.04180	1.08760	0.26140	0.1170*
H1BB	1.18190	1.03870	0.32930	0.1170*
H1BC	1.00230	1.04780	0.34420	0.1170*
H3BA	1.24760	0.90920	0.27690	0.0750*
H5BA	1.22290	0.69420	0.19160	0.1050*
H5BB	1.32470	0.74570	0.27220	0.1050*
H5BC	1.32750	0.77810	0.18010	0.1050*
H1CA	0.87820	0.94350	-0.07300	0.1300*
H1CB	0.68650	0.96130	-0.10720	0.1300*
H1CC	0.76940	0.88050	-0.14220	0.1300*
H3CA	0.63350	0.75860	-0.09950	0.0760*
H5CA	0.65170	0.57920	0.01560	0.1090*
H5CB	0.55760	0.61810	-0.07350	0.1090*
H5CC	0.46750	0.61290	0.00140	0.1090*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.0518 (2)	0.0385 (2)	0.0396 (2)	-0.0028 (1)	0.0080(1)	-0.0025 (1)
O1B	0.0574 (9)	0.0391 (7)	0.0499 (8)	-0.0030 (6)	0.0091 (6)	-0.0053 (6)
O1C	0.0787 (11)	0.0472 (8)	0.0483 (8)	-0.0081 (7)	0.0207 (7)	-0.0005 (6)
O1V	0.0571 (10)	0.0618 (9)	0.0548 (9)	0.0055 (7)	0.0073 (7)	0.0089 (7)
O2B	0.0558 (10)	0.0477 (8)	0.0632 (9)	0.0019 (6)	0.0144 (7)	-0.0092 (6)
O2C	0.0729 (11)	0.0472 (8)	0.0433 (7)	-0.0124 (7)	0.0063 (7)	-0.0051 (6)
N1A	0.0543 (10)	0.0383 (8)	0.0401 (8)	-0.0030(7)	0.0071 (7)	-0.0021 (6)
N2A	0.0848 (15)	0.0398 (9)	0.0435 (9)	-0.0063 (9)	0.0054 (9)	0.0015 (7)
N3A	0.0966 (17)	0.0426 (9)	0.0608 (12)	0.0106 (10)	0.0193 (11)	-0.0009 (8)
C1A	0.0541 (13)	0.0442 (10)	0.0409 (10)	-0.0077 (9)	0.0053 (8)	-0.0041 (8)
C1B	0.084 (2)	0.0505 (13)	0.0874 (19)	-0.0150 (12)	0.0000 (15)	-0.0131 (12)
C1C	0.130 (3)	0.0822 (18)	0.0595 (15)	-0.0136 (18)	0.0444 (16)	-0.0004 (13)
C2A	0.0689 (15)	0.0514 (12)	0.0503 (12)	0.0024 (10)	0.0097 (10)	-0.0021 (9)
C2B	0.0621 (14)	0.0430 (10)	0.0415 (10)	-0.0093 (9)	0.0083 (9)	0.0022 (8)
C2C	0.0703 (16)	0.0576 (13)	0.0494 (11)	0.0073 (11)	0.0246 (10)	-0.0027 (9)
C3A	0.097 (2)	0.0639 (15)	0.0623 (14)	0.0086 (14)	0.0263 (14)	-0.0116 (12)
C3B	0.0499 (14)	0.0591 (13)	0.0736 (15)	-0.0065 (10)	0.0033 (11)	-0.0042 (11)
C3C	0.0863 (18)	0.0616 (14)	0.0451 (11)	-0.0049 (12)	0.0199 (11)	-0.0113 (10)
C4A	0.121 (3)	0.087 (2)	0.0534 (14)	-0.0039 (17)	0.0369 (16)	-0.0130 (13)
C4B	0.0537 (13)	0.0511 (11)	0.0477 (10)	0.0020 (9)	0.0146 (9)	0.0085 (8)

supporting information

C4C	0.0554 (13)	0.0492 (11)	0.0489 (11)	0.0013 (9)	0.0064 (9)	-0.0105 (9)
C5A	0.118 (3)	0.0664 (16)	0.0471 (12)	-0.0123 (15)	0.0222 (14)	0.0000 (11)
C5B	0.0621 (17)	0.0719 (16)	0.0744 (16)	0.0144 (12)	0.0150 (13)	0.0031 (12)
C5C	0.095 (2)	0.0597 (14)	0.0575 (14)	-0.0135 (13)	0.0088 (13)	-0.0165 (11)
C6A	0.0747 (16)	0.0492 (11)	0.0415 (10)	-0.0104 (10)	0.0083 (10)	-0.0029 (8)
C7A	0.0606 (14)	0.0395 (10)	0.0462 (10)	-0.0023 (9)	0.0038 (9)	-0.0032 (8)
C8A	0.115 (2)	0.0467 (12)	0.0609 (14)	-0.0096 (13)	0.0069 (15)	0.0115 (10)

Geometric parameters (Å, °)

V1-01B	2 0139 (14)	C3C—C4C	1 374 (3)
V1	2.0044 (15)	C4A - C5A	1.368 (4)
V1—O1V	1.5942 (17)	C4B—C5B	1.500 (3)
V1—O2B	2.1523 (17)	C4C-C5C	1.501 (3)
V1—O2C	1.9927 (14)	C5A—C6A	1.378 (4)
V1—N1A	2.1313 (16)	C1B—H1BA	0.9600
O1B—C2B	1.273 (3)	C1B—H1BB	0.9600
01C—C2C	1.264 (3)	C1B—H1BC	0.9600
O2B—C4B	1.252 (3)	C1C—H1CA	0.9600
O2C—C4C	1.271 (3)	C1C—H1CB	0.9600
N1A—C1A	1.394 (3)	C1C—H1CC	0.9600
N1A—C7A	1.339 (2)	C2A—H2AA	0.9300
N2A—C6A	1.391 (3)	СЗА—НЗАС	0.9300
N2A—C7A	1.345 (3)	СЗВ—НЗВА	0.9300
N2A—C8A	1.461 (3)	СЗС—НЗСА	0.9300
N3A—C7A	1.347 (3)	C4A—H4A	0.9300
N3A—H3AB	0.8600	С5А—Н5АА	0.9300
N3A—H3AA	0.8600	C5B—H5BA	0.9600
C1A—C2A	1.385 (3)	C5B—H5BB	0.9600
C1A—C6A	1.393 (3)	C5B—H5BC	0.9600
C1B—C2B	1.504 (3)	C5C—H5CA	0.9600
C1C—C2C	1.505 (4)	C5C—H5CB	0.9600
C2A—C3A	1.380 (4)	C5C—H5CC	0.9600
C2B—C3B	1.369 (3)	C8A—H8AA	0.9600
C2C—C3C	1.391 (3)	C8A—H8AB	0.9600
C3A—C4A	1.393 (4)	C8A—H8AC	0.9600
C3B—C4B	1.399 (3)		
01B—V1—01C	88.57 (6)	C1A—C6A—C5A	123.1 (2)
01B—V1—01V	95.11 (7)	N2A—C6A—C1A	105.53 (18)
O1B—V1—O2B	84.14 (6)	N2A—C6A—C5A	131.3 (2)
O1B—V1—O2C	164.96 (7)	N1A—C7A—N2A	112.59 (18)
01B—V1—N1A	89.89 (6)	N1A—C7A—N3A	125.33 (19)
01C—V1—01V	97.22 (7)	N2A—C7A—N3A	122.05 (19)
O1C—V1—O2B	83.09 (6)	C2B—C1B—H1BA	110.00
01C—V1—02C	88.62 (6)	C2B—C1B—H1BB	110.00
O1C—V1—N1A	166.93 (7)	C2B—C1B—H1BC	109.00
O1V—V1—O2B	179.18 (7)	H1BA—C1B—H1BB	109.00

01V—V1—02C	99.91 (7)	H1BA—C1B—H1BC	109.00
O1V—V1—N1A	95.85 (7)	H1BB—C1B—H1BC	109.00
O2B—V1—O2C	80.85 (6)	C2C—C1C—H1CA	109.00
O2B—V1—N1A	83.84 (6)	C2C—C1C—H1CB	110.00
O2C—V1—N1A	89.52 (6)	C2C—C1C—H1CC	109.00
V1—01B—C2B	131.18 (13)	H1CA—C1C—H1CB	109.00
V1—01C—C2C	127.48 (15)	H1CA—C1C—H1CC	109.00
V1—O2B—C4B	129.48 (14)	H1CB—C1C—H1CC	109.00
V1—O2C—C4C	127.37 (13)	C1A—C2A—H2AA	121.00
V1—N1A—C1A	123.89 (12)	СЗА—С2А—Н2АА	121.00
V1—N1A—C7A	131.02 (14)	С2А—С3А—НЗАС	119.00
C1A—N1A—C7A	104.89 (16)	С4А—С3А—НЗАС	119.00
C6A—N2A—C7A	107.40 (17)	C2B—C3B—H3BA	117.00
C6A - N2A - C8A	124.86 (19)	C4B-C3B-H3BA	117.00
C7A— $N2A$ — $C8A$	127.5 (2)	$C_2C_3C_{H3}C_A$	117.00
H3AA—N3A—H3AB	120.00	C4C-C3C-H3CA	117.00
C7A—N3A—H3AA	120.00	C3A - C4A - H4A	119.00
C7A—N3A—H3AB	120.00	C5A - C4A - H4A	120.00
N1A—C1A—C6A	109 59 (17)	C4A - C5A - H5AA	122.00
N1A—C1A—C2A	130.93(18)	C6A - C5A - H5AA	122.00
C2A— $C1A$ — $C6A$	119 5 (2)	C4B-C5B-H5BA	109.00
C1A - C2A - C3A	117.6 (2)	C4B-C5B-H5BB	109.00
01B-C2B-C1B	117.0(2) 115.1(2)	C4B-C5B-H5BC	109.00
01B-C2B-C3B	126 17 (19)	H5BA—C5B—H5BB	109.00
C1B $C2B$ $C3B$	118 8 (2)	H5BA—C5B—H5BC	110.00
01C - C2C - C3C	1241(2)	H5BB—C5B—H5BC	109.00
01C - C2C - C1C	1155(2)	C4C - C5C - H5CA	109.00
C1C-C2C-C3C	120.3(2)	C4C - C5C - H5CB	109.00
$C_2A - C_3A - C_4A$	122.0(3)	C4C - C5C - H5CC	109.00
C2B-C3B-C4B	122.0(3) 125.4(2)	H5CA—C5C—H5CB	109.00
$C_2C_2C_3C_2C_4C$	125.8 (2)	H5CA—C5C—H5CC	109.00
C3A - C4A - C5A	121.0(3)	H5CB—C5C—H5CC	109.00
C3B-C4B-C5B	118 5 (2)	N2A—C8A—H8AA	110.00
O2B-C4B-C5B	117.85 (19)	N2A—C8A—H8AB	110.00
O2B - C4B - C3B	123 6 (2)	N2A—C8A—H8AC	110.00
02D - C4D - C3D	123.0(2) 124.9(2)	H8AA—C8A—H8AB	109.00
02C - C4C - C5C	121.9(2) 1150(2)	H8AA - C8A - H8AC	109.00
$C_{3}C_{-}C_{4}C_{-}C_{5}C_{-}C_{-}C_{5}C_{-}C_{-}C_{5}C_{-}C_{-}C_{5}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	1201(2)	H8AB - C8A - H8AC	109.00
$C_{4A} = C_{5A} = C_{6A}$	120.1(2) 1169(2)		109.00
	110.9 (2)		
01C - V1 - 01B - C2B	-83.35(17)	V1—N1A—C1A—C2A	-42(3)
01V - V1 - 01B - C2B	17953(17)	C1A $N1A$ $C7A$ $N3A$	-1780(2)
0^2B V1 -0^1B $-C^2B$	-0.15(17)	V1— $N1A$ — $C7A$ — $N3A$	71(4)
N1A-V1-O1B-C2B	83 67 (17)	C7A - N1A - C1A - C6A	-0.4(3)
01B-V1-01C-C2C	178 64 (19)	C1A - N1A - C7A - N2A	-0.2(3)
01V - V1 - 01C - C2C	-864(2)	C7A - N1A - C1A - C2A	-179.6(3)
02B-V1-01C-C2C	94 37 (19)	C8A - N2A - C6A - C5A	-75(5)
02C - V1 - 01C - C2C	13 42 (19)	C8A N2A C7A N1A	-173.6(2)
020 - 1 - 010 - 020	13.72 (17)	COM = M2M = C/M = MIM	175.0(2)

O1B—V1—O2B—C4B	0.1 (2)	C7A—N2A—C6A—C5A	177.9 (3)
O1C—V1—O2B—C4B	89.40 (18)	C8A—N2A—C7A—N3A	4.3 (4)
O2C—V1—O2B—C4B	179.11 (19)	C6A—N2A—C7A—N1A	0.8 (3)
N1A—V1—O2B—C4B	-90.39 (18)	C6A—N2A—C7A—N3A	178.6 (2)
O1C—V1—O2C—C4C	-11.2 (2)	C7A—N2A—C6A—C1A	-1.0(3)
O1V—V1—O2C—C4C	85.9 (2)	C8A—N2A—C6A—C1A	173.6 (2)
O2B-V1-O2C-C4C	-94.4 (2)	N1A—C1A—C2A—C3A	178.8 (3)
N1A—V1—O2C—C4C	-178.3 (2)	N1A—C1A—C6A—C5A	-178.1 (2)
O1B—V1—N1A—C1A	55.10 (17)	N1A—C1A—C6A—N2A	0.8 (3)
O1B—V1—N1A—C7A	-130.9 (2)	C2A—C1A—C6A—N2A	-179.9 (2)
O1V—V1—N1A—C1A	-40.02 (17)	C2A—C1A—C6A—C5A	1.2 (4)
O1V—V1—N1A—C7A	134.0 (2)	C6A—C1A—C2A—C3A	-0.4 (4)
O2B-V1-N1A-C1A	139.22 (17)	C1A—C2A—C3A—C4A	-0.7 (4)
O2B—V1—N1A—C7A	-46.7 (2)	C1B—C2B—C3B—C4B	179.3 (2)
O2C-V1-N1A-C1A	-139.93 (17)	O1B—C2B—C3B—C4B	-0.7 (4)
O2C-V1-N1A-C7A	34.1 (2)	O1C—C2C—C3C—C4C	-2.6 (5)
V1-01B-C2B-C1B	-179.51 (16)	C1C—C2C—C3C—C4C	176.4 (3)
V1—O1B—C2B—C3B	0.4 (3)	C2A—C3A—C4A—C5A	1.0 (5)
V1—O1C—C2C—C3C	-9.3 (4)	C2B—C3B—C4B—O2B	0.6 (4)
V1-01C-C2C-C1C	171.7 (2)	C2B—C3B—C4B—C5B	-179.2 (2)
V1—O2B—C4B—C5B	179.41 (15)	C2C—C3C—C4C—C5C	-174.0 (3)
V1—O2B—C4B—C3B	-0.4 (3)	C2C—C3C—C4C—O2C	5.0 (5)
V1—O2C—C4C—C5C	-176.10 (18)	C3A—C4A—C5A—C6A	-0.2 (5)
V1—O2C—C4C—C3C	4.9 (4)	C4A—C5A—C6A—N2A	-179.6 (3)
V1—N1A—C7A—N2A	-175.13 (16)	C4A—C5A—C6A—C1A	-0.9 (4)
V1—N1A—C1A—C6A	174.97 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N3 <i>A</i> —H3 <i>AA</i> ···O2 <i>B</i>	0.86	2.38	2.972 (3)	127
N3 <i>A</i> —H3 <i>AA</i> ···O2 <i>C</i>	0.86	2.47	3.034 (2)	124
C8A—H8AA…N3A	0.96	2.61	2.950 (3)	101
$C8A$ — $H8AB$ ····O1 C^{i}	0.96	2.57	3.146 (3)	119

Symmetry code: (i) -x+3/2, y-1/2, -z+1/2.