

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Dichloridobis(phenanthridine- $\kappa N$ )zinc(II)

## Zeinab Khoshtarkib,<sup>a</sup> Amin Ebadi,<sup>b</sup> Robabeh Alizadeh,<sup>c</sup>\* Roya Ahmadi<sup>a</sup> and Vahid Amani<sup>a</sup>

<sup>a</sup>Islamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, <sup>b</sup>Department of Chemistry, Islamic Azad University, Kazerun Branch, Kazerun, Fars, Iran, and <sup>c</sup>Damghan University of Basic Sciences, School of Chemistry, Damghan, Iran Correspondence e-mail: alizadeh@dubs.ac.ir

Received 20 May 2009; accepted 22 May 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.086; data-to-parameter ratio = 20.5.

In the molecule of the title compound,  $[ZnCl_2(C_{13}H_9N)_2]$ , the Zn<sup>II</sup> atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two phenanthridine ligands and by two terminal Cl atoms. The dihedral angle between the planes of the phenanthridine ring systems is 69.92 (3)°. An intramolecular  $C-H\cdots Cl$  interaction results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 8.32 (3)° with respect to the adjacent phenanthridine ring system. In the crystal structure,  $\pi$ - $\pi$  contacts between the phenanthridine systems [centroidcentroid distances = 3.839(2), 3.617(1) and 3.682(1) Å] may stabilize the structure. Two weak  $C-H\cdots\pi$  interactions are also found.

## **Related literature**

For related structures, see: Ahmadi et al. (2008); Çelik et al. (2004); Cui et al. (1998); Gruia et al. (2007); Khalighi et al. (2008); Khan & Tuck (1984); Khavasi et al. (2008); Kozhevnikov et al. (2006); Liu et al. (2004); Markowitz et al. (2006); Musie et al. (2004); Preston & Kennard (1969); Reimann et al. (1966); Shen et al. (2004); Steffen & Palenik (1977). For bondlength data, see: Allen et al. (1987).



V = 2130.0 (9) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.45 \times 0.30 \times 0.22 \text{ mm}$ 

16947 measured reflections

5732 independent reflections 4612 reflections with  $I > 2\sigma(I)$ 

 $\mu = 1.42 \text{ mm}^-$ 

T = 298 K

 $R_{\rm int} = 0.041$ 

Z = 4

## **Experimental**

#### Crystal data

| $[ZnCl_2(C_{13}H_9N)_2]$       |  |
|--------------------------------|--|
| $M_r = 494.71$                 |  |
| Monoclinic, $P2_1/c$           |  |
| a = 16.193 (3) Å               |  |
| b = 10.101 (2)  Å              |  |
| c = 14.491 (3) Å               |  |
| $\beta = 116.02 \ (3)^{\circ}$ |  |

#### Data collection

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.037$ | 280 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.086$               | H-atom parameters constrained                              |
| S = 1.09                        | $\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$  |
| 5732 reflections                | $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$ |
|                                 |                                                            |

### Table 1

Selected geometric parameters (Å, °).

| Cl1–Zn1    | 2.2234 (7) | N1-Zn1      | 2.0785 (17) |
|------------|------------|-------------|-------------|
| Cl2–Zn1    | 2.2456 (7) | N2-Zn1      | 2.0775 (17) |
| N2-Zn1-N1  | 105.19 (7) | N2-Zn1-Cl2  | 113.54 (5)  |
| N2-Zn1-Cl1 | 108.18 (5) | N1-Zn1-Cl2  | 107.46 (6)  |
| N1-Zn1-Cl1 | 106.23 (5) | Cl1-Zn1-Cl2 | 115.49 (3)  |

#### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$           | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|----------------------------|------|-------------------------|--------------|------------------|
| C1-H1···Cl1                | 0.93 | 2.77                    | 3.434 (3)    | 129              |
| $C17 - H17 \cdots Cg6^{i}$ | 0.93 | 2.82                    | 3.535 (3)    | 134              |
| $C24-H24\cdots Cg5^{ii}$   | 0.93 | 2.81                    | 3.508 (3)    | 132              |

Symmetry codes: (i) -x,  $y - \frac{1}{2}$ ,  $-z - \frac{1}{2}$ ; (ii) x,  $-y - \frac{1}{2}$ ,  $z - \frac{1}{2}$ . Cg5 and Cg6 are the centroids of the C15-C20 and C21-C26 rings, respectively.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to Damghan University of Basic Sciences for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2696).

#### References

- Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.
- Çelik, Ö., İde, S., Kurt, M. & Yurdakul, Ş. (2004). Acta Cryst. E60, m1134– m1136.
- Cui, Y., Long, D., Chen, W. & Huang, J. (1998). Acta Cryst. C54, 1605–1607.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). *Inorg. Chim. Acta*, **360**, 1825–1840.
- Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.

- Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60-62.
- Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.
- Kozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). *Tetrahedron Lett.* 47, 7025–7029.
- Liu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073-2079.
- Markowitz, B. M. E., Turnbull, M. M. & Awwadi, F. F. (2006). Acta Cryst. E62, m1278-m1280.
- Musie, G. T., Li, X. & Powell, D. R. (2004). Acta Cryst. E60, m471-m472.
- Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965-1968.
- Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185–1189.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shen, L., Li, M. C., Jin, Z. M., Hu, M. L. & Xuan, R. C. (2004). Acta Cryst. E60, m330-m331.
- Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1127.

# supporting information

Acta Cryst. (2009). E65, m739-m740 [doi:10.1107/S160053680901959X]

# Dichloridobis(phenanthridine-*k*N)zinc(II)

# Zeinab Khoshtarkib, Amin Ebadi, Robabeh Alizadeh, Roya Ahmadi and Vahid Amani

## S1. Comment

There are several Zn<sup>II</sup> complexes, with formula, [ZnCl<sub>2</sub>(N)<sub>2</sub>], such as [ZnCl<sub>2</sub>(AMS)<sub>2</sub>], (II) (Shen *et al.*, 2004), [ZnCl<sub>2</sub>(4-CNpy)<sub>2</sub>], (III) (Steffen & Palenik, 1977), [ZnCl<sub>2</sub>(pht)<sub>2</sub>], (IV) (Çelik *et al.*, 2004), [ZnCl<sub>2</sub>(quin)<sub>2</sub>], (V) (Cui *et al.*, 1998), [ZnCl<sub>2</sub>(quino)<sub>2</sub>], (VI) (Markowitz *et al.*, 2006) and [ZnCl<sub>2</sub>(meim)<sub>2</sub>], (VII) (Musie *et al.*, 2004) [where AMS is 3-Amino-5methylisoxazole, 4-CNpy is 4-cyanopyridine, pht is phthalazine, quin is quinoline, quino is quinoxaline and meim is 1methylimidazole] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several Zn<sup>II</sup> complexes, with formula, [ZnCl<sub>2</sub>(N—N)], such as [ZnCl<sub>2</sub>(bipy)], (VIII) (Khan & Tuck, 1984), [ZnCl<sub>2</sub>(biim)], (IX) (Gruia *et al.*, 2007), [ZnCl<sub>2</sub>(phbipy)], (X) (Kozhevnikov *et al.*, 2006), [ZnCl<sub>2</sub>(phen)], (XI) (Reimann *et al.*, 1966), [ZnCl<sub>2</sub>(dmphen)], (XII) (Preston & Kennard, 1969), [ZnCl<sub>2</sub>(dpdmbip)], (XIII) (Liu *et al.*, 2004), [ZnCl<sub>2</sub>(dm4bt)], (XIV) (Khavasi *et al.*, 2008), [ZnCl<sub>2</sub>(5,5'-dmbpy)], (XV) (Khalighi *et al.*, 2008) and [ZnCl<sub>2</sub>(6-mbipy)], (XVI) (Ahmadi *et al.*, 2008) [where bipy is 2,2'-bipyridine, biim is 2,2'-biimidazole, phbipy is 5-phenyl-2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline, dpdmbip is 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyrimidine, dm4bt is 2,2'-dimethyl-4,4'-bithiazole, 5,5'-dimbpy is 5,5'-dimethyl-2,2'-bipyridine and 6-mbipy is 6-methyl-2,2'-bipyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of the title compound (Fig 1),  $Zn^{II}$  atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two phenanthridine and two terminal Cl atoms (Table 1). The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Phenanthridine ring systems A (N1/C1-C13) and B (N2/C14-C26) are, of course, planar and the dihedral angle between them is A/B = 69.92 (3)°. Intramolecular C-H···Cl interaction (Table 2) results in the formation of a planar five-membered ring C (Zn1/Cl1/N1/C1/H1), which is oriented with respect to the adjacent phenanthridine ring system A at a dihedral angle of 8.32 (3)°.

In the crystal structure (Fig. 2), the  $\pi$ - $\pi$  contacts between the phenanthridine rings, Cg2—Cg3<sup>i</sup>, Cg4—Cg6<sup>ii</sup> and Cg6—Cg6<sup>ii</sup>, [symmetry codes: (i) 1 - x, -y, -z, (ii) -x, -y, -z, where Cg2, Cg3, Cg4 and Cg6 are centroids of the rings (C2-C7), (C8-C13), (N2/C14/C15/C20/C21/C26) and (C21-C26), respectively] may stabilize the structure, with centroid-centroid distances of 3.839 (2), 3.617 (1) and 3.682 (1) Å, respectively. There also exist two weak C—H… $\pi$  interactions (Table 2).

## **S2. Experimental**

For the preparation of the title compound, (I), a solution of phenanthridine (0.30 g, 1.66 mmol) in methanol (15 ml) was added to a solution of  $ZnCl_2$  (0.11 g, 0.83 mmol) in acetonitrile (30 ml) and the resulting colorless solution was stirred for 30 min at 313 K, and then it was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield; 0.31 g, 75.5%).

## **S3. Refinement**

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .



# Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.



## Figure 2

A partial packing diagram of the title compound.

## Dichloridobis(phenanthridine-*k*N)zinc(II)

Crystal data

[ZnCl<sub>2</sub>(C<sub>13</sub>H<sub>9</sub>N)<sub>2</sub>]  $M_r = 494.71$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 16.193 (3) Å b = 10.101 (2) Å c = 14.491 (3) Å  $\beta = 116.02$  (3)° V = 2130.0 (9) Å<sup>3</sup> Z = 4 F(000) = 1008  $D_x = 1.543 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1987 reflections  $\theta = 2.5-29.3^{\circ}$   $\mu = 1.42 \text{ mm}^{-1}$  T = 298 KPrism, colorless  $0.45 \times 0.30 \times 0.22 \text{ mm}$  Data collection

| Bruker SMART CCD area-detector                  | 16947 measured reflections                                  |
|-------------------------------------------------|-------------------------------------------------------------|
| diffractometer                                  | 5732 independent reflections                                |
| Radiation source: fine-focus sealed tube        | 4612 reflections with $I > 2\sigma(I)$                      |
| Graphite monochromator                          | $R_{int} = 0.041$                                           |
| $\varphi$ and $\omega$ scans                    | $\theta_{max} = 29.3^{\circ}, \ \theta_{min} = 2.5^{\circ}$ |
| Absorption correction: multi-scan               | $h = -22 \rightarrow 22$                                    |
| ( <i>SADABS</i> ; Bruker, 1998)                 | $k = -13 \rightarrow 13$                                    |
| $T_{\min} = 0.610, T_{\max} = 0.740$            | $l = -19 \rightarrow 19$                                    |
| Refinement                                      |                                                             |
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier            |
| Least-squares matrix: full                      | map                                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.037$                 | Hydrogen site location: inferred from                       |
| $wR(F^2) = 0.086$                               | neighbouring sites                                          |
| S = 1.09                                        | H-atom parameters constrained                               |
| 5732 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.038P)^2 + 0.5741P]$            |
| 280 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                              |
| 0 restraints                                    | $(\Delta/\sigma)_{max} = 0.013$                             |
| Primary atom site location: structure-invariant | $\Delta\rho_{max} = 0.28$ e Å <sup>-3</sup>                 |
| direct methods                                  | $\Delta\rho_{min} = -0.39$ e Å <sup>-3</sup>                |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | r             | v            | 7             | Uine*/Une    |  |
|-----|---------------|--------------|---------------|--------------|--|
|     | 0.250400 (15) | 0.26111 (2)  | 0 120110 (17) | 0,02,500,(7) |  |
|     | 0.239400 (13) | 0.20111 (2)  | 0.120119 (17) | 0.03390(7)   |  |
| Cl1 | 0.25049 (4)   | 0.47913 (5)  | 0.09659 (5)   | 0.05264 (14) |  |
| Cl2 | 0.27473 (4)   | 0.19233 (6)  | 0.27420 (4)   | 0.05102 (14) |  |
| N1  | 0.37559 (11)  | 0.19993 (17) | 0.10537 (13)  | 0.0373 (3)   |  |
| N2  | 0.14942 (10)  | 0.17454 (16) | -0.00248 (12) | 0.0338 (3)   |  |
| C1  | 0.42820 (14)  | 0.2930 (2)   | 0.09724 (16)  | 0.0410 (4)   |  |
| H1  | 0.4056        | 0.3791       | 0.0863        | 0.049*       |  |
| C2  | 0.51762 (14)  | 0.2716 (2)   | 0.10399 (16)  | 0.0417 (4)   |  |
| C3  | 0.57131 (17)  | 0.3780 (3)   | 0.09923 (19)  | 0.0528 (6)   |  |
| H3  | 0.5481        | 0.4637       | 0.0902        | 0.063*       |  |
| C4  | 0.65812 (18)  | 0.3558 (3)   | 0.1079 (2)    | 0.0626 (7)   |  |
| H4  | 0.6936        | 0.4260       | 0.1039        | 0.075*       |  |
| C5  | 0.69249 (18)  | 0.2273 (3)   | 0.1228 (2)    | 0.0674 (8)   |  |
| H5  | 0.7512        | 0.2124       | 0.1283        | 0.081*       |  |
| C6  | 0.64215 (16)  | 0.1227 (3)   | 0.1293 (2)    | 0.0574 (6)   |  |
| H6  | 0.6672        | 0.0380       | 0.1401        | 0.069*       |  |

| C7  | 0.55249 (14)  | 0.1417 (2)   | 0.11974 (15)  | 0.0432 (5) |
|-----|---------------|--------------|---------------|------------|
| C8  | 0.49487 (14)  | 0.0368 (2)   | 0.12662 (15)  | 0.0409 (4) |
| C9  | 0.52121 (17)  | -0.0978 (2)  | 0.13981 (17)  | 0.0503 (5) |
| H9  | 0.5782        | -0.1218      | 0.1441        | 0.060*     |
| C10 | 0.46418 (19)  | -0.1931 (2)  | 0.14633 (18)  | 0.0548 (6) |
| H10 | 0.4828        | -0.2812      | 0.1547        | 0.066*     |
| C11 | 0.37861 (18)  | -0.1601 (2)  | 0.14065 (18)  | 0.0517 (5) |
| H11 | 0.3404        | -0.2259      | 0.1453        | 0.062*     |
| C12 | 0.35073 (16)  | -0.0305 (2)  | 0.12812 (16)  | 0.0448 (5) |
| H12 | 0.2939        | -0.0084      | 0.1251        | 0.054*     |
| C13 | 0.40733 (14)  | 0.0686 (2)   | 0.11980 (14)  | 0.0377 (4) |
| C14 | 0.16296 (13)  | 0.12723 (19) | -0.07864 (15) | 0.0360 (4) |
| H14 | 0.2222        | 0.1316       | -0.0736       | 0.043*     |
| C15 | 0.09352 (13)  | 0.06958 (18) | -0.16859 (14) | 0.0348 (4) |
| C16 | 0.11488 (16)  | 0.0160 (2)   | -0.24580 (16) | 0.0417 (4) |
| H16 | 0.1747        | 0.0203       | -0.2389       | 0.050*     |
| C17 | 0.04765 (18)  | -0.0419 (2)  | -0.33016 (18) | 0.0486 (5) |
| H17 | 0.0615        | -0.0771      | -0.3810       | 0.058*     |
| C18 | -0.04216 (17) | -0.0482 (2)  | -0.34024 (18) | 0.0510(5)  |
| H18 | -0.0876       | -0.0881      | -0.3981       | 0.061*     |
| C19 | -0.06479 (15) | 0.0033 (2)   | -0.26642 (17) | 0.0454 (5) |
| H19 | -0.1250       | -0.0022      | -0.2746       | 0.054*     |
| C20 | 0.00307 (13)  | 0.06448 (18) | -0.17833 (14) | 0.0343 (4) |
| C21 | -0.01463 (13) | 0.12123 (18) | -0.09734 (15) | 0.0343 (4) |
| C22 | -0.10280 (14) | 0.1282 (2)   | -0.10056 (17) | 0.0430 (5) |
| H22 | -0.1531       | 0.0952       | -0.1574       | 0.052*     |
| C23 | -0.11556 (15) | 0.1830 (2)   | -0.02101 (19) | 0.0481 (5) |
| H23 | -0.1743       | 0.1872       | -0.0247       | 0.058*     |
| C24 | -0.04179 (17) | 0.2319 (2)   | 0.06441 (19)  | 0.0476 (5) |
| H24 | -0.0510       | 0.2678       | 0.1183        | 0.057*     |
| C25 | 0.04526 (15)  | 0.2277 (2)   | 0.07015 (17)  | 0.0417 (4) |
| H25 | 0.0947        | 0.2608       | 0.1279        | 0.050*     |
| C26 | 0.05989 (12)  | 0.17376 (18) | -0.01046 (14) | 0.0328 (4) |
|     |               |              |               |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|-------------|--------------|
| Zn1 | 0.02853 (11) | 0.03705 (12) | 0.03880 (12) | -0.00174 (9) | 0.01173 (8) | -0.00362 (9) |
| Cl1 | 0.0510(3)    | 0.0376 (3)   | 0.0687 (4)   | 0.0014 (2)   | 0.0258 (3)  | -0.0007 (2)  |
| Cl2 | 0.0481 (3)   | 0.0596 (3)   | 0.0436 (3)   | -0.0047 (3)  | 0.0185 (2)  | 0.0027 (2)   |
| N1  | 0.0312 (8)   | 0.0388 (8)   | 0.0385 (8)   | 0.0034 (7)   | 0.0120 (7)  | -0.0012 (7)  |
| N2  | 0.0265 (7)   | 0.0339 (7)   | 0.0374 (8)   | -0.0007 (6)  | 0.0107 (6)  | -0.0010 (6)  |
| C1  | 0.0341 (10)  | 0.0424 (10)  | 0.0442 (11)  | 0.0019 (8)   | 0.0149 (8)  | -0.0014 (8)  |
| C2  | 0.0317 (9)   | 0.0543 (12)  | 0.0367 (10)  | -0.0003 (9)  | 0.0127 (8)  | -0.0022 (9)  |
| C3  | 0.0439 (12)  | 0.0640 (15)  | 0.0506 (13)  | -0.0062 (11) | 0.0207 (10) | -0.0017 (11) |
| C4  | 0.0429 (13)  | 0.087 (2)    | 0.0608 (15)  | -0.0129 (13) | 0.0250 (12) | -0.0031 (14) |
| C5  | 0.0333 (11)  | 0.104 (2)    | 0.0666 (16)  | 0.0047 (14)  | 0.0232 (11) | -0.0006 (15) |
| C6  | 0.0354 (11)  | 0.0780 (17)  | 0.0564 (14)  | 0.0117 (12)  | 0.0178 (10) | 0.0020 (12)  |
|     |              |              |              |              |             |              |

# supporting information

| C7  | 0.0311 (9)  | 0.0620 (13) | 0.0325 (10) | 0.0082 (9)   | 0.0103 (8)  | -0.0010 (9)  |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C8  | 0.0339 (9)  | 0.0511 (11) | 0.0306 (9)  | 0.0092 (9)   | 0.0075 (7)  | -0.0005 (8)  |
| C9  | 0.0453 (12) | 0.0557 (13) | 0.0419 (11) | 0.0201 (11)  | 0.0116 (10) | 0.0029 (10)  |
| C10 | 0.0656 (16) | 0.0453 (12) | 0.0409 (11) | 0.0180 (12)  | 0.0116 (11) | 0.0035 (9)   |
| C11 | 0.0556 (14) | 0.0425 (11) | 0.0462 (12) | -0.0001 (10) | 0.0123 (10) | 0.0037 (9)   |
| C12 | 0.0395 (11) | 0.0457 (11) | 0.0430 (11) | 0.0007 (9)   | 0.0125 (9)  | -0.0004 (9)  |
| C13 | 0.0329 (9)  | 0.0412 (10) | 0.0317 (9)  | 0.0044 (8)   | 0.0074 (7)  | -0.0023 (8)  |
| C14 | 0.0286 (9)  | 0.0373 (9)  | 0.0394 (10) | -0.0009(7)   | 0.0125 (8)  | 0.0010 (8)   |
| C15 | 0.0346 (9)  | 0.0313 (9)  | 0.0351 (9)  | -0.0016 (7)  | 0.0121 (8)  | 0.0008 (7)   |
| C16 | 0.0436 (11) | 0.0391 (10) | 0.0431 (11) | 0.0040 (9)   | 0.0198 (9)  | 0.0000 (8)   |
| C17 | 0.0593 (14) | 0.0412 (11) | 0.0448 (12) | -0.0011 (10) | 0.0223 (11) | -0.0077 (9)  |
| C18 | 0.0519 (13) | 0.0433 (11) | 0.0459 (12) | -0.0085 (10) | 0.0105 (10) | -0.0100 (9)  |
| C19 | 0.0383 (10) | 0.0408 (10) | 0.0488 (12) | -0.0094 (9)  | 0.0116 (9)  | -0.0039 (9)  |
| C20 | 0.0313 (9)  | 0.0286 (8)  | 0.0375 (9)  | -0.0026 (7)  | 0.0099 (7)  | 0.0025 (7)   |
| C21 | 0.0306 (9)  | 0.0295 (8)  | 0.0405 (10) | -0.0020 (7)  | 0.0133 (8)  | 0.0036 (7)   |
| C22 | 0.0307 (9)  | 0.0444 (11) | 0.0513 (12) | -0.0046 (8)  | 0.0155 (9)  | -0.0001 (9)  |
| C23 | 0.0359 (10) | 0.0465 (11) | 0.0676 (15) | 0.0004 (9)   | 0.0278 (10) | 0.0024 (10)  |
| C24 | 0.0468 (12) | 0.0447 (11) | 0.0588 (13) | 0.0003 (10)  | 0.0302 (11) | -0.0060 (10) |
| C25 | 0.0378 (10) | 0.0409 (10) | 0.0455 (11) | -0.0024 (8)  | 0.0175 (9)  | -0.0062 (8)  |
| C26 | 0.0287 (8)  | 0.0290 (8)  | 0.0394 (9)  | -0.0012 (7)  | 0.0138 (7)  | 0.0014 (7)   |
|     |             |             |             |              |             |              |

# Geometric parameters (Å, °)

| Cl1—Zn1 | 2.2234 (7)  | C12—H12 | 0.9300    |
|---------|-------------|---------|-----------|
| Cl2—Zn1 | 2.2456 (7)  | C13—N1  | 1.405 (3) |
| N1—Zn1  | 2.0785 (17) | C14—N2  | 1.306 (2) |
| N2—Zn1  | 2.0775 (17) | C14—C15 | 1.420 (3) |
| C1—N1   | 1.308 (3)   | C14—H14 | 0.9300    |
| C1—C2   | 1.424 (3)   | C15—C20 | 1.410 (3) |
| C1—H1   | 0.9300      | C15—C16 | 1.416 (3) |
| C2—C3   | 1.402 (3)   | C16—C17 | 1.361 (3) |
| C2—C7   | 1.407 (3)   | C16—H16 | 0.9300    |
| C3—C4   | 1.374 (4)   | C17—C18 | 1.398 (4) |
| С3—Н3   | 0.9300      | C17—H17 | 0.9300    |
| C4—C5   | 1.392 (4)   | C18—C19 | 1.376 (3) |
| C4—H4   | 0.9300      | C18—H18 | 0.9300    |
| C5—C6   | 1.363 (4)   | C19—C20 | 1.410 (3) |
| С5—Н5   | 0.9300      | C19—H19 | 0.9300    |
| С6—С7   | 1.410 (3)   | C20—C21 | 1.443 (3) |
| С6—Н6   | 0.9300      | C21—C22 | 1.410 (3) |
| С7—С8   | 1.444 (3)   | C21—C26 | 1.411 (3) |
| С8—С9   | 1.412 (3)   | C22—C23 | 1.374 (3) |
| C8—C13  | 1.414 (3)   | C22—H22 | 0.9300    |
| C9—C10  | 1.366 (4)   | C23—C24 | 1.380 (3) |
| С9—Н9   | 0.9300      | С23—Н23 | 0.9300    |
| C10-C11 | 1.392 (4)   | C24—C25 | 1.376 (3) |
| С10—Н10 | 0.9300      | C24—H24 | 0.9300    |
| C11—C12 | 1.371 (3)   | C25—C26 | 1.400 (3) |
|         |             |         |           |

| C11—H11                  | 0.9300               | C25—H25                    | 0.9300                   |
|--------------------------|----------------------|----------------------------|--------------------------|
| C12—C13                  | 1.398 (3)            | C26—N2                     | 1.403 (2)                |
|                          |                      |                            |                          |
| N2—Zn1—N1                | 105.19 (7)           | C11—C12—C13                | 120.3 (2)                |
| N2—Zn1—Cl1               | 108.18 (5)           | C11—C12—H12                | 119.8                    |
| N1—Zn1—Cl1               | 106.23 (5)           | C13—C12—H12                | 119.8                    |
| N2—Zn1—Cl2               | 113.54 (5)           | C12—C13—N1                 | 118.57 (18)              |
| N1—Zn1—Cl2               | 107.46 (6)           | C12—C13—C8                 | 120.43 (19)              |
| Cl1—Zn1—Cl2              | 115.49 (3)           | N1—C13—C8                  | 121.00 (19)              |
| C1—N1—C13                | 118.80 (18)          | N2—C14—C15                 | 124.52 (18)              |
| C1—N1—Zn1                | 116.76 (14)          | N2-C14-H14                 | 117.7                    |
| C13—N1—Zn1               | 123.65 (14)          | C15—C14—H14                | 117.7                    |
| C14—N2—C26               | 118.60 (16)          | C20—C15—C16                | 120.69 (18)              |
| C14 - N2 - Zn1           | 118.54 (13)          | C20—C15—C14                | 118.46 (18)              |
| $C_{26} N_{2} Z_{n1}$    | 122.69 (13)          | C16—C15—C14                | 120.84 (19)              |
| N1-C1-C2                 | 124.6 (2)            | C17—C16—C15                | 119.8 (2)                |
| N1-C1-H1                 | 117 7                | C17—C16—H16                | 120.1                    |
| $C^2$ — $C1$ — $H1$      | 117.7                | $C_{15}$ $C_{16}$ $H_{16}$ | 120.1                    |
| $C_{3}$ $C_{2}$ $C_{7}$  | 120.6(2)             | $C_{16}$ $C_{17}$ $C_{18}$ | 120.1<br>119.9(2)        |
| $C_{3}$ $C_{2}$ $C_{1}$  | 120.0(2)<br>120.9(2) | $C_{16}$ $C_{17}$ $H_{17}$ | 120.0                    |
| $C_{7}$ $C_{2}$ $C_{1}$  | 1184(2)              | C18 - C17 - H17            | 120.0                    |
| $C_4 - C_3 - C_2$        | 120.2(3)             | C19 - C18 - C17            | 120.0<br>121.4(2)        |
| $C_{4} = C_{3} = H_{3}$  | 110.0                | C19 - C18 - H18            | 110 3                    |
| C2_C3_H3                 | 110.0                | C17 - C18 - H18            | 119.3                    |
| $C_2 = C_3 = C_5$        | 119.3 (3)            | C18 - C19 - C20            | 119.3<br>120 1 (2)       |
| $C_3 = C_4 = C_3$        | 120.3                | $C_{18} = C_{19} = C_{20}$ | 120.1 (2)                |
| $C_5  C_4  H_4$          | 120.3                | $C_{10} = C_{10} = H_{10}$ | 119.9                    |
| $C_{5}$                  | 120.3<br>121.5(2)    | $C_{20} = C_{19} = M_{19}$ | 119.9                    |
| C6 C5 H5                 | 121.3 (2)            | $C_{15} = C_{20} = C_{15}$ | 118.01(17)               |
| $C_{4}$ $C_{5}$ $H_{5}$  | 119.2                | $C_{10} = C_{20} = C_{21}$ | 110.19(17)<br>122.90(19) |
| $C_{4} = C_{5} = 115$    | 119.2                | $C_{13} = C_{20} = C_{21}$ | 123.80(18)<br>117.02(18) |
| $C_{5} = C_{6} = U_{6}$  | 120.0 (5)            | $C_{22} = C_{21} = C_{20}$ | 117.92(18)               |
| $C_{3}$                  | 119.7                | $C_{22} = C_{21} = C_{20}$ | 123.34(10)               |
| $C^{2} = C^{2} = C^{2}$  | 119.7                | $C_{20} = C_{21} = C_{20}$ | 118.34(17)               |
| $C_2 - C_7 - C_8$        | 117.8(2)             | $C_{23} = C_{22} = C_{21}$ | 121.0 (2)                |
| $C_2 - C_7 - C_8$        | 118.03 (19)          | C23—C22—H22                | 119.5                    |
| $C_{0} = C_{1} = C_{3}$  | 124.2(2)             | C21—C22—H22                | 119.5                    |
| $C_{9} = C_{8} = C_{13}$ | 117.5 (2)            | $C_{22} = C_{23} = C_{24}$ | 120.5 (2)                |
| $C_{9} = C_{8} = C_{7}$  | 123.3 (2)            | C22—C23—H23                | 119.8                    |
| C13 - C8 - C7            | 119.14 (19)          | C24—C23—H23                | 119.8                    |
| C10 - C9 - C8            | 121.0 (2)            | $C_{25} = C_{24} = C_{23}$ | 120.2 (2)                |
| C10—C9—H9                | 119.5                | C25—C24—H24                | 119.9                    |
| C8—C9—H9                 | 119.5                | C23—C24—H24                | 119.9                    |
| C9—C10—C11               | 120.9 (2)            | C24—C25—C26                | 120.4 (2)                |
| C9—C10—H10               | 119.6                | C24—C25—H25                | 119.8                    |
| C11—C10—H10              | 119.6                | C26—C25—H25                | 119.8                    |
| C12—C11—C10              | 119.8 (2)            | C25—C26—N2                 | 118.43 (17)              |
| C12—C11—H11              | 120.1                | C25—C26—C21                | 119.96 (18)              |
| C10-C11-H11              | 120.1                | N2-C26-C21                 | 121.61 (17)              |

| N1—C1—C2—C3     | -177.0 (2)   | C18—C19—C20—C21 | 179.9 (2)    |
|-----------------|--------------|-----------------|--------------|
| N1—C1—C2—C7     | 0.5 (3)      | C15—C20—C21—C22 | 176.71 (18)  |
| C7—C2—C3—C4     | 1.3 (3)      | C19—C20—C21—C22 | -3.7 (3)     |
| C1—C2—C3—C4     | 178.7 (2)    | C15—C20—C21—C26 | -2.7 (3)     |
| C2—C3—C4—C5     | -0.8 (4)     | C19—C20—C21—C26 | 176.82 (19)  |
| C3—C4—C5—C6     | -0.2 (4)     | C26—C21—C22—C23 | -0.8 (3)     |
| C4—C5—C6—C7     | 0.8 (4)      | C20—C21—C22—C23 | 179.8 (2)    |
| C3—C2—C7—C6     | -0.7 (3)     | C21—C22—C23—C24 | -0.4 (3)     |
| C1—C2—C7—C6     | -178.2 (2)   | C22—C23—C24—C25 | 0.8 (4)      |
| C3—C2—C7—C8     | 178.41 (19)  | C23—C24—C25—C26 | 0.0 (3)      |
| C1—C2—C7—C8     | 0.9 (3)      | C24—C25—C26—N2  | 178.40 (19)  |
| C5—C6—C7—C2     | -0.4 (4)     | C24—C25—C26—C21 | -1.2 (3)     |
| C5—C6—C7—C8     | -179.4 (2)   | C22—C21—C26—C25 | 1.5 (3)      |
| C2—C7—C8—C9     | 178.4 (2)    | C20—C21—C26—C25 | -179.01 (17) |
| C6—C7—C8—C9     | -2.5 (3)     | C22-C21-C26-N2  | -178.02 (17) |
| C2-C7-C8-C13    | -1.5 (3)     | C20-C21-C26-N2  | 1.4 (3)      |
| C6—C7—C8—C13    | 177.6 (2)    | C2-C1-N1-C13    | -1.3 (3)     |
| C13—C8—C9—C10   | -0.4 (3)     | C2-C1-N1-Zn1    | 168.86 (16)  |
| C7—C8—C9—C10    | 179.7 (2)    | C12—C13—N1—C1   | -179.80 (18) |
| C8—C9—C10—C11   | -0.3 (4)     | C8—C13—N1—C1    | 0.7 (3)      |
| C9—C10—C11—C12  | 0.2 (4)      | C12—C13—N1—Zn1  | 10.7 (2)     |
| C10-C11-C12-C13 | 0.8 (3)      | C8—C13—N1—Zn1   | -168.77 (14) |
| C11—C12—C13—N1  | 179.0 (2)    | C15—C14—N2—C26  | -2.6 (3)     |
| C11—C12—C13—C8  | -1.5 (3)     | C15—C14—N2—Zn1  | -177.82 (14) |
| C9—C8—C13—C12   | 1.3 (3)      | C25—C26—N2—C14  | -178.37 (18) |
| C7—C8—C13—C12   | -178.80 (18) | C21—C26—N2—C14  | 1.2 (3)      |
| C9—C8—C13—N1    | -179.20 (18) | C25—C26—N2—Zn1  | -3.3 (2)     |
| C7—C8—C13—N1    | 0.7 (3)      | C21—C26—N2—Zn1  | 176.23 (13)  |
| N2-C14-C15-C20  | 1.2 (3)      | C14—N2—Zn1—N1   | -15.81 (16)  |
| N2-C14-C15-C16  | -177.53 (18) | C26—N2—Zn1—N1   | 169.13 (14)  |
| C20-C15-C16-C17 | -0.4 (3)     | C14—N2—Zn1—Cl1  | 97.39 (14)   |
| C14—C15—C16—C17 | 178.30 (19)  | C26—N2—Zn1—Cl1  | -77.67 (14)  |
| C15—C16—C17—C18 | 0.0 (3)      | C14—N2—Zn1—Cl2  | -133.03 (13) |
| C16—C17—C18—C19 | 0.2 (4)      | C26—N2—Zn1—Cl2  | 51.91 (15)   |
| C17—C18—C19—C20 | 0.1 (3)      | C1—N1—Zn1—N2    | 121.89 (15)  |
| C16—C15—C20—C19 | 0.7 (3)      | C13—N1—Zn1—N2   | -68.46 (16)  |
| C14—C15—C20—C19 | -178.05 (18) | C1—N1—Zn1—Cl1   | 7.32 (16)    |
| C16—C15—C20—C21 | -179.75 (17) | C13—N1—Zn1—Cl1  | 176.97 (14)  |
| C14—C15—C20—C21 | 1.5 (3)      | C1—N1—Zn1—Cl2   | -116.83 (14) |
| C18—C19—C20—C15 | -0.6 (3)     | C13—N1—Zn1—Cl2  | 52.82 (15)   |
|                 |              |                 |              |

# Hydrogen-bond geometry (Å, °)

| D—H···A   | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------|-------------|-------|-----------|-------------------------|
| C1—H1…Cl1 | 0.93        | 2.77  | 3.434 (3) | 129                     |

|                           |      |      | supportin | supporting information |  |  |
|---------------------------|------|------|-----------|------------------------|--|--|
| С17—Н17…Сдбі              | 0.93 | 2.82 | 3.535 (3) | 134                    |  |  |
| C24—H24…Cg5 <sup>ii</sup> | 0.93 | 2.81 | 3.508 (3) | 132                    |  |  |

Symmetry codes: (i) -x, y-1/2, -z-1/2; (ii) x, -y-1/2, z-1/2.