

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-(3-chloro-2-pyridyl)-5-oxopyrazolidine-3-carboxvlate

Hai-Jun Tan,^a Hai-Bing He,^a Ming Xia,^a Xiang-Ning Zhang^b and Hong-Jun Zhu^a*

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ^bJiangsu Pesticide Research Institute Co Ltd, Nanjing 210036, People's Republic of China Correspondence e-mail: zhuhj@njut.edu.cn

Received 20 May 2009; accepted 1 June 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.043; wR factor = 0.110; data-to-parameter ratio = 13.9.

In the molecule of the title compound, $C_{11}H_{12}ClN_3O_3$, the five membered ring adopts an envelope conformation. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules into centrosymmetric dimers.

Related literature

For the synthetic procedure, see: Lahm et al. (2007). For bondlength data, see: Allen et al. (1987).

Experimental

Crvstal data

C11H12ClN3O3 $M_r = 269.69$ Orthorhombic, Pbca a = 15.488 (3) Å b = 10.009 (2) Å c = 16.249 (3) Å

V = 2518.9 (8) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.31 \text{ mm}^{-1}$ T = 298 K $0.30 \times 0.20 \times 0.10 \text{ mm}$ $> 2\sigma(I)$

Data collection

reflections
th $I > 2\sigma($
ons
nin
none
n

 $wR(F^2) = 0.110$ H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ 2273 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots O2^{i}$	0.86	2.14	2.910 (3)	149

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Dr Shan Liu and Dr Rui Liu of the College of Science, Nanjing University of Technology, for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2697).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands
- Harms, K. & Wocadlo, S. (1995), XCAD4, University of Marburg, Germany,
- Lahm, G. P., Stevenson, T. M., Selby, T. P., Freudenberger, J. H., Cordova, D., Flexner, L., Bellin, C. A., Dubas, C. M., Smith, B. K., Hughes, K. A., Hollingshaus, J. G., Clark, C. E. & Benner, E. A. (2007). Bioorg. Med. Chem. Lett. 17, 6274-6279.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1495 [doi:10.1107/S1600536809020789]

Ethyl 2-(3-chloro-2-pyridyl)-5-oxopyrazolidine-3-carboxylate

Hai-Jun Tan, Hai-Bing He, Ming Xia, Xiang-Ning Zhang and Hong-Jun Zhu

S1. Comment

The title compound is one of the most important intermediates used for the synthesis of Rynaxypyre, a new insecticidal anthranilic diamide as a potent and selective ryanodine receptor activator (Lahm *et al.*, 2007). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Ring B (N3/C7-C11) is, of course, planar. Ring A (N1/N2/C4-C6) adopts envelope conformation with atom C4 displaced by -0.375 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

S2. Experimental

The title compound was synthesized according to a literature method (Lahm *et al.*, 2007). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

S3. Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids at the 50% probability level.

Figure 2

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Ethyl 2-(3-chloro-2-pyridyl)-5-oxopyrazolidine-3-carboxylate

Crystal data	
$C_{11}H_{12}ClN_{3}O_{3}$	F(000) = 1120
$M_r = 269.69$	$D_{\rm x} = 1.422 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 25 reflections
a = 15.488 (3) Å	$\theta = 0.9 - 1.0^{\circ}$
b = 10.009 (2) Å	$\mu = 0.31 \text{ mm}^{-1}$
c = 16.249 (3) Å	T = 298 K
V = 2518.9 (8) Å ³	Block, colorless
Z = 8	$0.30 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Enraf–Nonius CAD-4	2273 independent reflections
diffractometer	1635 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.029$
Graphite monochromator	$\theta_{\rm max} = 25.3^\circ, \ \theta_{\rm min} = 2.5^\circ$
$\omega/2\theta$ scans	$h = 0 \rightarrow 18$
Absorption correction: ψ scan	$k = 0 \rightarrow 12$
(North <i>et al.</i> , 1968)	$l = -19 \rightarrow 19$
$T_{\min} = 0.913, \ T_{\max} = 0.970$	3 standard reflections every 120 min
4453 measured reflections	intensity decay: none

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.110$	$w = 1/[\sigma^2(F_o^2) + (0.0473P)^2 + 0.824P]$
<i>S</i> = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
2273 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
164 parameters	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0065 (7)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl	0.45523 (4)	0.14184 (7)	0.43566 (5)	0.0629 (3)	
01	0.30427 (10)	0.43898 (19)	0.31272 (11)	0.0561 (5)	
O2	0.34478 (11)	0.4578 (2)	0.44373 (11)	0.0597 (5)	
03	0.55616 (12)	0.7407 (2)	0.33051 (13)	0.0667 (6)	
N1	0.54947 (12)	0.55100 (18)	0.40815 (12)	0.0372 (5)	
H1A	0.5776	0.5814	0.4497	0.045*	
N2	0.51613 (11)	0.41865 (17)	0.40548 (11)	0.0328 (4)	
N3	0.66149 (12)	0.3566 (2)	0.37919 (13)	0.0456 (5)	
C1	0.1756 (2)	0.3232 (4)	0.3592 (2)	0.0876 (11)	
H1B	0.1163	0.3358	0.3745	0.131*	
H1C	0.2069	0.2863	0.4049	0.131*	
H1D	0.1789	0.2631	0.3133	0.131*	
C2	0.21401 (15)	0.4539 (3)	0.3359 (2)	0.0666 (9)	
H2A	0.1820	0.4915	0.2902	0.080*	
H2A	0.1820	0.4915	0.2902	0.080*	

H2B	0.2096	0.5152	0.3820	0.080*
C3	0.36204 (14)	0.4419 (2)	0.37295 (15)	0.0389 (6)
C4	0.45184 (14)	0.4216 (2)	0.33772 (13)	0.0363 (5)
H4A	0.4542	0.3381	0.3063	0.044*
C5	0.48079 (15)	0.5388 (3)	0.28374 (15)	0.0471 (6)
H5A	0.5154	0.5078	0.2378	0.056*
H5B	0.4315	0.5878	0.2627	0.056*
C6	0.53378 (15)	0.6246 (3)	0.34130 (15)	0.0434 (6)
C7	0.58184 (14)	0.3194 (2)	0.39697 (13)	0.0332 (5)
C8	0.72260 (16)	0.2612 (3)	0.37550 (18)	0.0565 (8)
H8A	0.7790	0.2872	0.3639	0.068*
C9	0.70658 (18)	0.1279 (3)	0.38781 (17)	0.0548 (7)
H9A	0.7509	0.0655	0.3842	0.066*
C10	0.62367 (17)	0.0884 (3)	0.40552 (16)	0.0490 (6)
H10A	0.6104	-0.0013	0.4134	0.059*
C11	0.56048 (14)	0.1858 (2)	0.41127 (15)	0.0389 (6)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl	0.0487 (4)	0.0514 (4)	0.0885 (6)	-0.0128 (3)	0.0079 (4)	0.0135 (4)
01	0.0322 (9)	0.0815 (14)	0.0546 (11)	0.0039 (9)	-0.0095 (8)	-0.0041 (10)
O2	0.0367 (10)	0.0944 (16)	0.0479 (11)	0.0071 (10)	0.0002 (8)	-0.0127 (11)
O3	0.0629 (12)	0.0508 (12)	0.0864 (16)	-0.0110 (10)	-0.0068 (10)	0.0283 (11)
N1	0.0399 (10)	0.0307 (10)	0.0411 (11)	-0.0008 (8)	-0.0056 (9)	-0.0020 (9)
N2	0.0301 (9)	0.0308 (10)	0.0374 (10)	0.0009 (8)	-0.0036 (8)	-0.0011 (8)
N3	0.0314 (10)	0.0402 (12)	0.0650 (14)	0.0003 (9)	0.0035 (10)	-0.0027 (10)
C1	0.0537 (19)	0.097 (3)	0.112 (3)	-0.0200 (19)	0.0081 (19)	-0.017 (2)
C2	0.0295 (13)	0.087 (2)	0.084 (2)	0.0059 (14)	-0.0081 (14)	-0.0055 (18)
C3	0.0339 (12)	0.0399 (14)	0.0429 (14)	0.0027 (10)	-0.0047 (11)	-0.0039 (11)
C4	0.0342 (11)	0.0409 (13)	0.0339 (12)	0.0046 (10)	-0.0039 (9)	-0.0051 (10)
C5	0.0389 (13)	0.0647 (17)	0.0377 (13)	0.0061 (12)	-0.0017 (10)	0.0091 (12)
C6	0.0364 (13)	0.0465 (16)	0.0474 (15)	0.0045 (11)	0.0034 (11)	0.0107 (12)
C7	0.0318 (11)	0.0340 (12)	0.0337 (12)	0.0022 (10)	-0.0027 (10)	-0.0002 (10)
C8	0.0323 (12)	0.0542 (18)	0.083 (2)	0.0046 (12)	0.0019 (13)	-0.0045 (15)
C9	0.0498 (16)	0.0481 (16)	0.0666 (19)	0.0201 (13)	-0.0077 (14)	-0.0037 (13)
C10	0.0581 (16)	0.0342 (13)	0.0548 (15)	0.0072 (13)	-0.0068 (13)	0.0069 (12)
C11	0.0379 (13)	0.0351 (13)	0.0439 (14)	-0.0019 (10)	-0.0037 (10)	0.0032 (11)

Geometric parameters (Å, °)

Cl-C11	1.735 (2)	C2—H2A	0.9700	
O1—C2	1.456 (3)	C2—H2B	0.9700	
O1—C3	1.326 (3)	C3—C4	1.518 (3)	
O2—C3	1.191 (3)	C4—C5	1.531 (3)	
O3—C6	1.226 (3)	C4—H4A	0.9800	
N1—N2	1.422 (2)	C5—C6	1.512 (4)	
N1—C6	1.335 (3)	C5—H5A	0.9700	

N1—H1A	0.8600	С5—Н5В	0.9700
N2—C4	1.485 (3)	C7—C11	1.396 (3)
N2—C7	1.429 (3)	C8—C9	1.372 (4)
N3—C7	1.321 (3)	C8—H8A	0.9300
N3—C8	1.346 (3)	C9—C10	1.374 (4)
C1—C2	1.485 (4)	С9—Н9А	0.9300
C1—H1B	0.9600	C10—C11	1.385 (3)
C1—H1C	0.9600	C10—H10A	0.9300
C1—H1D	0.9600		
C3—O1—C2	117.0 (2)	C3—C4—H4A	110.1
N2—N1—H1A	122.5	C5—C4—H4A	110.1
C6—N1—N2	115.02 (19)	C6—C5—C4	103.85 (18)
C6—N1—H1A	122.5	С6—С5—Н5А	111.0
N1—N2—C7	113.08 (17)	C4—C5—H5A	111.0
N1—N2—C4	104.33 (16)	C6—C5—H5B	111.0
C7—N2—C4	114.82 (17)	C4—C5—H5B	111.0
C7—N3—C8	117.8 (2)	H5A—C5—H5B	109.0
C2—C1—H1B	109.5	O3—C6—N1	126.0 (2)
C2—C1—H1C	109.5	O3—C6—C5	127.1 (2)
H1B-C1-H1C	109.5	N1—C6—C5	106.8 (2)
C2—C1—H1D	109.5	N3—C7—C11	121.9 (2)
H1B-C1-H1D	109.5	N3—C7—N2	119.3 (2)
H1C-C1-H1D	109.5	$C_{11} - C_{7} - N_{2}$	118.7(2)
01-C2-C1	111.1 (2)	N3—C8—C9	123.8(2)
01-C2-H2A	109.4	N3—C8—H8A	118.1
C1—C2—H2A	109.4	C9—C8—H8A	118.1
01—C2—H2B	109.4	C8-C9-C10	118.6 (2)
C1 - C2 - H2B	109.4	C8—C9—H9A	120.7
$H^2A - C^2 - H^2B$	108.0	C10—C9—H9A	120.7
02-C3-01	124 3 (2)	C9-C10-C11	1182(2)
02 - C3 - C4	1260(2)	C9-C10-H10A	120.9
01-C3-C4	109.70(19)	C11—C10—H10A	120.9
N_{2} C4 C3	109.73(17)	C10-C11-C7	1197(2)
$N_2 - C_4 - C_5$	104.11(18)	C10-C11-C1	120.06(19)
C_{3} C_{4} C_{5}	112 46 (19)	C7-C11-C1	120.00(17) 120.25(17)
N2-C4-H4A	110.1		120.25 (17)
	110.1		
C6—N1—N2—C7	108.8 (2)	C4—C5—C6—O3	-164.6(2)
C6—N1—N2—C4	-16.6 (2)	C4—C5—C6—N1	13.3 (2)
C3—O1—C2—C1	-85.7 (3)	C8—N3—C7—C11	-0.3(3)
C2—O1—C3—O2	-1.2 (4)	C8—N3—C7—N2	176.9 (2)
C2—O1—C3—C4	178.6 (2)	N1—N2—C7—N3	-10.9(3)
N1—N2—C4—C3	-97.1 (2)	C4—N2—C7—N3	108.6 (2)
C7—N2—C4—C3	138.54 (19)	N1—N2—C7—C11	166.3 (2)
N1—N2—C4—C5	23.4 (2)	C4—N2—C7—C11	-74.1 (3)
C7—N2—C4—C5	-100.9 (2)	C7—N3—C8—C9	1.1 (4)
O2—C3—C4—N2	2.4 (3)	N3—C8—C9—C10	-0.5 (4)

supporting information

01 - C3 - C4 - N2	-177.44(18)	C8—C9—C10—C11	-0.9(4)	
02—C3—C4—C5	-113.0(3)	C9—C10—C11—C7	1.7 (4)	
O1—C3—C4—C5	67.2 (2)	C9—C10—C11—Cl	-178.6 (2)	
N2—C4—C5—C6	-22.5 (2)	N3-C7-C11-C10	-1.1 (4)	
C3—C4—C5—C6	96.2 (2)	N2-C7-C11-C10	-178.3 (2)	
N2—N1—C6—O3	179.8 (2)	N3—C7—C11—Cl	179.22 (18)	
N2—N1—C6—C5	1.8 (3)	N2-C7-C11-Cl	2.0 (3)	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
N1—H1A····O2 ⁱ	0.86	2.14	2.910 (3)	149

Symmetry code: (i) -x+1, -y+1, -z+1.