Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Methoxybenzohydrazide

Uzma Ashiq, ${ }^{\text {a }}$ R Rifat Ara Jamal, ${ }^{\text {a }}$ Muhammad Nawaz
Tahir, ${ }^{\text {b }}$ Sammer Yousuf ${ }^{c}$ and Islam Ullah Khan ${ }^{\text {d }}$

${ }^{\text {a}}$ Department of Chemistry, University of Karachi, Karachi 75270, Pakistan,
${ }^{\mathbf{b}}$ Department of Physics, University of Sargodah, Sagodah, Pakistan, ${ }^{\text {c }}$ HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and ${ }^{\text {d Department of Chemistry, }}$ Government College University, Lahore, Pakistan
Correspondence e-mail: uzzmma@yahoo.com

Received 28 May 2009; accepted 4 June 2009

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.043 ; w R$ factor $=0.147$; data-to-parameter ratio $=10.8$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$, is stabilized by three intermolecular hydrogen bonds of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ types. Two intramolecular interactions of the $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ types are also observed.

Related literature

For related structures see: Ashiq, Jamal et al. (2008); Jamal et al. (2008), Kallel et al. (1992); Saraogi et al. (2002); For the biological activity of hydrazides, see: Ara et al. (2007); Ashiq, Ara et al. (2008); El-Emam et al. (2004); Maqsood et al. (2006).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=166.18$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=3.9887$ (1) A
$b=6.1487$ (2) \AA
$c=32.8919(9) \AA$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\min }=0.979, T_{\max }=0.992$
$V=806.68(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.22 \times 0.12 \times 0.10 \mathrm{~mm}$

17597 measured reflections
1288 independent reflections 1052 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.147 \quad$ independent and constrained
$S=1.03$ refinement
1288 reflections
119 parameters

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.83(4)$	$2.16(4)$	$2.961(3)$	$162(3)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	$0.92(5)$	$2.42(4)$	$2.729(2)$	$100(3)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {ii }}$	$0.92(5)$	$2.44(4)$	$3.026(2)$	$122(3)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\text {iii }}$	$0.93(4)$	$2.07(4)$	$2.991(2)$	$170(4)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1$	0.93	2.47	$2.781(3)$	100
Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{3}{2},-z ;$ (ii) $x+\frac{1}{2},-y+\frac{5}{2},-z ;$ (iii) $x-\frac{1}{2},-y+\frac{5}{2},-z$				

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Higher Education Commission Pakistan for providing the diffractometer at GCU, Lahore, and BANA International for their support in collecting the crystallographic data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2163).

References

Ara, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. \& Choudhary, M. I. (2007). Chem. Biodivers. 4, 58-71.

Ashiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. \& Choudhary, M. I. (2008). Chem. Biodivers. 5, 82-92.

Ashiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. \& Tahir, M. N. (2008). Anal. Sci X, 24, 103-104.
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. \& Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. \& Khan, I. U. (2008). Acta Cryst. E64, o2188.
Kallel, A., Amor, B. H., Svoboda, I. \& Fuess, H. (1992). Z. Kristallogr. 198, 137-140.
Maqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., MahroofTahir, M. \& Supuran, C. T. (2006). J. Enz. Inhib. Med. Chem. 21, 37-42.
Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. \& Guru Row, T. N. (2002). Acta Cryst. E58, o1341-o1342.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1551 [doi:10.1107/S1600536809021345]

4-Methoxybenzohydrazide

Uzma Ashiq, Rifat Ara Jamal, Muhammad Nawaz Tahir, Sammer Yousuf and Islam Ullah Khan

S1. Comment

Hydrazides are known to have different biological activities and have been used for the synthesis of various heterocyclic compounds (El-Emam et al., 2004). The title compound was found to be antileishmanial, antibacterial and antifungal (Maqsood et al., 2006). Vanadium complex of the title compound was found to ba a good inhibitor of urease (Ara et al., 2007) and alpha-glucosidase (Ashiq, Ara et al., 2008). In order to study the biological behaviour of 4-methoxybenzhydrazide and to investigate the change in activity due to complexation with vanadium center, we have synthesized (I) and report its crystal structure in this paper. The structures of benzhydrazide (Kallel et al., 1992), para-chloro (Saraogi et al., 2002), para-bromo (Ashiq, Jamal et al., 2008) and para-iodo (Jamal et al., 2008) analogues of (I) have already been reported.

The crystal structure of the title compound is presented in Fig. 1. The bond distances and bond angles in (I) are similar to the corresponding distances and angles reported in the structures quoted above. The phenyl group ($\mathrm{C} 2-\mathrm{C} 7$) and hydrazide moiety, $\mathrm{O} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1$, in (I) are each planar with a dihedral angle between their least square planes being $7.08(14) \%$. In the crystal structure, the molecules of I are linked by the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2, \mathrm{~N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1$ and $\mathrm{N} 2-$ $\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1$ intermolecular hydrogen bonds to form chains (details are given in Table 1, Fig 2). The geometry of 4-methoxybenzhydrazide is stabilized by $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1$ and $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1$ intramolecular hydrogen interactions.

S2. Experimental

All reagent-grade chemicals were obtained from Aldrich and Sigma Chemical companies and were used without further purification. To a solution of ethyl-4-methoxybenzoate ($3.6 \mathrm{~g}, 20 \mathrm{mmol}$) in 75 ml ethanol, hydrazine hydrate ($5.0 \mathrm{ml}, 100$ mmol) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford 4-methoxybenzhydrazide (yield 64\%). (Maqsood et al., 2006).

S3. Refinement

An absolute structure was not established due to lack of sufficient anomalous dispersion effects. Therefore, Friedel pairs (236) were merged. H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl Catoms and constrained to ride on their parent atoms. The H -atoms attached to N 1 and N 2 atoms were taken from Fourier synthesis and their coordinates were refined. The thermal parameter of H -atoms were: $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}($ methyl C) and $1.2 \mathrm{U}_{\mathrm{eq}}$ (the rest of the parent atoms).

Figure 1
The molecular structure of (I) with displacement ellipsoids drawn at 50% probability level. The dashed lines indicates the intramolecular interactions.

Figure 2

A packing diagram of (I). Hydrogen bonds are shown by dashed lines.

4-Methoxybenzohydrazide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=166.18$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=3.9887$ (1) \AA
$b=6.1487$ (2) \AA
$c=32.8919(9) \AA$
$V=806.68(4) \AA^{3}$
$Z=4$
$F(000)=352$
$D_{\mathrm{x}}=1.368 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1288 reflections
$\theta=1.2-28.7^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle, colourless
$0.22 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 7.40 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)

> 17597 measured reflections
> 1288 independent reflections
> 1052 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.035$
> $\theta_{\max }=28.7^{\circ}, \theta_{\min }=1.2^{\circ}$
> $h=-5 \rightarrow 5$
> $k=-8 \rightarrow 8$
> $l=-44 \rightarrow 44$
$T_{\text {min }}=0.979, T_{\text {max }}=0.992$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.147$
$S=1.03$
1288 reflections
119 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1097 P)^{2}+0.027 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3}$
> Extinction correction: SHELXL97 (Sheldrick, \quad 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.058(15)$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
O1	$0.9709(4)$	$1.2503(3)$	$0.05610(4)$	$0.0459(5)$
O2	$0.2810(5)$	$0.8530(3)$	$0.21180(5)$	$0.0600(6)$
N1	$0.8024(5)$	$0.9374(3)$	$0.02782(5)$	$0.0384(5)$
N2	$0.9644(5)$	$0.9802(3)$	$-0.00972(5)$	$0.0376(5)$
C1	$0.8272(5)$	$1.0744(3)$	$0.05921(5)$	$0.0320(5)$
C2	$0.6754(5)$	$1.0039(3)$	$0.09850(5)$	$0.0325(5)$
C3	$0.5396(7)$	$0.8001(4)$	$0.10519(6)$	$0.0427(6)$
C4	$0.4053(6)$	$0.7433(4)$	$0.14251(6)$	$0.0436(7)$
C5	$0.4061(6)$	$0.8925(4)$	$0.17369(6)$	$0.0415(6)$
C6	$0.5410(8)$	$1.0960(4)$	$0.16743(6)$	$0.0505(8)$
C7	$0.6748(6)$	$1.1507(4)$	$0.13034(7)$	$0.0441(7)$
C8	$0.1357(9)$	$0.6492(5)$	$0.21996(8)$	$0.0627(10)$
H1	$0.694(10)$	$0.822(6)$	$0.0282(9)$	0.0752^{*}
H2A	$1.157(12)$	$1.055(6)$	$-0.0037(11)$	0.0940^{*}
H2B	$0.832(12)$	$1.068(6)$	$-0.0262(10)$	0.0940^{*}

H3	0.53858	0.69896	0.08416	0.0513^{*}
H4	0.31513	0.60542	0.14648	0.0523^{*}
H6	0.54148	1.19702	0.18846	0.0606^{*}
H7	0.76633	1.28832	0.12659	0.0529^{*}
H8A	0.05128	0.64745	0.24729	0.0940^{*}
H8B	0.30181	0.53746	0.21686	0.0940^{*}
H8C	-0.04508	0.62368	0.20129	0.0940^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0595(10)$	$0.0336(8)$	$0.0445(8)$	$-0.0109(8)$	$0.0000(7)$	$0.0023(7)$
O2	$0.0770(12)$	$0.0652(12)$	$0.0379(9)$	$0.0043(11)$	$0.0195(8)$	$0.0041(8)$
N1	$0.0521(10)$	$0.0313(9)$	$0.0317(8)$	$-0.0065(9)$	$0.0048(7)$	$0.0016(7)$
N2	$0.0451(9)$	$0.0348(10)$	$0.0329(8)$	$0.0030(8)$	$0.0062(7)$	$0.0040(7)$
C1	$0.0350(9)$	$0.0285(9)$	$0.0325(9)$	$0.0020(8)$	$-0.0038(7)$	$0.0031(8)$
C2	$0.0352(9)$	$0.0317(9)$	$0.0306(9)$	$0.0028(8)$	$-0.0027(7)$	$0.0018(8)$
C3	$0.0593(12)$	$0.0363(11)$	$0.0326(9)$	$-0.0064(11)$	$0.0021(10)$	$-0.0029(8)$
C4	$0.0544(12)$	$0.0384(12)$	$0.0379(10)$	$-0.0068(11)$	$0.0031(9)$	$0.0044(9)$
C5	$0.0457(10)$	$0.0469(13)$	$0.0318(10)$	$0.0076(10)$	$0.0033(8)$	$0.0031(9)$
C6	$0.0708(16)$	$0.0418(13)$	$0.0390(11)$	$0.0024(13)$	$0.0038(11)$	$-0.0096(10)$
C7	$0.0566(12)$	$0.0318(11)$	$0.0438(11)$	$-0.0025(11)$	$0.0022(11)$	$-0.0023(9)$
C8	$0.0665(16)$	$0.0722(19)$	$0.0493(14)$	$0.0039(17)$	$0.0159(12)$	$0.0163(13)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C1	1.228 (3)	C3-C4	1.384 (3)
$\mathrm{O} 2-\mathrm{C} 5$	1.371 (3)	C4-C5	1.376 (3)
O2-C8	1.407 (4)	C5-C6	1.378 (4)
N1-N2	1.418 (2)	C6-C7	1.373 (3)
N1-C1	1.336 (2)	C3-H3	0.9300
N1-H1	0.83 (4)	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
N2-H2A	0.92 (5)	C6-H6	0.9300
N2-H2B	0.93 (4)	C7-H7	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.492 (2)	C8-H8A	0.9600
C2-C7	1.383 (3)	C8-H8B	0.9600
C2-C3	1.383 (3)	C8-H8C	0.9600
C5-O2-C8	118.84 (19)	O2-C5-C6	116.1 (2)
N2-N1-C1	121.47 (17)	C5-C6-C7	120.5 (2)
C1-N1-H1	124 (2)	C2-C7-C6	120.9 (2)
N2-N1-H1	114 (2)	C2-C3-H3	119.00
N1—N2-H2B	111 (3)	C4-C3-H3	119.00
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	108 (4)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.00
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	107 (2)	C5-C4-H4	120.00
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	121.69 (17)	C5-C6-H6	120.00
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	117.14 (17)	C7-C6-H6	120.00
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	121.17 (16)	C2-C7-H7	120.00

supporting information

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$117.86(18)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	120.00
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$118.06(18)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.00
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$124.08(16)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.00
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.4(2)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.00
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.5(2)$	$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.00
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	$124.2(2)$	$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.00
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.7(2)$	$\mathrm{H} 8 \mathrm{~B}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.00
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	$-1.3(4)$	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.2(4)$
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 6$	$179.2(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-179.6(2)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$5.3(3)$	$-0.5(4)$	
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-174.18(18)$	$\mathrm{C} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$0.1(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	$-179.7(2)$	
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.2(4)$	
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$179.6(2)$	
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.1(4)$	
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$0.4(4)$	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.83(4)$	$2.16(4)$	$2.961(3)$	$162(3)$
$\mathrm{N} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1$	$0.92(5)$	$2.42(4)$	$2.729(2)$	$100(3)$
$\mathrm{N} 2 — \mathrm{H} 2 A \cdots 1^{\mathrm{ii}}$	$0.92(5)$	$2.44(4)$	$3.026(2)$	$122(3)$
$\mathrm{N} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{iii}}$	$0.93(4)$	$2.07(4)$	$2.991(2)$	$170(4)$
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{O} 1$	0.93	2.47	$2.781(3)$	100

Symmetry codes: (i) $x-1 / 2,-y+3 / 2,-z$; (ii) $x+1 / 2,-y+5 / 2,-z$; (iii) $x-1 / 2,-y+5 / 2,-z$.

