Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chlorido(2-formyl-6-hydroxyphenylκC^{1})mercury (II)

Chen Xu, ${ }^{\text {a* }}$ Fei-Fei Cen, ${ }^{\text {b }}$ Zhi-Qiang Wang ${ }^{\text {a }}$ and Yu-Qing Zhang ${ }^{\text {b }}$

${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and ${ }^{\text {b }}$ Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
Correspondence e-mail: xubohan@163.com

Received 1 June 2009; accepted 5 June 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.018 \AA$; R factor $=0.045 ; w R$ factor $=0.114$; data-to-parameter ratio $=15.8$.

In the planar [r.m.s. deviation $0.0265 \AA$] title compound, $\left[\mathrm{Hg}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right) \mathrm{Cl}\right]$, the $\mathrm{Hg}^{\mathrm{II}}$ atom shows a typical linear coordination by a C atom of a benzene ring and a Cl atom. The benzene C atom and the aldehyde O atom chelate the $\mathrm{Hg}^{\mathrm{II}}$ atom by assuming the $\mathrm{Hg} \cdots \mathrm{O}$ separation of 2.817 (9) A as a weak intramolecular coordination bonding distance. The resulting five-membered metallacycle is nearly coplanar with the benzene ring dihedral angle $\left.2.9(1)^{\circ}\right]$. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are present in the crystal structure, resulting in a one-dimensional supramolecular architecture parallel to [201].

Related literature

For historical background and for properties of cyclometallated compounds, see: Dupont et al. (2005); Xu et al. (2009). For the properties of cyclomercurated compounds, see: Wu et al. (2001); Ryabov et al. (2003). For related structure, see: King et al. (2002); Zhou et al. (2005); Hao et al. (2007).

Experimental

Crystal data
$\left[\mathrm{Hg}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right) \mathrm{Cl}\right]$
$M_{r}=357.15$
Monoclinic, $P 2_{1} / c$
$V=867.4(6) \AA^{3}$
$Z=4$
$a=4.7200$ (19) \AA
Mo $K \alpha$ radiation
$b=17.702$ (7) \AA
$\mu=18.00 \mathrm{~mm}^{-1}$
$c=10.506$ (4) \AA
$T=296 \mathrm{~K}$
$\beta=98.839$ (5) $^{\circ}$
$0.08 \times 0.01 \times 0.01 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.327, T_{\text {max }}=0.841$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045 \quad 101$ parameters
$w R\left(F^{2}\right)=0.114 \quad \mathrm{H}$-atom parameters constrained
$S=1.01$
1595 reflections
$\Delta \rho_{\text {max }}=0.94 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.32 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.93	$2.730(12)$	165

Symmetry code: (i) $x-1,-y+\frac{3}{2}, z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Henan Education Department (No. 2009B150019).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2180).

References

Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dupont, J., Consorti, C. S. \& Spencer, J. (2005). Chem. Rev. 105, 2527-2571.
Hao, X. Q., Gong, J. F., Song, W. T., Wu, Y. J. \& Song, M. P. (2007). Inorg. Chem. Commun. 10, 371-375.
King, J. B., Haneline, M. R., Tsunoda, M. \& Gabbai, F. P. (2002). J. Am. Chem. Soc. 124, 9350-9351.
Ryabov, A. D., Soukharev, V. S., Alexandrova, L., Lagadec, R. L. \& Pfeffer, M. (2003). Inorg. Chem. 42, 6598-6600.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wu, Y. J., Huo, S. Q., Gong, J. F., Cui, X. L., Ding, K. L., Du, C. X., Liu, Y. H. \& Song, M. P. (2001). J. Organomet. Chem. 637-639, 27-46.
Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. \& Ji, B. M. (2009). Organometallics, 28, 1909-1916.

Zhou, W. Q., Yang, W., Qiu, L. H., Yong, Y. \& Yu, Z. F. (2005). J. Mol. Struct. 749, 89-95.

supporting information

Acta Cryst. (2009). E65, m754 [doi:10.1107/S160053680902145X]

Chlorido(2-formyl-6-hydroxyphenyl- $\kappa \mathrm{C}^{1}$)mercury(II)

Chen Xu, Fei-Fei Cen, Zhi-Qiang Wang and Yu-Qing Zhang

S1. Comment

Cyclometallated compounds containing a metal-carbon bond stabilized by the intramolecular coordination of one or two neutral atoms have a very rich chemistry and are widely used in synthesis, catalysis and materials (Dupont et al., 2005; Xu et al., 2009). Among them, cyclomercurated compounds are easy to prepare through a $\mathrm{C}-\mathrm{H}$ activation process and their ease in undergoing transmetallation for the synthesis of other organometallic compounds (Wu et al., 2001; Ryabov et al., 2003).
In the planar title compound (Fig. 1), the mercury(II) atom shows a typical linear coordination geometry with a carbon atom of the benzene ring and the chloride atom in trans position. $\mathrm{O} 2-\mathrm{Hg} 1$ distance ($2.817(9) \AA$) is shorter than the sum of van der Waals radii ($3.29 \AA$) of Hg and O (King et al., 2002), indicating the presence of the weak intramolecular coordination, while it is longer than those of the related $\mathrm{Hg}(\mathrm{II})$ complex (Zhou et al., 2005). The $\mathrm{C}-\mathrm{Hg}$ and $\mathrm{Hg}-\mathrm{Cl}$ bond distances are within normal ranges. The $\mathrm{C} 7-\mathrm{Hg} 1-\mathrm{Cl} 1$ angle is $178.1(3)^{\circ}$, slightly smaller than the ideal value of 180° in organic derivatives of mercury(Hao et al., 2007). Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are present in the crystal structure (Table 1), resulting in a one-dimensional supramolecular architecture (Fig.2).

S2. Experimental

The title compound was prepared from the m-hydroxybenzaldehyde with $\mathrm{Hg}(\mathrm{OAc})_{2}$ and subsequent treatment with LiCl and recrystallized from dichloromethane-petroleum ether solution at room temperature to give the desired product as colorless crystals suitable for single-crystal X-ray diffraction (yield 82\%; m.p 442-444 K). IR data (v_max/ cm^{-1}): 3408, 2926, 1651, 1567, 1445, 1291, 1199, 789. NMR $\delta(\mathrm{H}) 7.18(1 H, \mathrm{~d}), 7.45(1 H, \mathrm{t}), 7.52(1 H, \mathrm{~d}), 10.12(1 H, \mathrm{~s}), 12.11(1 H, \mathrm{~m})$.

S3. Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with $\mathrm{C}-\mathrm{H}$ distances constrained to $0.93-0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound with displacement ellipsoids at the 30% probability level.

Figure 2
Partial view of the crystal packing showing the formation of the one-dimensional chain structure formed by the intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Chlorido(2-formyl-6-hydroxyphenyl- $\kappa \mathrm{C}^{1}$)mercury(II)

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Hg}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right) \mathrm{Cl}\right]} \\
& M_{r}=357.15 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=4.7200(19) \AA \\
& b=17.702(7) \AA \\
& c=10.506(4) \AA \\
& \beta=98.839(5)^{\circ} \\
& V=867.4(6) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& F(000)=640 \\
& D_{\mathrm{x}}=2.735 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1175 \text { reflections } \\
& \theta=2.3-22.3^{\circ} \\
& \mu=18.00 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.08 \times 0.01 \times 0.01 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.327, T_{\text {max }}=0.841$

> 5002 measured reflections
> 1595 independent reflections
> 1130 reflections with $I>2 \sigma(l)$
> $R_{\text {int }}=0.050$
> $\theta_{\max }=25.5^{\circ}, \theta_{\min }=2.3^{\circ}$
> $h=-5 \rightarrow 5$
> $k=-21 \rightarrow 21$
> $l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.114$
$S=1.01$
1595 reflections
101 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0564 P)^{2}+3.2348 P\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\text {max }}=0.94 \mathrm{e}_{\AA^{-3}}$
> $\Delta \rho_{\text {min }}=-2.32$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Hg 1	$0.26063(12)$	$0.66539(3)$	$0.30597(6)$	$0.0470(2)$
O1	$-0.160(2)$	$0.6917(5)$	$0.5036(10)$	$0.050(2)$
H1	-0.2948	0.6960	0.5439	0.074^{*}
O2	$0.468(2)$	$0.7878(5)$	$0.1758(9)$	$0.052(2)$
C11	$0.4684(11)$	$0.5580(2)$	$0.2416(5)$	$0.0833(14)$
C1	$0.345(3)$	$0.8403(7)$	$0.2208(14)$	$0.043(3)$
H1A	0.3802	0.8888	0.1928	0.052^{*}
C2	$0.151(3)$	$0.8330(7)$	$0.3132(13)$	$0.042(3)$
C3	$0.039(3)$	$0.8998(7)$	$0.3574(14)$	$0.051(4)$
H3	0.0837	0.9460	0.3235	0.061^{*}
C4	$-0.137(3)$	$0.8974(7)$	$0.4509(13)$	$0.048(4)$
H4	-0.2123	0.9420	0.4788	0.058^{*}

C5	$-0.204(3)$	$0.8276(7)$	$0.5043(13)$	$0.044(3)$
H5	-0.3193	0.8257	0.5683	0.053^{*}
C6	$-0.092(3)$	$0.7611(7)$	$0.4591(12)$	$0.042(3)$
C7	$0.087(2)$	$0.7635(7)$	$0.3644(11)$	$0.032(3)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg 1	$0.0477(4)$	$0.0392(3)$	$0.0583(4)$	$0.0027(3)$	$0.0213(3)$	$-0.0048(3)$
O1	$0.047(6)$	$0.048(5)$	$0.060(6)$	$-0.006(4)$	$0.027(5)$	$0.003(5)$
O2	$0.047(6)$	$0.058(6)$	$0.056(6)$	$-0.003(5)$	$0.028(5)$	$-0.011(5)$
C11	$0.098(4)$	$0.044(2)$	$0.117(4)$	$0.016(2)$	$0.045(3)$	$-0.010(2)$
C1	$0.033(7)$	$0.043(7)$	$0.054(8)$	$-0.002(6)$	$0.007(6)$	$0.005(7)$
C2	$0.029(6)$	$0.053(8)$	$0.043(7)$	$-0.008(6)$	$0.007(6)$	$0.000(6)$
C3	$0.058(9)$	$0.034(7)$	$0.070(10)$	$0.012(6)$	$0.038(8)$	$0.012(7)$
C4	$0.056(9)$	$0.035(7)$	$0.056(9)$	$0.006(6)$	$0.012(7)$	$-0.010(6)$
C5	$0.040(8)$	$0.053(8)$	$0.044(8)$	$0.005(7)$	$0.020(6)$	$-0.007(7)$
C6	$0.027(7)$	$0.054(8)$	$0.045(8)$	$-0.012(6)$	$0.007(6)$	$0.000(6)$
C7	$0.023(6)$	$0.043(7)$	$0.026(6)$	$-0.004(5)$	$-0.008(5)$	$0.001(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Hg} 1-\mathrm{C} 7$	2.052 (12)	C2-C3	1.403 (17)
$\mathrm{Hg} 1-\mathrm{Cl} 1$	2.288 (4)	C3-C4	1.382 (17)
O1-C6	1.370 (14)	C3-H3	0.9300
$\mathrm{O} 1-\mathrm{H} 1$	0.8200	C4-C5	1.412 (18)
O2-C1	1.229 (14)	C4-H4	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.440 (18)	C5-C6	1.402 (17)
C1-H1A	0.9300	C5-H5	0.9300
$\mathrm{C} 2-\mathrm{C} 7$	1.394 (16)	C6-C7	1.403 (16)
C7- $\mathrm{Hg} 1-\mathrm{Cl} 1$	178.1 (3)	C3-C4-H4	119.9
C6-O1-H1	109.5	C5-C4-H4	119.9
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	125.4 (12)	C6-C5-C4	118.9 (11)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	117.3	C6-C5-H5	120.6
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	117.3	C4-C5-H5	120.6
C7-C2-C1	122.4 (12)	O1-C6-C7	117.8 (11)
C7-C2-C3	120.1 (12)	O1-C6-C5	121.2 (11)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	117.3 (11)	C7-C6-C5	121.0 (12)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.6 (12)	C2-C7-C6	119.2 (11)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.7	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{Hg} 1$	120.8 (9)
C2-C3-H3	119.7	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{Hg} 1$	119.9 (9)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	120.2 (11)		
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	2 (2)	C3-C2-C7-C6	0.8 (19)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	177.6 (14)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{Hg} 1$	-1.9 (18)
C7-C2-C3-C4	-1 (2)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{Hg} 1$	-177.8 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-176.7 (14)	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	177.3 (12)

supporting information

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$-1.1(19)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-1(2)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{Hg} 1$	$-4.2(16)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1$	$-177.0(12)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{Hg} 1$	$177.4(10)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$1(2)$	$\mathrm{C} 1-\mathrm{Hg} 1-\mathrm{C} 7-\mathrm{C} 2$	$46(10)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$176.6(12)$	$\mathrm{C} 11-\mathrm{Hg} 1-\mathrm{C} 7-\mathrm{C} 6$	$-132(10)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.93	$2.730(12)$	165

Symmetry code: (i) $x-1,-y+3 / 2, z+1 / 2$.

