organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Hydroxy-1,2-dimethoxyanthraguinone

Yong-Jun Xu,* Xiao-Xi Yang and Hong-Bin Zhao

College of Chemistry and Environmental Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China Correspondence e-mail: hnllxyj@yahoo.com.cn

Received 15 May 2009; accepted 4 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.136; data-to-parameter ratio = 10.4.

The title compound, C₁₆H₁₂O₅, was isolated from Morinda officinalis How. The anthraquinone ring system is almost planar, the dihedral angle between the two benzene rings being 1.12 (4)°. In the crystal structure, $O-H \cdots O$ and C-H...O hydrogen bonds link the moleculesin the crystallographic *a*-axis direction. Weak π - π stacking interactions [centroid-centroid distance between symmetry-related benzene rings of 3.699 (4) Å] are also present.

Related literature

For the biological properties of anthraquinone derivatives, see: Kim et al. (2005) and of the title compound, see: Ali et al. (2000); Jia et al. (2007); Wu et al. (2003). For related structures, see: Ng et al. (2005); Boonnak et al. (2005). For the structure of another compound isolated from Morinda officinalis How., see: Liu & Jiao (2009). For reference structural data, see: Allen et al. (1987).

Experimental

Crystal data

$C_{16}H_{12}O_5$	$b = 8.0387 (18) \text{\AA}$
$M_r = 284.26$	c = 11.802 (3) Å
Triclinic, $P\overline{1}$	$\alpha = 95.386 \ (3)^{\circ}$
a = 7.4087 (17) Å	$\beta = 92.357 \ (3)^{\circ}$

$\gamma = 115.712 \ (2)^{\circ}$
V = 627.9 (3) Å ³
Z = 2
Mo $K\alpha$ radiation

Data collection

Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.967, \ T_{\max} = 0.978$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.136$	independent and constrained
S = 1.06	refinement
2182 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
210 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C25-H5\cdotsO1^{i}\\ O8-H6\cdotsO1^{i} \end{array}$	0.97 (3) 0.88 (3)	2.57 (3) 1.91 (3)	3.256 (2) 2.781 (2)	128 (2) 168 (3)
	0.00 (5)	1.91 (5)	2.701 (2)	10

 $\mu = 0.11 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.013$

 $0.30 \times 0.20 \times 0.20$ mm

3200 measured reflections

2182 independent reflections 1639 reflections with $I > 2\sigma(I)$

Symmetry code: (i) x, y - 1, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge the Guangdong Province Natural Science Foundation (grant No. 7007735) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2164).

References

- Ali, A. M., Ismail, N. H., Mackeen, M. M., Yazan, L. S., Mohamed, S. M., Ho, A. S. H. & Lajis, N. H. (2000). Pharm. Biol. 38, 298-301.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Jin, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Boonnak, N., Chantrapromma, S., Fun, H.-K., Anjum, S., Ali, S., Atta-ur-Rahman, & Karalai, C. (2005). Acta Cryst. E61, 0410-0412.
- Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jia, Z. B., Tao, F., Guo, L., Tao, G. L. & Ding, X. L. (2007). LWT Food Sci. Technol. 40, 1072-1077.
- Kim, I. T., Park, H. J., Nam, J. H., Park, Y. M., Won, J. H., Choi, J., Choe, B. K. & Lee, K. T. (2005). J. Pharm. Pharmacol. 57, 607-615.
- Liu, Z.-M. & Jiao, Y.-Q. (2009). Acta Cryst. E65, o1523.
- Ng, S.-L., Razak, I. A., Fun, H.-K., Boonsri, S., Chantrapromma, S. & Prawat, U. (2005). Acta Cryst. E61, 03656-03658.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, T. S., Lin, D. M., Shi, L. S., Damu, A. G., Kuo, P. C. & Kuo, Y. H. (2003). Chem. Pharm. Bull. 51, 948-950.

supporting information

Acta Cryst. (2009). E65, o1524 [doi:10.1107/S1600536809021266]

3-Hydroxy-1,2-dimethoxyanthraquinone

Yong-Jun Xu, Xiao-Xi Yang and Hong-Bin Zhao

S1. Comment

Anthraquinone derivatives extracted from the roots of Morinda officinalis How. (most common familiar name in China: Bajitian) have been used to support the entire body treating a wide range of symptoms, including poor digestion, high blood pressure and immune deficiencies in China since ancient times. Recent studies have demonstrated that they have multiple pharmacological actions such as anti-HIV, anti-inflammatory, antinociceptive, antimicrobial, antioxidant, antihepatotoxic and antimutagenic activities (Kim et al., 2005). One component found in Morinda officinalis How., 1,2-dimethoxy-3-hydroxyanthraquinone, exhibits a variety of potent biological effects such as antiviral and antimicrobial activities (Ali et al., 2000), antioxidant activity (Jia et al., 2007) and cyototoxic activity (Wu et al., 2003). We report here the structure of the title compound.

In the title compound (Fig. 1), the C-C bond lengths show normal values (Allen et al., 1987), and the C-O and C=O bond lengths are comparable to those observed in similar structures (Ng et al., 2005; Boonnak et al., 2005). The anthraquinone ring system is substantially planar, the dihedral angle between the two benzene rings being 1.12 (4)°. The molecules are self-assembled by C—H···O and O—H···.O hydrogen bonding interactions (Table 1) into a supramolecular network. The crystal structure is further stabilized by weak π - π interactions along the a axis (Fig. 2) between the anthraquinone ring systems of the stacked molecules. The centroid-to-centriod distances between related benzene rings of the stacked molecules is 3.699 (4)Å, thus indicating weak π - π contacts.

S2. Experimental

The roots of *Morinda officinalis How*. (1000 g) were shattered to powder (about 30 mesh) and extracted with 85% ethanol (4000 ml) for 2 h with stirring. The extraction procedure was repeated three times. The extracts were combined and evaporated to dryness under reduced pressure at 333 K, the residue was redissolved in water (800 ml). Then the enriched extracts were extracted with chloroform three times (800 ml each), the chlorofrom solutions were combined and evaporated to dryness under reduced pressure at 333 K, 6.80 g crude extracts were obtained. The crude extracts were separated with n-hexane-ethyl acetate-methanol-water (6 : 4 : 5 : 5, v/v) using high-speed counter-current chromatography (HSCCC) to obtain 1,2-dimethoxy-3-hydroxyanthraquinone (yield 20.3 mg). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

S3. Refinement

Methyl H atoms were placed at calculated positions and treated as riding on the parent C atoms with C—H = 0.96 °H and $U_{iso}(H) = 1.2U_{eq}(C)$. Coordinates of all other hydrogens were refined but their U_{iso} values were fixed at 0.105 Å².

Figure 1

The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Figure 2

The molecular packing showing the hydrogen bonding interactions as broken lines.

3-Hydroxy-1,2-dimethoxyanthraquinone

Crystal data	
$C_{16}H_{12}O_5$	$\beta = 92.357 \ (3)^{\circ}$
$M_r = 284.26$	$\gamma = 115.712 \ (2)^{\circ}$
Triclinic, $P\overline{1}$	V = 627.9 (3) Å ³
Hall symbol: -P 1	Z = 2
a = 7.4087 (17) Å	F(000) = 296.0
b = 8.0387 (18) Å	$D_{\rm x} = 1.503 {\rm ~Mg} {\rm ~m}^{-3}$
c = 11.802 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 95.386 \ (3)^{\circ}$	Cell parameters from 1305 reflections

 $\theta = 3.1 - 27.3^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm r}$

Re

$T_{\min} = 0.967, \ T_{\max} = 0.978$	$l = -14 \rightarrow 11$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.136$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
2182 reflections	and constrained refinement
210 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0736P)^2 + 0.1017P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.25$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Block, yellow

 $R_{\rm int} = 0.013$

 $h = -7 \rightarrow 8$ $k = -9 \rightarrow 9$

 $0.30 \times 0.20 \times 0.20$ mm

3200 measured reflections

 $\theta_{\rm max} = 25.0^\circ, \, \theta_{\rm min} = 2.8^\circ$

2182 independent reflections

1639 reflections with $I > 2\sigma(I)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.2605 (2)	0.79647 (18)	0.14638 (13)	0.0605 (4)	
O2	0.2359 (2)	0.18299 (17)	-0.09353 (11)	0.0560 (4)	
06	0.2197 (2)	0.3418 (2)	0.43860 (11)	0.0597 (4)	
07	0.2427 (2)	0.64028 (18)	0.34133 (12)	0.0547 (4)	
08	0.1946 (2)	0.03307 (19)	0.30888 (12)	0.0582 (4)	
C15	0.2626 (3)	0.4756 (3)	-0.21242 (16)	0.0463 (5)	
C16	0.2985 (3)	0.7870 (3)	-0.20248 (19)	0.0550 (5)	
C17	0.2839 (3)	0.6275 (3)	-0.26601 (19)	0.0546 (5)	
C18	0.2898 (3)	0.7953 (3)	-0.08620 (19)	0.0474 (5)	
C19	0.2686 (2)	0.6434 (2)	-0.03041 (15)	0.0379 (4)	
C20	0.2551 (2)	0.4817 (2)	-0.09503 (15)	0.0372 (4)	
C21	0.2574 (3)	0.6545 (2)	0.09545 (16)	0.0403 (4)	

C22	0.2422 (2)	0.4946 (2)	0.15295 (15)	0.0368 (4)	
C23	0.2284 (2)	0.3315 (2)	0.08725 (14)	0.0350 (4)	
C24	0.2378 (2)	0.3203 (2)	-0.03826 (15)	0.0377 (4)	
C25	0.2095 (3)	0.1777 (2)	0.13812 (16)	0.0399 (4)	
C26	0.2058 (3)	0.1783 (2)	0.25489 (15)	0.0425 (4)	
C27	0.2176 (3)	0.3354 (3)	0.32218 (15)	0.0440 (5)	
C28	0.2364 (3)	0.4919 (2)	0.27130 (15)	0.0405 (4)	
C29	0.0304 (4)	0.2459 (4)	0.4794 (2)	0.0804 (8)	
H29A	-0.0439	0.3180	0.4754	0.097*	
H29B	0.0483	0.2264	0.5573	0.097*	
H29C	-0.0422	0.1278	0.4333	0.097*	
C34	0.4369 (4)	0.7632 (3)	0.3940 (2)	0.0703 (7)	
H34A	0.4862	0.6969	0.4403	0.084*	
H34B	0.4295	0.8636	0.4412	0.084*	
H34C	0.5266	0.8121	0.3363	0.084*	
H1	0.249 (4)	0.360 (4)	-0.255 (2)	0.105*	
H4	0.298 (5)	0.897 (4)	-0.044 (3)	0.105*	
H3	0.323 (4)	0.897 (4)	-0.239 (2)	0.105*	
H2	0.292 (4)	0.616 (4)	-0.345 (3)	0.105*	
Н5	0.198 (4)	0.069 (4)	0.089 (3)	0.105*	
H6	0.199 (5)	-0.044 (4)	0.253 (3)	0.105*	

Atomic displacement parameters $(Å^2)$

U /11					
U	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0852 (11)	0.0373 (7)	0.0687 (9)	0.0365 (7)	0.0148 (8)	-0.0003 (6)
0.0889 (11)	0.0383 (7)	0.0479 (8)	0.0358 (7)	0.0051 (7)	-0.0014 (6)
0.0681 (10)	0.0683 (10)	0.0419 (8)	0.0301 (8)	0.0044 (7)	0.0023 (7)
0.0608 (9)	0.0478 (8)	0.0564 (8)	0.0291 (7)	0.0023 (7)	-0.0142 (6)
0.0884 (11)	0.0506 (9)	0.0507 (8)	0.0423 (8)	0.0151 (7)	0.0147 (6)
0.0462 (11)	0.0455 (11)	0.0489 (11)	0.0220 (9)	0.0019 (8)	0.0054 (8)
0.0524 (12)	0.0451 (12)	0.0689 (14)	0.0202 (10)	0.0041 (10)	0.0208 (10)
0.0569 (13)	0.0551 (12)	0.0534 (12)	0.0247 (10)	0.0048 (10)	0.0143 (10)
0.0420 (11)	0.0346 (10)	0.0673 (13)	0.0183 (9)	0.0037 (9)	0.0076 (9)
0.0293 (9)	0.0313 (9)	0.0540 (11)	0.0144 (7)	0.0026 (7)	0.0046 (8)
0.0295 (9)	0.0320 (9)	0.0501 (11)	0.0140 (7)	0.0020(7)	0.0032 (7)
0.0349 (9)	0.0291 (9)	0.0575 (11)	0.0161 (8)	0.0050 (8)	-0.0014 (8)
0.0312 (9)	0.0307 (9)	0.0491 (11)	0.0152 (7)	0.0045 (7)	0.0000(7)
0.0310 (9)	0.0276 (9)	0.0460 (10)	0.0135 (7)	0.0034 (7)	-0.0005 (7)
0.0347 (9)	0.0289 (9)	0.0480 (10)	0.0140 (7)	0.0012 (7)	-0.0004 (7)
0.0419 (10)	0.0316 (9)	0.0476 (11)	0.0179 (8)	0.0055 (8)	0.0020 (7)
0.0451 (11)	0.0388 (10)	0.0472 (11)	0.0213 (9)	0.0067 (8)	0.0071 (8)
0.0439 (11)	0.0496 (11)	0.0400 (10)	0.0228 (9)	0.0043 (8)	0.0008 (8)
0.0363 (10)	0.0386 (10)	0.0470 (10)	0.0191 (8)	0.0027 (7)	-0.0060 (8)
0.0866 (18)	0.102 (2)	0.0514 (13)	0.0379 (16)	0.0221 (12)	0.0158 (13)
0.0775 (16)	0.0484 (12)	0.0745 (15)	0.0243 (12)	-0.0103 (12)	-0.0172 (11)
	0.0852 (11) 0.0889 (11) 0.0681 (10) 0.0608 (9) 0.0884 (11) 0.0462 (11) 0.0524 (12) 0.0569 (13) 0.0420 (11) 0.0293 (9) 0.0295 (9) 0.0312 (9) 0.0312 (9) 0.0312 (9) 0.0347 (9) 0.0419 (10) 0.0451 (11) 0.0439 (11) 0.0363 (10) 0.0866 (18) 0.0775 (16)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0852 (11) $0.0373 (7)$ $0.0687 (9)$ $0.0889 (11)$ $0.0383 (7)$ $0.0479 (8)$ $0.0681 (10)$ $0.0683 (10)$ $0.0419 (8)$ $0.0608 (9)$ $0.0478 (8)$ $0.0564 (8)$ $0.0884 (11)$ $0.0506 (9)$ $0.0507 (8)$ $0.0462 (11)$ $0.0455 (11)$ $0.0489 (11)$ $0.0524 (12)$ $0.0451 (12)$ $0.0689 (14)$ $0.0569 (13)$ $0.0551 (12)$ $0.0534 (12)$ $0.0420 (11)$ $0.0346 (10)$ $0.0673 (13)$ $0.0293 (9)$ $0.0313 (9)$ $0.0540 (11)$ $0.0349 (9)$ $0.0291 (9)$ $0.0501 (11)$ $0.0310 (9)$ $0.0276 (9)$ $0.0460 (10)$ $0.0347 (9)$ $0.0289 (9)$ $0.0476 (11)$ $0.0439 (11)$ $0.0388 (10)$ $0.0472 (11)$ $0.0439 (11)$ $0.0386 (10)$ $0.0470 (10)$ $0.0363 (10)$ $0.0386 (10)$ $0.0470 (10)$ $0.0866 (18)$ $0.102 (2)$ $0.0745 (15)$	0.0852 (11) $0.0373 (7)$ $0.0687 (9)$ $0.0365 (7)$ $0.0889 (11)$ $0.0383 (7)$ $0.0479 (8)$ $0.0358 (7)$ $0.0681 (10)$ $0.0683 (10)$ $0.0419 (8)$ $0.0301 (8)$ $0.0608 (9)$ $0.0478 (8)$ $0.0564 (8)$ $0.0291 (7)$ $0.0884 (11)$ $0.0506 (9)$ $0.0507 (8)$ $0.0423 (8)$ $0.0462 (11)$ $0.0455 (11)$ $0.0489 (11)$ $0.0220 (9)$ $0.0524 (12)$ $0.0451 (12)$ $0.0689 (14)$ $0.0202 (10)$ $0.0569 (13)$ $0.0551 (12)$ $0.0534 (12)$ $0.0247 (10)$ $0.0420 (11)$ $0.0346 (10)$ $0.0673 (13)$ $0.0183 (9)$ $0.0293 (9)$ $0.0313 (9)$ $0.0501 (11)$ $0.0144 (7)$ $0.0295 (9)$ $0.0320 (9)$ $0.0501 (11)$ $0.0140 (7)$ $0.0312 (9)$ $0.0276 (9)$ $0.0460 (10)$ $0.0135 (7)$ $0.0310 (9)$ $0.0276 (9)$ $0.0480 (10)$ $0.0140 (7)$ $0.04419 (10)$ $0.0316 (9)$ $0.0476 (11)$ $0.0140 (7)$ $0.0439 (11)$ $0.0388 (10)$ $0.0472 (11)$ $0.0228 (9)$ $0.0439 (11)$ $0.0386 (10)$ $0.0470 (10)$ $0.0228 (9)$ $0.0363 (10)$ $0.0386 (10)$ $0.0475 (15)$ $0.0243 (12)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Geometric parameters (Å, °)

01—C21	1.230 (2)	C19—C21	1.488 (3)
O2—C24	1.222 (2)	C20—C24	1.475 (2)
O6—C27	1.369 (2)	C21—C22	1.473 (3)
O6—C29	1.407 (3)	C22—C28	1.401 (3)
O7—C28	1.368 (2)	C22—C23	1.421 (2)
O7—C34	1.418 (3)	C23—C25	1.380 (3)
O8—C26	1.355 (2)	C23—C24	1.482 (3)
O8—H6	0.88 (3)	C25—C26	1.379 (3)
C15—C17	1.379 (3)	С25—Н5	0.97 (3)
C15—C20	1.386 (3)	C26—C27	1.394 (3)
С15—Н1	0.98 (3)	C27—C28	1.400 (3)
C16—C18	1.373 (3)	C29—H29A	0.9600
C16—C17	1.382 (3)	C29—H29B	0.9600
С16—Н3	0.97 (3)	C29—H29C	0.9600
С17—Н2	0.94 (3)	C34—H34A	0.9600
C18—C19	1.394 (3)	C34—H34B	0.9600
C18—H4	0.90 (3)	C34—H34C	0.9600
C19—C20	1.405 (2)		
C27—O6—C29	114.93 (16)	C22—C23—C24	121.57 (16)
C28—O7—C34	114.31 (15)	O2—C24—C20	120.49 (16)
С26—О8—Н6	102 (2)	O2—C24—C23	121.23 (16)
C17—C15—C20	120.31 (19)	C20—C24—C23	118.26 (15)
С17—С15—Н1	122.3 (18)	C26—C25—C23	120.99 (16)
С20—С15—Н1	117.3 (18)	С26—С25—Н5	121.2 (18)
C18—C16—C17	120.59 (19)	С23—С25—Н5	117.8 (18)
С18—С16—Н3	119.1 (17)	O8—C26—C25	123.02 (16)
С17—С16—Н3	120.2 (17)	O8—C26—C27	117.56 (16)
C15—C17—C16	120.0 (2)	C25—C26—C27	119.41 (17)
С15—С17—Н2	116.1 (19)	O6—C27—C26	120.69 (17)
С16—С17—Н2	123.9 (19)	O6—C27—C28	119.27 (16)
C16—C18—C19	120.33 (19)	C26—C27—C28	119.98 (17)
C16—C18—H4	122 (2)	O7—C28—C27	117.34 (16)
С19—С18—Н4	118 (2)	O7—C28—C22	121.20 (17)
C18—C19—C20	119.00 (18)	C27—C28—C22	121.44 (15)
C18—C19—C21	119.49 (16)	O6—C29—H29A	109.5
C20-C19-C21	121.50 (16)	O6—C29—H29B	109.5
C15—C20—C19	119.80 (16)	H29A—C29—H29B	109.5
C15—C20—C24	119.84 (16)	O6—C29—H29C	109.5
C19—C20—C24	120.34 (16)	H29A—C29—H29C	109.5
01—C21—C22	123.18 (18)	H29B—C29—H29C	109.5
O1—C21—C19	118.37 (17)	07—C34—H34A	109.5
C22—C21—C19	118.45 (14)	07—C34—H34B	109.5
C28—C22—C23	116.89 (16)	H34A—C34—H34B	109.5
C28—C22—C21	123.33 (15)	07/C34H34C	109.5
C23—C22—C21	119.77 (16)	H34A—C34—H34C	109.5

C25—C23—C22	121.27 (17)	H34B—C34—H34C	109.5
C25—C23—C24	117.15 (15)		
C20 C15 C17 C16	0.1.(2)	C10 C20 C24 C22	2.0.(2)
$C_{20} = C_{13} = C_{17} = C_{16}$	0.1(3)	C19 - C20 - C24 - C23	2.0(2)
	-0.6(3)	$C_{25} = C_{23} = C_{24} = O_{2}$	-2.5(3)
C17—C16—C18—C19	0.7 (3)	C22—C23—C24—O2	176.29 (16)
C16—C18—C19—C20	-0.4 (3)	C25—C23—C24—C20	179.16 (14)
C16—C18—C19—C21	-179.35 (16)	C22—C23—C24—C20	-2.1 (2)
C17—C15—C20—C19	0.2 (3)	C22—C23—C25—C26	-0.8 (3)
C17—C15—C20—C24	-178.33 (16)	C24—C23—C25—C26	178.01 (15)
C18—C19—C20—C15	-0.1 (3)	C23—C25—C26—O8	-177.61 (16)
C21—C19—C20—C15	178.84 (15)	C23—C25—C26—C27	1.2 (3)
C18—C19—C20—C24	178.43 (15)	C29—O6—C27—C26	-78.9 (2)
C21—C19—C20—C24	-2.6(2)	C29—O6—C27—C28	103.9 (2)
C18—C19—C21—O1	2.4 (3)	O8—C26—C27—O6	0.7 (3)
C20-C19-C21-O1	-176.58 (15)	C25—C26—C27—O6	-178.22 (16)
C18—C19—C21—C22	-177.85 (15)	O8—C26—C27—C28	177.81 (16)
C20—C19—C21—C22	3.2 (2)	C25—C26—C27—C28	-1.1 (3)
O1—C21—C22—C28	-2.1 (3)	C34—O7—C28—C27	85.1 (2)
C19—C21—C22—C28	178.18 (15)	C34—O7—C28—C22	-96.8 (2)
O1—C21—C22—C23	176.54 (16)	O6—C27—C28—O7	-4.2 (3)
C19—C21—C22—C23	-3.2 (2)	C26—C27—C28—O7	178.56 (15)
C28—C22—C23—C25	0.2 (3)	O6—C27—C28—C22	177.70 (15)
C21—C22—C23—C25	-178.54 (15)	C26—C27—C28—C22	0.5 (3)
C28—C22—C23—C24	-178.54 (14)	C23—C22—C28—O7	-178.03 (14)
C21—C22—C23—C24	2.8 (2)	C21—C22—C28—O7	0.6 (3)
C15—C20—C24—O2	2.2 (3)	C23—C22—C28—C27	0.0 (3)
C19—C20—C24—O2	-176.41 (16)	C21—C22—C28—C27	178.61 (15)
C15—C20—C24—C23	-179.46 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C25—H5…O1 ⁱ	0.97 (3)	2.57 (3)	3.256 (2)	128 (2)
O8—H6···O1 ⁱ	0.88 (3)	1.91 (3)	2.781 (2)	168 (3)

Symmetry code: (i) x, y-1, z.