metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chlorido[(*E*)-2-hydroxy-6-(isonicotinoylhydrazonomethyl)phenyl]mercury(II) monohydrate

Su-Zhen Bai,^a Xin-Hua Lou,^{b*} Hong-Mei Li^c and Hui Shi^a

^aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467002, People's Republic of China, ^bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and ^cChemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, People's Republic of China Correspondence e-mail: lxh-9802@163.com

Received 12 June 2009; accepted 22 June 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.021; wR factor = 0.046; data-to-parameter ratio = 14.9.

The asymmetric unit of the title compound, $[Hg(C_{13}H_{10} N_3O_2$)Cll·H₂O, contains two independent mercurv(II) complexes with slightly different conformations, related via a pseudo-inversion centre, and two water molecules. The Hg^{II} atoms show a typical linear geometry to a C atom of the benzene ring and to a Cl atom. A benzene C and the azomethine N atom chelate the Hg^{II} atoms with weak intramolecular Hg...N bonding distances of 2.735 (3) and 2.739 (3) Å, respectively. The resulting five-membered metallacycles are nearly coplanar with the benzene rings [dihedral angles = 0.9 (1) and 0.7 (1)°], while the pyridine rings make dihedral angles with the benzene units of 58.17(1) and 56.58 (1)°. In the crystal structure, the Hg^{II} complexes are linked by hydroxy donor and pyridine acceptor groups into chains along [010]. The water molecules connect the complexes through intermolecular O-H···O_{carbonvl} bonds in the a-axis direction, and the azomethine H atoms donate towards the water O atoms, forming a three-dimensional network of intermolecular O-H···N, O-H···O and N- $H \cdots O$ hydrogen bonds.

Related literature

For general background, see: Gruter *et al.* (1995); Soro *et al.* (2005); Xu *et al.* (2009*b*). For related structures, see: Hao *et al.* (2007); Lin *et al.* (2002); For the synthesis of related cyclomercurated compounds, see: Xu *et al.* (2009*a*).

V = 3040.2 (6) Å³

Mo $K\alpha$ radiation

 $0.37 \times 0.28 \times 0.25 \text{ mm}$

22798 measured reflections

5658 independent reflections

4683 reflections with $I > 2\sigma(I)$

 $\mu = 10.31 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.030$

Z = 8

Experimental

Crystal data

[Hg(C₁₃H₁₀N₃O₂)Cl]·H₂O $M_r = 494.30$ Monoclinic, $P2_1/n$ a = 14.5932 (16) Å b = 14.0111 (15) Å c = 15.3711 (17) Å $\beta = 104.6850$ (10)°

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.113, T_{max} = 0.179$ (expected range = 0.048–0.076)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	381 parameters
$wR(F^2) = 0.046$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$
5658 reflections	$\Delta \rho_{\rm min} = -0.83 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

	лц	ц 4	D 4	
$D = \Pi \cdots A$	$D = \Pi$	п···А	$D \cdots A$	$D = \Pi \cdots A$
$O6-H4W\cdots O2^{i}$	0.83	2.15	2.898 (4)	150
O6-H3WO3	0.83	2.30	3.023 (4)	146
$O5-H2W \cdots O1$	0.83	2.17	2.963 (4)	159
$O5-H1W \cdot \cdot \cdot O4^{ii}$	0.84	2.06	2.876 (4)	166
$N5 - H5D \cdots O6^{iii}$	0.86	2.04	2.872 (4)	162
$N2 - H2D \cdots O5^{iv}$	0.86	2.06	2.890 (4)	161
$O3-H3 \cdot \cdot \cdot N6^{v}$	0.82	1.92	2.737 (4)	171
$O1-H1\cdots N3^{vi}$	0.82	1.93	2.733 (4)	167

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) x, y - 1, z; (vi) x, y + 1, z.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

This work was supported by the High-Level Personnel to Start Research Fund of Pingdingshan University (No. 2006044).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2184).

References

- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gruter, G. M., Van Klink, G. P. M., Akkerman, O. S. & Bickelhaupt, F. (1995). Chem. Rev. 95, 2405-2456
- Hao, X. Q., Gong, J. F., Song, W. T., Wu, Y. J. & Song, M. P. (2007). Inorg. Chem. Commun. 10, 371-375.
- Lin, K. H., Song, M. P., Zhu, Y. & Wu, Y. J. (2002). J. Organomet. Chem. 660, 139–144.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soro, B., Stoccoro, S., Minghetti, G., Zucca, A., Cinellu, M. A., Gladiali, S., Manassero, M. & Sansoni, M. (2005). Organometallics, 24, 53-61.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2009a). Acta Cryst. E65, m754.
- Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009b). Organometallics, 28, 1909-1916.

supporting information

Acta Cryst. (2009). E65, m842-m843 [doi:10.1107/S1600536809023824]

Chlorido[(*E*)-2-hydroxy-6-(isonicotinoylhydrazonomethyl)phenyl]mercury(II) monohydrate

Su-Zhen Bai, Xin-Hua Lou, Hong-Mei Li and Hui Shi

S1. Comment

Cyclometallated compounds have attracted much research interest owing to theirs utility in synthesis, catalysis and materials (Gruter *et al.*, 1995; Xu *et al.*, 2009*b*). Among them, cyclomercurated compounds are easy to prepare through a C—H activation process and are stable but reasonably reactive. Although numerous cyclomercurated compounds have been widely investigated, and many examples have been reported(Soro *et al.*, 2005; Hao *et al.*, 2007), only a few cyclometallated Schiff bases containing heterocyclic ring are known(Lin *et al.*, 2002).

The asymmetric unit of the title compound (Fig.1) contains two independent mercury(II) complexes with slightly different conformations, related *via* a pseudo-inversion centre (1/2a, 3/4b, 1/4c), and two water molecules. The Hg^{II} atoms show a typical linear coordination geometry with a carbon atom of the benzene ring and the chloride atom in *trans* position. A benzene carbon and the azomethine nitrogen atom chelate the mercury(II) atoms with weak intramolecular Hg···N bonding distances of 2.735 (3)Å and 2.739 (3) Å. which are shorter than those of the related Hg^{II} complex (Hao *et al.*, (2007); Lin *et al.*, (2002); Xu *et al.*, (2009a). The C—Hg and Hg—Cl bond distances are within normal ranges. The C1—Hg1—Cl1 and C14—Hg2—Cl2 angles are 173.85 (10)° and 174.67 (10)°, slightly smaller than the ideal value of 180° in organic derivatives of mercury. The resulting five-membered metallacycles are nearly coplanar with the benzene ring, while the pyridine are not coplanar with the benzene. In the crystal structure, intermolecular O—H···O, N—H···O and O—H···N hydrogen bonds (Table 1) link the independent Hg^{II} complexes and the water molecules into a three-dimensional network.

S2. Experimental

Chlorido(2-formyl-6-hydroxybenzaldehyde- kC^{i})mercury(II) was synthesized according to the reported procedure (Xu *et al.*, 2009*a*). The title compound was prepared from the above compound with isonicotinoylhydrazine and recrystallized from ethanol solution at room temperature to give the desired product as colourless crystals suitable for single-crystal X-ray diffraction.

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their patent atoms, with distances: C—H = 0.93 Å, N—H = 0.86 Å, and O—H = 0.82 Å. The $U_{iso}(H)$ values were set at $1.2U_{eq}(C,N)$ and $1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound with displacement ellipsoids at the 30% probability level.

Chlorido[(*E*)-2-hydroxy-6-(isonicotinoylhydrazonomethyl)phenyl]mercury(II) monohydrate

Crystal data	
$[Hg(C_{13}H_{10}N_{3}O_{2})Cl] \cdot H_{2}O$	F(000) = 1856
$M_r = 494.30$	$D_{\rm x} = 2.160 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 14.5932 (16) Å	Cell parameters from 5064 reflections
b = 14.0111 (15) Å	$\theta = 2.7 - 28.3^{\circ}$
c = 15.3711 (17) Å	$\mu = 10.31 \text{ mm}^{-1}$
$\beta = 104.685 \ (1)^{\circ}$	T = 296 K
$V = 3040.2 (6) Å^3$	Block, colorless
Z = 8	$0.37 \times 0.28 \times 0.25 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-detector	Absorption correction: multi-scan
diffractometer	(SADABS; Sheldrick, 1996)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.113, \ T_{\max} = 0.179$
Graphite monochromator	22798 measured reflections
φ and ω scans	5658 independent reflections

4683 reflections with $I > 2\sigma(I)$	$h = -17 \rightarrow 17$
$R_{\rm int} = 0.030$	$k = -16 \rightarrow 16$
$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$	$l = -16 \rightarrow 18$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from
$wR(F^2) = 0.046$	neighbouring sites
S = 1.05	H-atom parameters constrained
5658 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0197P)^2 + 1.3364P]$
381 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.52 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.83 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Hg1	0.909422 (9)	0.795528 (10)	0.140566 (10)	0.03271 (5)
Hg2	0.088755 (10)	0.667392 (10)	0.363229 (10)	0.03354 (5)
Cl1	1.06292 (6)	0.74039 (8)	0.15848 (7)	0.0482 (3)
Cl2	-0.06489 (7)	0.72341 (8)	0.34424 (7)	0.0485 (3)
O1	0.85291 (17)	1.00819 (18)	0.13735 (19)	0.0444 (7)
H1	0.8409	1.0641	0.1231	0.067*
O2	0.91602 (18)	0.54581 (19)	0.0795 (2)	0.0539 (8)
O3	0.14451 (18)	0.45504 (17)	0.3573 (2)	0.0473 (7)
Н3	0.1565	0.3987	0.3693	0.071*
O4	0.08053 (18)	0.91980 (18)	0.4187 (2)	0.0494 (7)
N1	0.7764 (2)	0.6537 (2)	0.1123 (2)	0.0339 (7)
N2	0.7733 (2)	0.55515 (19)	0.11402 (19)	0.0338 (7)
H2D	0.7253	0.5255	0.1239	0.041*
N3	0.8374 (2)	0.2013 (2)	0.1131 (2)	0.0397 (8)
N4	0.2225 (2)	0.8089 (2)	0.3911 (2)	0.0362 (7)
N5	0.2266 (2)	0.9077 (2)	0.39086 (19)	0.0352 (7)
H5D	0.2760	0.9368	0.3836	0.042*
N6	0.1645 (2)	1.2624 (2)	0.3851 (2)	0.0397 (8)
C1	0.7779 (2)	0.8579 (2)	0.1197 (2)	0.0279 (8)
C2	0.7707 (3)	0.9568 (3)	0.1195 (2)	0.0349 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C3	0.6823 (3)	1.0005 (3)	0.1066 (3)	0.0431 (10)
H3A	0.6779	1.0667	0.1076	0.052*
C4	0.6011 (3)	0.9454 (3)	0.0924 (3)	0.0495 (11)
H4	0.5422	0.9746	0.0830	0.059*
C5	0.6075 (3)	0.8465 (3)	0.0920 (3)	0.0411 (9)
Н5	0.5528	0.8097	0.0830	0.049*
C6	0.6953 (2)	0.8023 (2)	0.1051 (2)	0.0313 (8)
C7	0.6986 (3)	0.6972 (2)	0.1046 (2)	0.0331 (8)
H7	0.6430	0.6625	0.0986	0.040*
C8	0.8484 (3)	0.5069 (2)	0.0996 (2)	0.0351 (9)
С9	0.8433 (2)	0.4003 (2)	0.1063 (2)	0.0302 (8)
C10	0.8804 (2)	0.3447 (2)	0.0486 (3)	0.0361 (9)
H10	0.9089	0.3731	0.0075	0.043*
C11	0.8744 (2)	0.2467 (3)	0.0532 (3)	0.0379 (9)
H11	0.8973	0.2102	0.0127	0.046*
C12	0.8025 (3)	0.2558 (3)	0.1688 (3)	0.0416 (9)
H12	0.7760	0.2254	0.2104	0.050*
C13	0.8035 (3)	0.3542 (3)	0.1680 (3)	0.0393 (9)
H13	0.7782	0.3890	0.2079	0.047*
C14	0.2197 (2)	0.6052 (2)	0.3792 (2)	0.0291 (8)
C15	0.3026 (3)	0.6602 (2)	0.3951 (2)	0.0324 (8)
C16	0.3903 (3)	0.6153 (3)	0.4047 (3)	0.0446 (10)
H16	0.4453	0.6518	0.4149	0.054*
C17	0.3955 (3)	0.5171 (3)	0.3992 (3)	0.0510 (11)
H17	0.4540	0.4876	0.4057	0.061*
C18	0 3143 (3)	0 4625 (3)	0 3840 (3)	0.0447(10)
H18	0.3180	0 3965	0 3798	0.054*
C19	0 2271 (3)	0 5063 (3)	0 3751 (2)	0.0350 (9)
C20	0.3007 (3)	0.7648 (3)	0.3986(2)	0.0361(9)
H20	0.3568	0.7992	0.4063	0.043*
C21	0.1510(2)	0.9574(3)	0.4023(2)	0.0352 (8)
C22	0.1583(2)	1.0639(2)	0.3948(2)	0.0302(8)
C23	0.1992 (3)	1.0033(2)	0.3340(2)	0.0381(9)
H23	0 2259	1 0727	0 2955	0.046*
C24	0.1997 (3)	1 2072 (2)	0.3315 (3)	0.0392 (9)
H24	0.2265	1 2367	0.2896	0.0392 (9)
C25	0.1267 (3)	1 2190 (3)	0.2090 0.4458(3)	0.0386 (9)
H25	0.1036	1 2567	0.4854	0.046*
C26	0.1205 (2)	1 1212 (3)	0.4521(2)	0.040
H26	0.0919	1.0936	0.4935	0.0372 ())
05	0.89687 (19)	0.9980 (2)	0 33618 (19)	0.0566 (8)
HIW	0.9471	0.9752	0 3683	0.085*
H2W	0.9002	1 0018	0.2829	0.085*
06	0 10303 (19)	0 4671 (2)	0.1547(2)	0.0618 (8)
H3W	0.0890	0.4581	0 2031	0.093*
H4W	0.0571	0.4882	0.1161	0.093*
117 11	0.00/1	0.1002	V.11VI	0.075

Atomic displacement parameters $(Å^2)$

	U ¹¹	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U ²³
Hg1	0.03055 (8)	0.02692 (10)	0.04319 (9)	0.00303 (6)	0.01399 (6)	0.00319 (6)
Hg2	0.03092 (8)	0.02783 (10)	0.04418 (9)	0.00243 (6)	0.01377 (6)	0.00243 (6)
C11	0.0326 (5)	0.0563 (7)	0.0615 (7)	0.0070 (4)	0.0225 (5)	0.0088 (5)
Cl2	0.0337 (5)	0.0583 (7)	0.0585 (7)	0.0064 (4)	0.0213 (5)	0.0088 (5)
01	0.0416 (15)	0.0241 (15)	0.0673 (19)	-0.0017 (11)	0.0136 (14)	0.0059 (13)
O2	0.0427 (16)	0.0345 (16)	0.092 (2)	-0.0030 (12)	0.0304 (16)	0.0051 (15)
03	0.0496 (17)	0.0181 (14)	0.074 (2)	0.0002 (12)	0.0163 (14)	0.0048 (14)
O4	0.0429 (16)	0.0295 (16)	0.081 (2)	-0.0021 (12)	0.0254 (15)	0.0056 (14)
N1	0.0407 (18)	0.0175 (16)	0.0423 (18)	0.0007 (13)	0.0085 (15)	0.0004 (13)
N2	0.0329 (16)	0.0204 (17)	0.0505 (19)	-0.0019 (12)	0.0151 (14)	-0.0009 (13)
N3	0.045 (2)	0.026 (2)	0.047 (2)	0.0007 (13)	0.0098 (16)	0.0011 (14)
N4	0.0443 (19)	0.0212 (17)	0.0430 (19)	-0.0063 (14)	0.0108 (15)	-0.0037 (14)
N5	0.0349 (17)	0.0217 (17)	0.0505 (19)	-0.0045 (13)	0.0135 (14)	-0.0018 (14)
N6	0.0408 (18)	0.0281 (19)	0.050 (2)	0.0005 (14)	0.0120 (16)	0.0004 (15)
C1	0.0333 (19)	0.0218 (19)	0.0300 (19)	0.0068 (14)	0.0103 (15)	0.0038 (14)
C2	0.040 (2)	0.028 (2)	0.037 (2)	0.0015 (16)	0.0096 (17)	0.0025 (16)
C3	0.048 (2)	0.025 (2)	0.057 (3)	0.0112 (18)	0.014 (2)	0.0000 (18)
C4	0.042 (2)	0.041 (3)	0.063 (3)	0.0197 (19)	0.010 (2)	0.004 (2)
C5	0.032 (2)	0.035 (2)	0.054 (3)	-0.0009 (16)	0.0046 (18)	0.0005 (18)
C6	0.036 (2)	0.025 (2)	0.034 (2)	0.0047 (15)	0.0097 (16)	-0.0003 (15)
C7	0.037 (2)	0.025 (2)	0.038 (2)	-0.0028 (15)	0.0117 (17)	-0.0013 (16)
C8	0.036 (2)	0.024 (2)	0.044 (2)	-0.0021 (16)	0.0075 (17)	0.0039 (16)
C9	0.0301 (18)	0.021 (2)	0.037 (2)	0.0014 (14)	0.0052 (15)	0.0032 (15)
C10	0.037 (2)	0.029 (2)	0.044 (2)	-0.0006 (16)	0.0154 (18)	0.0009 (17)
C11	0.039 (2)	0.030 (2)	0.046 (2)	0.0082 (16)	0.0132 (18)	-0.0025 (18)
C12	0.049 (2)	0.037 (3)	0.042 (2)	-0.0021 (18)	0.0186 (19)	0.0061 (19)
C13	0.052 (2)	0.024 (2)	0.044 (2)	0.0024 (17)	0.0164 (19)	-0.0021 (17)
C14	0.0347 (19)	0.023 (2)	0.0320 (19)	0.0054 (14)	0.0118 (16)	0.0031 (15)
C15	0.038 (2)	0.026 (2)	0.033 (2)	0.0030 (15)	0.0092 (17)	0.0014 (15)
C16	0.034 (2)	0.040 (3)	0.057 (3)	0.0023 (17)	0.0062 (19)	-0.0017 (19)
C17	0.038 (2)	0.041 (3)	0.070 (3)	0.0165 (18)	0.006 (2)	0.005 (2)
C18	0.048 (2)	0.026 (2)	0.058 (3)	0.0120 (18)	0.009 (2)	0.0042 (18)
C19	0.041 (2)	0.023 (2)	0.040 (2)	-0.0009 (16)	0.0077 (17)	0.0044 (16)
C20	0.034 (2)	0.028 (2)	0.046 (2)	-0.0025 (16)	0.0108 (17)	-0.0024 (17)
C21	0.031 (2)	0.032 (2)	0.041 (2)	-0.0013 (16)	0.0066 (17)	-0.0004 (17)
C22	0.0282 (18)	0.023 (2)	0.039 (2)	0.0017 (14)	0.0065 (16)	0.0007 (16)
C23	0.047 (2)	0.034 (2)	0.037 (2)	0.0030 (17)	0.0175 (18)	-0.0026 (17)
C24	0.050 (2)	0.026 (2)	0.046 (2)	-0.0040 (16)	0.0194 (19)	0.0040 (17)
C25	0.040 (2)	0.030 (2)	0.048 (2)	0.0069 (16)	0.0135 (19)	-0.0033 (17)
C26	0.034 (2)	0.040 (2)	0.041 (2)	0.0041 (16)	0.0151 (17)	0.0042 (17)
05	0.0477 (17)	0.068 (2)	0.0577 (19)	0.0121 (15)	0.0196 (15)	0.0016 (15)
06	0.0449 (17)	0.072 (2)	0.071 (2)	0.0108 (15)	0.0201 (16)	-0.0060 (17)

Geometric parameters (Å, °)

Hg1—C1	2.059 (3)	С8—С9	1.501 (5)
Hg1—Cl1	2.3189 (9)	C9—C13	1.390 (5)
Hg2—C14	2.058 (3)	C9—C10	1.389 (5)
Hg2—Cl2	2.3231 (10)	C10—C11	1.379 (5)
O1—C2	1.366 (4)	C10—H10	0.9300
O1—H1	0.8200	C11—H11	0.9300
O2—C8	1.233 (4)	C12—C13	1.379 (5)
O3—C19	1.369 (4)	C12—H12	0.9300
О3—Н3	0.8200	С13—Н13	0.9300
O4—C21	1.237 (4)	C14—C19	1.391 (5)
N1—C7	1.268 (4)	C14—C15	1.402 (5)
N1—N2	1.382 (4)	C15—C16	1.400 (5)
N2—C8	1.354 (4)	C15—C20	1.468 (5)
N2—H2D	0.8600	C16—C17	1.383 (5)
N3—C12	1.340 (5)	C16—H16	0.9300
N3—C11	1.341 (5)	C17—C18	1.379 (5)
N4—C20	1.277 (4)	C17—H17	0.9300
N4—N5	1.386 (4)	C18—C19	1.389 (5)
N5—C21	1.353 (4)	C18—H18	0.9300
N5—H5D	0.8600	С20—Н20	0.9300
N6—C24	1.323 (4)	C21—C22	1.502 (5)
N6—C25	1.345 (4)	C22—C23	1.379 (5)
C1—C2	1.388 (5)	C22—C26	1.402 (5)
C1—C6	1.405 (5)	C23—C24	1.387 (5)
C2—C3	1.397 (5)	С23—Н23	0.9300
C3—C4	1.384 (5)	C24—H24	0.9300
С3—НЗА	0.9300	C25—C26	1.378 (5)
C4—C5	1.389 (5)	C25—H25	0.9300
C4—H4	0.9300	C26—H26	0.9300
C5—C6	1.392 (5)	O5—H1W	0.8363
С5—Н5	0.9300	O5—H2W	0.8344
C6—C7	1.473 (5)	O6—H3W	0.8298
С7—Н7	0.9300	O6—H4W	0.8293
C1—Hg1—Cl1	173.85 (10)	N3—C12—C13	123.8 (3)
C14—Hg2—Cl2	174.67 (10)	N3—C12—H12	118.1
C2—O1—H1	109.5	C13—C12—H12	118.1
С19—О3—Н3	109.5	C12—C13—C9	118.5 (3)
C7—N1—N2	116.7 (3)	C12—C13—H13	120.7
C8—N2—N1	117.6 (3)	C9—C13—H13	120.7
C8—N2—H2D	121.2	C19—C14—C15	118.8 (3)
N1—N2—H2D	121.2	C19—C14—Hg2	119.7 (3)
C12—N3—C11	117.0 (3)	C15—C14—Hg2	121.4 (2)
C20—N4—N5	116.5 (3)	C16—C15—C14	119.8 (3)
C21—N5—N4	118.5 (3)	C16—C15—C20	118.0 (3)
C21—N5—H5D	120.7	C14—C15—C20	122.2 (3)

N4—N5—H5D	120.7	C17—C16—C15	120.2 (4)
C24—N6—C25	117.4 (3)	C17—C16—H16	119.9
C2—C1—C6	119.5 (3)	C15—C16—H16	119.9
C2—C1—Hg1	119.4 (3)	C18—C17—C16	120.2 (4)
C6—C1—Hg1	121.1 (2)	C18—C17—H17	119.9
01-C2-C1	117.6 (3)	С16—С17—Н17	119.9
O1—C2—C3	122.0 (3)	C17—C18—C19	119.9 (4)
C1—C2—C3	120.3 (3)	C17—C18—H18	120.0
C4—C3—C2	120.0 (4)	C19—C18—H18	120.0
С4—С3—НЗА	120.0	O3—C19—C18	121.7 (3)
С2—С3—НЗА	120.0	O3—C19—C14	117.2 (3)
C3—C4—C5	120.2 (3)	C18—C19—C14	121.0 (3)
C3—C4—H4	119.9	N4-C20-C15	120.3(3)
C5—C4—H4	119.9	N4—C20—H20	119.9
C4—C5—C6	120.2 (3)	C15—C20—H20	119.9
C4—C5—H5	119.9	$04-C_{21}-N_{5}$	123.6 (3)
C6-C5-H5	119.9	04-C21-C22	123.0(3) 121.2(3)
C_{5} C_{6} C_{1}	119.8 (3)	N5-C21-C22	1152(3)
C_{5} C_{6} C_{7}	118.3 (3)	C^{23} C^{22} C^{26}	119.2(3) 1184(3)
$C_{1} - C_{6} - C_{7}$	121.9(3)	$C_{23} = C_{22} = C_{20}$	110.4(3) 123 4 (3)
N1 - C7 - C6	121.9(3) 120.6(3)	$C_{25} = C_{22} = C_{21}$	123.4(3) 1183(3)
N1	119.7	$C_{20} = C_{23} = C_{24}$	110.3(3)
C6-C7-H7	119.7	$C_{22} = C_{23} = C_{24}$	120.8
02 - C8 - N2	123 6 (3)	$C_{22} = C_{23} = H_{23}$	120.8
02 - C8 - C9	123.0(3) 121.0(3)	N6-C24-C23	120.0 124.1(3)
$N_2 - C_8 - C_9$	1154(3)	N6-C24-H24	117.9
C_{13} C_{9} C_{10}	118.2 (3)	C_{23} C_{24} H_{24}	117.9
$C_{13} = C_{9} = C_{8}$	110.2(3)	N6-C25-C26	117.9 122.9(3)
C10-C9-C8	125.1(3) 118.7(3)	N6-C25-H25	118.6
$C_{11} - C_{10} - C_{9}$	110.7 (3)	$C_{25} = H_{25}$	118.6
C11_C10_H10	120.5	C_{25} C	118.8 (3)
C9-C10-H10	120.5	$C_{25} = C_{26} = H_{26}$	120.6
N_{3} C_{11} C_{10}	120.5	$C_{23} = C_{20} = H_{20}$	120.0
N3 C11 H11	118 /	$H_1W = 05 + H_2W$	110.1
C10 C11 H11	118 /	$H_{3W} = 05 - H_{2W}$	110.1
	110.4	115 W 00 114 W	111.0
C7—N1—N2—C8	163.9 (3)	C8—C9—C13—C12	-179.9(3)
$C_{20} N_{4} N_{5} C_{21}$	-166.2(3)	Cl2—Hg2—Cl4—Cl9	2.9 (12)
$C_1 = H_{\sigma_1} = C_1 = C_2$	-23.9(11)	Cl2 - Hg2 - Cl4 - Cl5	-1766(8)
$C_1 - Hg_1 - C_1 - C_6$	155.6 (7)	C19 - C14 - C15 - C16	1.2 (5)
$C_{6}-C_{1}-C_{2}-O_{1}$	177.6 (3)	H_{9}^{2} - C14 - C15 - C16	-1793(3)
$H_{g1} - C_{1} - C_{2} - O_{1}$	-28(4)	C19 - C14 - C15 - C20	1787(3)
$C_{6}-C_{1}-C_{2}-C_{3}$	12(5)	H_{92} —C14—C15—C20	-1.8(5)
$H_{\sigma 1}$ $-C_{1}$ $-C_{2}$ $-C_{3}$	-1792(3)	C_{14} C_{15} C_{16} C_{17}	-0.4(6)
01-02-03-04	-1774(4)	$C_{10} = C_{10} = C_{10} = C_{17}$	-1780(4)
$C_1 = C_2 = C_3 = C_4$	-11(6)	$C_{15} = C_{16} = C_{17} = C_{18}$	0.1.(6)
$C_{2} = C_{3} = C_{4} = C_{5}$	0.8(6)	C16 - C17 - C18 - C19	-0.6(6)
$C_2 = C_3 = C_4 = C_5 = C_5$	-0.6(6)	C17 - C18 - C19 - O3	1780(4)
	0.0 (0)	01/01001703	1/0.0 (4)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.8 \ (6) \\ 179.7 \ (3) \\ -1.1 \ (5) \\ 179.4 \ (3) \\ -179.9 \ (3) \\ 0.5 \ (5) \\ 178.0 \ (3) \\ 176.9 \ (3) \\ -4.2 \ (5) \\ -4.8 \ (5) \\ 177.4 \ (3) \\ 145.8 \ (4) \\ -36.3 \ (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.4 \ (6) \\ -178.5 \ (3) \\ 2.1 \ (4) \\ -1.7 \ (5) \\ 178.8 \ (3) \\ -177.1 \ (3) \\ -179.3 \ (4) \\ 3.2 \ (5) \\ 4.8 \ (5) \\ -175.9 \ (3) \\ -143.1 \ (4) \\ 37.6 \ (5) \\ 36.2 \ (5) \end{array}$
C5—C6—C7—N1	176.9 (3)	C14—C15—C20—N4	3.2 (5)
C1—C6—C7—N1	-4.2 (5)	N4—N5—C21—O4	4.8 (5)
N1—N2—C8—O2	-4.8 (5)	N4—N5—C21—C22	-175.9 (3)
N1—N2—C8—C9	177.4 (3)	O4—C21—C22—C23	-143.1 (4)
O2—C8—C9—C13	145.8 (4)	N5-C21-C22-C23	37.6 (5)
N2-C8-C9-C13	-36.3 (5)	O4—C21—C22—C26	36.2 (5)
O2—C8—C9—C10	-33.8 (5)	N5-C21-C22-C26	-143.1 (3)
N2-C8-C9-C10	144.1 (3)	C26—C22—C23—C24	-1.0 (5)
C13—C9—C10—C11	1.5 (5)	C21—C22—C23—C24	178.3 (3)
C8—C9—C10—C11	-178.9 (3)	C25—N6—C24—C23	0.5 (6)
C12—N3—C11—C10	2.0 (5)	C22—C23—C24—N6	1.1 (6)
C9—C10—C11—N3	-2.5 (5)	C24—N6—C25—C26	-2.2 (5)
C11—N3—C12—C13	-0.6 (5)	N6-C25-C26-C22	2.3 (5)
N3—C12—C13—C9	-0.2 (6)	C23—C22—C26—C25	-0.6 (5)
C10-C9-C13-C12	-0.3 (5)	C21—C22—C26—C25	-179.9 (3)

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	H···A	D····A	D—H···A
06—H4 <i>W</i> ····O2 ⁱ	0.83	2.15	2.898 (4)	150
O6—H3 <i>W</i> ···O3	0.83	2.30	3.023 (4)	146
O5—H2 <i>W</i> …O1	0.83	2.17	2.963 (4)	159
O5—H1 <i>W</i> ···O4 ⁱⁱ	0.84	2.06	2.876 (4)	166
N5—H5 <i>D</i> ···O6 ⁱⁱⁱ	0.86	2.04	2.872 (4)	162
N2—H2 D ···O5 ^{iv}	0.86	2.06	2.890 (4)	161
O3—H3···N6 ^v	0.82	1.92	2.737 (4)	171
O1—H1···N3 ^{vi}	0.82	1.93	2.733 (4)	167

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iv) -*x*+3/2, *y*-1/2, -*z*+1/2; (v) *x*, *y*-1, *z*; (vi) *x*, *y*+1, *z*.