

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

4-(Hydroxymethyl)phenol

Wei-Sheng Liu, a,b* Rui-Ping Wei, Xiao-Liang Tang, Wen-Hua Wang and Zheng-Hua Ju

^aDepartment of Chemistry, State Key Laboratory of Applied Organic Chemistry, College of Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China, ^bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ^cCollege of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China Correspondence e-mail: liuws@lzu.edu.cn

Received 15 May 2009; accepted 12 June 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean $\sigma(C-C) = 0.002$ Å; R factor = 0.035; wR factor = 0.076; data-to-parameter ratio = 16.8.

In the molecule of the title compound, $C_7H_8O_2$, the phenol O and hydroxymethyl C atoms lie in the ring plane [deviations of -0.015 (3) and and 0.013 (3) Å, respectively]. In the crystal structure, intermolecular $O-H\cdots O$ hydrogen bonds link molecules into a network. A weak $C-H\cdots \pi$ interaction is also found.

Related literature

For a related structure, see: Tale *et al.* (2003). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $C_7H_8O_2$ b = 11.006 (4) Å $M_r = 124.13$ c = 5.942 (2) ÅOrthorhombic, $Pna2_1$ $V = 622.9 (4) \text{ Å}^3$ a = 9.524 (3) Å Z = 4 Mo Kα radiation T = 298 K $μ = 0.10 \text{ mm}^{-1}$ $0.65 \times 0.62 \times 0.55 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer 3751 measured reflections 1414 independent reflections 1200 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.940, \ T_{\rm max} = 0.949$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.035 & 1 \text{ restraint} \\ wR(F^2)=0.076 & \text{H-atom parameters constrained} \\ S=1.00 & \Delta\rho_{\max}=0.15 \text{ e Å}^{-3} \\ 1414 \text{ reflections} & \Delta\rho_{\min}=-0.17 \text{ e Å}^{-3} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} O1 - H1 \cdot \cdot \cdot O2^{i} \\ O2 - H2 \cdot \cdot \cdot O1^{ii} \end{array} $	0.82 0.82	1.86 2.01	2.668 (3) 2.817 (3)	169 167
$C1-H1B\cdots Cg1^{iii}$	0.97	2.77	3.694 (3)	159

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, z - 1; (iii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $z + \frac{1}{2}$. Cg1 is the centroid of the C2–C7 ring.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* and *PLATON*.

The authors thank the National Natural Science Foundation of China (grant Nos. 20771048 and 20621091) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2691).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. Bruker (2000). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin,

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Tale, R.-H., Patil, K.-M. & Dapurkar, S.-E. (2003). Tetrahedron Lett. 44, 3427–3428.

supporting information

Acta Cryst. (2009). E65, o1689 [doi:10.1107/S1600536809022466]

4-(Hydroxymethyl)phenol

Wei-Sheng Liu, Rui-Ping Wei, Xiao-Liang Tang, Wen-Hua Wang and Zheng-Hua Ju

S1. Comment

The reduction of carboxylic acids to alcohols is a key synthetic transformation in organic chemistry. There are several ways to bring about this transformation. It is conventionally carried out using sodium borohydride as a reducing agent. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Ring A (C2-C7) is, of course, planar. Atoms O1, O2 and C1 are -0.015 (3), 1.279 (3) and 0.013 (3) Å away from the ring plane, respectively.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into a network, in which they may be effective in the stabilization of the structure. There also exists a weak C—H··· π interaction (Table 1).

S2. Experimental

The title compound was prepared by reducing corresponding carboxylic acid using sodium borohydride in THF solution according to a literatue method (Tale *et al.*, 2003). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

S3. Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.5 for OH H and x = 1.2 for all other H atoms. The absolute structure could not be determined reliably, and 605 Friedel pairs were averaged before the last cycle of refinement.

Figure 1The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

4-(Hydroxymethyl)phenol

Crystal data $C_7H_8O_2$ $M_r = 124.13$ Orthorhombic, $Pna2_1$ Hall symbol: P 2c -2n a = 9.524 (3) Å b = 11.006 (4) Å c = 5.942 (2) Å V = 622.9 (4) Å³ Z = 4

F(000) = 264 $D_{\rm x} = 1.324$ Mg m⁻³ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 1897 reflections $\theta = 2.8-27.9^{\circ}$ $\mu = 0.10$ mm⁻¹ T = 298 K Block, colorless $0.65 \times 0.62 \times 0.55$ mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

 φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.940$, $T_{\max} = 0.949$

3751 measured reflections 1414 independent reflections 1200 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$ $\theta_{\text{max}} = 27.8^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$ $h = -12 \rightarrow 8$

 $k = -14 \rightarrow 14$ $l = -7 \rightarrow 7$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.076$ S = 1.001414 reflections 84 parameters 1 restraint Primary atom site location: structure-invariant Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0125P)^2 + 0.2042P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$

 $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.15 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.17 \text{ e Å}^{-3}$

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.65915 (14)	0.47478 (11)	0.5585 (2)	0.0477 (3)	
H1	0.6206	0.5344	0.5036	0.072*	
O2	0.99603 (14)	0.15137 (10)	-0.1224(3)	0.0470 (3)	
H2	1.0542	0.1183	-0.2037	0.071*	
C1	1.05125 (18)	0.26412 (15)	-0.0417(3)	0.0422 (4)	
H1A	1.0696	0.3180	-0.1675	0.051*	
H1B	1.1391	0.2500	0.0366	0.051*	
C2	0.94754 (17)	0.32168 (14)	0.1149 (3)	0.0351 (4)	
C3	0.87551 (17)	0.42678 (14)	0.0552(3)	0.0367 (4)	
H3	0.8929	0.4626	-0.0838	0.044*	
C4	0.77818 (18)	0.47925 (15)	0.1993 (3)	0.0356 (4)	
H4	0.7304	0.5492	0.1563	0.043*	
C5	0.75251 (16)	0.42727 (13)	0.4065 (3)	0.0349 (4)	
C6	0.82324 (18)	0.32200 (15)	0.4694(3)	0.0406 (4)	
H6	0.8058	0.2864	0.6086	0.049*	
C7	0.91947 (18)	0.27084 (15)	0.3239 (3)	0.0411 (4)	

supporting information

H7	0.9666	0	2006	0.3668	0.049*		
Atomic	c displacement parc	umeters (Ų)					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
O1	0.0571 (8)	0.0424 (7)	0.0437 (8)	0.0143 (6)	0.0121 (7)	0.0079 (6)	
O2	0.0487 (7)	0.0391 (6)	0.0532 (8)	-0.0069 (6)	0.0148 (6)	-0.0085 (6)	
C1	0.0361 (9)	0.0379 (8)	0.0526 (11)	-0.0041(7)	0.0067 (8)	-0.0032 (9)	
C2	0.0326 (8)	0.0322 (8)	0.0404 (10)	-0.0045(7)	-0.0004(7)	-0.0027 (7)	
C3	0.0432 (9)	0.0326 (8)	0.0345 (9)	-0.0051 (7)	0.0014(8)	0.0037 (8)	
C4	0.0412 (9)	0.0277 (7)	0.0381 (10)	0.0003 (7)	-0.0028(8)	0.0030(7)	
C 5	0.0365 (8)	0.0308 (7)	0.0374 (9)	0.0000 (6)	-0.0008 (7)	-0.0008(7)	
C6	0.0475 (10)	0.0382 (9)	0.0362 (9)	0.0035 (8)	0.0012 (8)	0.0088 (7)	
C7	0.0425 (9)	0.0353 (8)	0.0454 (10)	0.0079 (7)	-0.0023 (8)	0.0035 (8)	
Зеоте	etric parameters (Å	, °)					
O1—F		0.8200		C3—H3		9300	
) D2—F		0.8200		C4—C5	1.380 (2)		
C1—C		1.430	* /	C4—H4	0.9300		
C1—C		1.498	* *	C5—O1	1.371 (2)		
C1—F		0.9700		C5—C6	1.391 (2)		
C1—F	H1B	0.9700)	C6—C7	1.380 (3)		
C2—C	C 7	1.388	(3)	C6—H6	0.9300		
C2—C	C3	1.391	(2)	C7—H7	0.9300		
C3—C	C4	1.388	(2)				
C5—C	D1—H1	109.5		C2—C3—H3	11	19.4	
	D2—H2	109.5		C5—C4—C3	119.76 (15)		
	C1—C2	109.44	1 (13)	C5—C4—H4	120.1		
	C1—H1A	` '		C3—C4—H4	120.1		
	C1—H1A			O1—C5—C4	123.00 (14)		
	C1—H1B			O1—C5—C6	117.03 (16)		
	1—H1B 109.8		C4—C5—C6	119.96 (16)			
	-C1—H1B			C7—C6—C5	119.52 (17)		
	C2—C3	117.92 (16)		C7—C6—H6	` '		
	C2—C1	120.83		C5—C6—H6 120.2			
	C2—C1	121.25 (16)		C6—C7—C2			
	C3—C2	121.22 (17)		C6—C7—H7 119.2		` '	
	C3—H3	119.4		C2—C7—H7 119.2			
a (C1 C2 C7	(0.0.//	2)	C2 C4 C5 C6	,	0 ((2)	
	-C1C2C7 68.9 (2)				0.6 (2)		
	C1—C2—C3		19 (18)	O1—C5—C6—C7		179.38 (16)	
	C2—C3—C4	-0.2 (2		C4—C5—C6—C7		4 (3)	
	C2—C3—C4	179.21	` '	C5—C6—C7—C2		0.2 (3)	
	C3—C4—C5	0.5 (2)		C3—C2—C7—C6	` '		
J3—(C4—C5—O1	179.21	1 (15)	C1—C2—C7—C6	— <u> </u>	179.37 (16)	

supporting information

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
O1—H1···O2 ⁱ	0.82	1.86	2.668 (3)	169
O2—H2···O1 ⁱⁱ	0.82	2.01	2.817 (3)	167
C1—H1 B ··· $Cg1$ ⁱⁱⁱ	0.97	2.77	3.694 (3)	159

Symmetry codes: (i) -x+3/2, y+1/2, z+1/2; (ii) x+1/2, -y+1/2, z-1; (iii) -x+1/2, y+1/2, z+1/2.