Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(4Z,6Z,12Z,14Z)-2,10-Dimethyl-2,8,10,16-tetrahydrodipyrazolo-[3,4-e:3',4'-l][1,2,4,8,9,11]hexaazacyclo-tetradecine-4,12-diamine

Anton V. Dolzhenko, ${ }^{\text {a }}$ Giorgia Pastorin, ${ }^{\text {a }}$ Anna V. Dolzhenko, ${ }^{\text {a }}$ Geok Kheng Tan ${ }^{\text {b }}$ and Lip Lin Koh ${ }^{\text {b }}$
 Science Drive 4, Singapore 117543, Singapore, and ${ }^{\mathbf{b}}$ Department of Chemistry,
Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
Correspondence e-mail: phada@nus.edu.sg
Received 3 June 2009; accepted 10 June 2009
Key indicators: single-crystal X-ray study; $T=223 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.062 ; w R$ factor $=0.151$; data-to-parameter ratio $=14.1$.

The title compound, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{12}$, is a centrosymmetric molecule which comprises of a hexaaza[14]annulene macrocyclic ring fused with two pyrazole rings. The macrocyclic ring is essentially planar, with an r.m.s. deviation of 0.0381 A. The electron pairs of the amino groups are delocalized with the conjugated system of the macrocycle. Strong intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds arranged in an $S_{2}^{2}(10)$ graph-set motif are present in the macrocyclic ring. In the crystal, the amino groups act as donors for intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions with the N atoms of the heterocyclic system, forming a network of two types of extended chains oriented parallel to the [101] and [011] directions. The crystal packing is also stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds formed between pyrazole $\mathrm{C}-\mathrm{H}$ groups and N atoms of the macrocyclic ring, running in the $[10 \overline{1}]$ direction.

Related literature

The title compound was synthesized according to Dolzhenko et al. (2009). For the synthesis and crystal structure studies of related macrocyclic compounds (as nickel complexes), see: Gradinaru et al. (2001); Gerbeleu et al. (1991); Leovac et al. (1993) and references cited therein; Simonov et al. (1988). For a review of the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{12}$	$V=751.51(12) \AA^{3}$
$M_{r}=328.37$	$Z=2$
Monoclinic, $P 2^{\circ} / n$	Mo $K \alpha$ radiation
$a=7.1470(6) \AA$	$\mu=0.10 \mathrm{~mm}^{-1}$
$b=7.5593(7) \AA$	$T=223 \mathrm{~K}$
$c=13.9174(13) \AA$	$0.22 \times 0.08 \times 0.06 \mathrm{~mm}$

$\beta=91.866(3)^{\circ}$
$0.22 \times 0.08 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\text {min }}=0.978, T_{\text {max }}=0.994$

5126 measured reflections
1721 independent reflections
1272 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.151 \quad$ independent and constrained
$S=1.06$ refinement
1721 reflections
$\Delta \rho_{\max }=0.26 \mathrm{e}_{\AA^{-3}}$

122 parameters
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3N $\cdots \mathrm{N} 4$	$0.85(3)$	$2.09(3)$	$2.770(3)$	$136(2)$
N5-H5A N^{i}	$0.88(3)$	$2.33(3)$	$3.065(3)$	$141(2)$
N5-H5B $\cdots \mathrm{N}^{\mathrm{ii}}$	$0.85(3)$	$2.61(3)$	$3.466(3)$	$174(2)$
C3-H3 $\cdots \mathrm{N}^{\mathrm{ii}^{1}}$	0.94	2.51	$3.402(3)$	158

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work is supported by the National Medical Research Council, Singapore (NMRC/NIG/0020/2008) and the National University of Singapore (R-148-050-091-101/133).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2181).

organic compounds

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.
Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. \& Chui, W. K. (2009). Tetrahedron Lett. In the press.
Gerbeleu, N. V., Simonov, Y. A., Arion, V. B., Gredinaru, D. I., Zavodnik, V. E., Indrichan, K. M. \& Malinovskii, T. I. (1991). Russ. J. Inorg. Chem. 36, 52-54.

Gradinaru, J. I., Simonov, Y. A., Arion, V. B., Bourosh, P. N., Popovici, M. A., Bel'skii, V. K. \& Gerbeleu, N. V. (2001). Inorg. Chim. Acta, 313, 30-36.
Leovac, V. M., Češljević, V. I., Gerbeleu, N. V., Simonov, Y. A., Dvorkin, A. A. \& Arion, V. B. (1993). Transition Met. Chem. 18, 309-311.
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Simonov, Y. A., Bourosh, P. N., Arion, V. B., Mazus, M. D. \& Gerbeleu, N. V. (1988). Kristallografiya, 33, 1535-1537.

supporting information

(4Z,6Z,12Z,14Z)-2,10-Dimethyl-2,8,10,16-tetrahydrodipyrazolo[3,4-e:3',4'-/] [1,2,4,8,9,11]hexaazacyclotetradecine-4,12-diamine

Anton V. Dolzhenko, Giorgia Pastorin, Anna V. Dolzhenko, Geok Kheng Tan and Lip Lin Koh

S1. Comment

Macrocyclic compounds, various classes of which have been known for a long time, attract significant attention of the chemists' community due to their unique physico-chemical properties. Several studies on the synthesis and the crystal structure of the planar 1,2,4,8,9,11-hexaaza[14]annulene macrocyclic system have appeared (Gradinaru et al., 2001; Gerbeleu et al., 1991; Leovac et al., 1993; Simonov et al., 1988). However, all of the compounds were prepared and investigated as nickel complexes. Herein, we report the first crystal structure of the ligand with the 1,2,4,8,9,11-hexaaza[14]annulene macrocyclic ring. The title compound is a centrosymmetric molecule, which comprises the hexaaza[14]annulene macrocyclic ring fused with two pyrazole rings. The macrocyclic ring is essentially planar with an r.m.s. deviation of $0.0381 \AA$. The most outlying from the least-squares plane of the marcocyclic ring are atoms C6 (C6A) and $\mathrm{N} 4(\mathrm{~N} 4 \mathrm{~A})$ with deviations of 0.0654 (17) \AA and 0.0577 (18) \AA, respectively. The C6-N5 bond distance (1.340 (3) \AA) indicates delocalization of the electron pair of the N 5 atom, though the amino group adopts a slightly pyramidal geometry with 0.084 (15) \AA deviation of N 5 from the $\mathrm{C} 6 / \mathrm{H} 5 \mathrm{~A} / \mathrm{H} 5 \mathrm{~B}$ mean plane. The strong intramolecular $\mathrm{N} — \mathrm{H} \cdots \mathrm{N}$ hydrogen bonds arranged in a $S_{2}^{2}(10)$ graph-set motif (Bernstein et al., 1995) are present inside the macrocyclic ring.
In the crystal, the amino groups act as donors for intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interaction with the nitrogen atoms N 1 (N1A) and N6 (N6A), thereby forming two types of extended chains. The nitrogen atoms N1 (N1A) are acceptors in $C(6)$ chains running parallel to the [101] direction, while the nitrogen atoms N6 (N6A) are acceptors in $C(5)$ chains oriented in the [011] direction. Together, these hydrogen bonds form a centrosymmetric $R^{4}{ }_{4}(22)$ motif. The crystal packing is also stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, formed between $\mathrm{C} 3-\mathrm{H}(\mathrm{C} 3 \mathrm{~A}-\mathrm{H})$ of the pyrazole rings and nitrogen atoms N 6 (N 6 A) of the macrocyclic ring, running in the [10 $\overline{1}$] direction.

S2. Experimental

The title compound was synthesized according to Dolzhenko et al. (2009). Single crystals suitable for crystallographic analysis were grown by recrystallization from methanol.

S3. Refinement

All the H atoms attached to the carbon atoms were constrained in a riding motion approximation [0.94 \AA for $\mathrm{C}_{\text {aryl }}-\mathrm{H}$ and $0.97 \AA$ for methyl groups; $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {aryl }}\right)$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$] while the N -bound H atoms were located in a difference map and refined freely.

Figure 1
The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Molecular parking in the crystal, viewed along the b axis.

(4Z,6Z,12Z,14Z)-2,10-Dimethyl-2,8,10,16- tetrahydrodipyrazolo[3,4-e:3',4'- I]

[1,2,4,8,9,11]hexaazacyclotetradecine-4,12-diamine

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{12}$
$M_{r}=328.37$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=7.1470$ (6) \AA
$b=7.5593$ (7) \AA
$c=13.9174$ (13) \AA
$\beta=91.866$ (3$)^{\circ}$
$V=751.51(12) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEX CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.978, T_{\text {max }}=0.994$
$F(000)=344$
$D_{\mathrm{x}}=1.451 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 537 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 734 reflections
$\theta=2.9-21.6^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=223 \mathrm{~K}$
Block, colourless
$0.22 \times 0.08 \times 0.06 \mathrm{~mm}$

> 5126 measured reflections
> 1721 independent reflections
> 1272 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.037$
> $\theta_{\max }=27.5^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
> $h=-9 \rightarrow 8$
> $k=-8 \rightarrow 9$
> $l=-18 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.151$
$S=1.06$
1721 reflections
122 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0676 P)^{2}+0.2208 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=0.26 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} *^{*} / U_{\text {eq }}$
N1	$0.5186(2)$	$0.7646(2)$	$0.56112(13)$	$0.0318(5)$
N 2	$0.6151(3)$	$0.6882(2)$	$0.48829(14)$	$0.0331(5)$
N 3	$0.2241(3)$	$0.9124(3)$	$0.56302(13)$	$0.0330(5)$
H 3 N	$0.135(4)$	$0.945(3)$	$0.5254(18)$	$0.041(7)^{*}$
N 4	$0.0731(2)$	$0.9323(2)$	$0.37750(13)$	$0.0329(5)$
N 5	$0.2238(4)$	$0.7748(3)$	$0.25680(16)$	$0.0483(6)$
H5A	$0.125(4)$	$0.790(4)$	$0.218(2)$	$0.050(8)^{*}$
H5B	$0.312(4)$	$0.702(3)$	$0.2455(19)$	$0.040(7)^{*}$
N6	$-0.0650(3)$	$0.9742(3)$	$0.30609(14)$	$0.0417(5)$
C1	$0.3648(3)$	$0.8253(3)$	$0.51677(15)$	$0.0286(5)$
C2	$0.3588(3)$	$0.7909(3)$	$0.41682(15)$	$0.0291(5)$
C3	$0.5250(3)$	$0.7009(3)$	$0.40344(16)$	$0.0331(5)$
H3	0.5666	0.6566	0.3448	0.040^{*}
C4	$0.8014(3)$	$0.6185(3)$	$0.50829(19)$	$0.0416(6)$
H4A	0.8443	0.5566	0.4521	0.062^{*}
H4B	0.7981	0.5372	0.5621	0.062^{*}
H4C	0.8863	0.7151	0.5240	0.062^{*}
C5	$0.2062(3)$	$0.9460(3)$	$0.65708(17)$	$0.0381(6)$
H5	0.3035	0.9088	0.6994	0.046^{*}
C6	$0.2100(3)$	$0.8348(3)$	$0.34691(15)$	$0.0305(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0292(10)$	$0.0340(10)$	$0.0322(10)$	$-0.0006(8)$	$0.0010(8)$	$0.0006(8)$
N2	$0.0271(10)$	$0.0347(10)$	$0.0378(11)$	$0.0028(8)$	$0.0043(8)$	$0.0001(8)$
N3	$0.0293(10)$	$0.0434(11)$	$0.0264(10)$	$0.0052(9)$	$-0.0009(8)$	$-0.0012(9)$
N4	$0.0288(10)$	$0.0427(10)$	$0.0272(9)$	$0.0007(8)$	$0.0014(8)$	$0.0031(8)$
N5	$0.0422(14)$	$0.0694(16)$	$0.0330(12)$	$0.0178(12)$	$-0.0036(10)$	$-0.0110(11)$
N6	$0.0367(11)$	$0.0604(13)$	$0.0279(10)$	$0.0100(10)$	$0.0002(9)$	$0.0016(10)$
C1	$0.0263(11)$	$0.0294(10)$	$0.0301(11)$	$-0.0045(9)$	$0.0009(9)$	$0.0016(9)$
C2	$0.0294(11)$	$0.0293(10)$	$0.0288(11)$	$-0.0029(9)$	$0.0045(9)$	$-0.0006(9)$
C3	$0.0332(12)$	$0.0340(11)$	$0.0324(12)$	$-0.0010(10)$	$0.0064(10)$	$-0.0010(10)$
C4	$0.0289(12)$	$0.0424(13)$	$0.0536(15)$	$0.0047(10)$	$0.0023(11)$	$0.0050(12)$
C5	$0.0341(13)$	$0.0511(14)$	$0.0291(12)$	$0.0049(11)$	$-0.0014(10)$	$0.0035(11)$
C6	$0.0304(12)$	$0.0343(11)$	$0.0269(11)$	$-0.0038(9)$	$0.0035(9)$	$0.0003(9)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 1$	$1.325(3)$	$\mathrm{N} 5-\mathrm{H} 5 \mathrm{~B}$	$0.85(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.372(3)$	$\mathrm{N} 6-\mathrm{C} 5^{\mathrm{i}}$	$1.295(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.330(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.414(3)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.450(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.387(3)$
$\mathrm{N} 3-\mathrm{C} 5$	$1.344(3)$	$\mathrm{C} 2-\mathrm{C} 6$	$1.456(3)$
$\mathrm{N} 3-\mathrm{C} 1$	$1.379(3)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9400

N3-H3N
N4-C6
N4-N6
N5-C6
N5-H5A
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$
C3-N2-N1
C3-N2-C4
N1—N2-C4
C5-N3-C1
C5-N3-H3N
C1-N3-H3N
C6-N4—N6
C6-N5-H5A
C6-N5-H5B
H5A-N5-H5B
C5i-N6-N4
N1-C1—N3
N1-C1-C2
N3-C1-C2
C3-C2-C1
C3-C2-C6
0.85 (3)
1.307 (3)
1.413 (3)
1.340 (3)
0.88 (3)
103.35 (18)
112.65 (18)
127.7 (2)
119.45 (19)
129.7 (2)
116.9 (17)
113.3 (17)
114.22 (18)
116.4 (17)
117.8 (18)

124 (2)
111.17 (19)
123.7 (2)
113.13 (19)
123.2 (2)
102.91 (19)
129.2 (2)

C4-H4A	0.9700
C4-H4B	0.9700
C4-H4C	0.9700
C5-N6 ${ }^{\text {i }}$	1.295 (3)
C5-H5	0.9400
C1-C2-C6	127.84 (19)
N2-C3-C2	108.0 (2)
N2-C3-H3	126.0
C2-C3-H3	126.0
N2-C4-H4A	109.5
N2-C4-H4B	109.5
H4A-C4-H4B	109.5
N2-C4-H4C	109.5
H4A-C4-H4C	109.5
H4B-C4-H4C	109.5
N6-- 5 - ${ }^{\text {- }} 3$	125.0 (2)
N6--C5-H5	117.5
N3-C5-H5	117.5
N4-C6-N5	125.0 (2)
N4-C6-C2	116.68 (19)
N5-C6-C2	118.3 (2)

Symmetry code: (i) $-x,-y+2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 N \cdots \mathrm{~N} 4$	$0.85(3)$	$2.09(3)$	$2.770(3)$	$136(2)$
N5—H5A N^{ii}	$0.88(3)$	$2.33(3)$	$3.065(3)$	$141(2)$
N5—H5B $\cdots \mathrm{N}^{\mathrm{iii}}$	$0.85(3)$	$2.61(3)$	$3.466(3)$	$174(2)$
C3—H3 $\cdots \mathrm{N}^{\mathrm{iii}}$	0.94	2.51	$3.402(3)$	158

Symmetry codes: (ii) $x-1 / 2,-y+3 / 2, z-1 / 2$; (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$.

