Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-(Hydroxymethyl)phenol

Wei-Sheng Liu, ${ }^{\text {a,b }} *$ Rui-Ping Wei, ${ }^{c}$ Xiao-Liang Tang, ${ }^{c}$
Wen-Hua Wang ${ }^{c}$ and Zheng-Hua Ju ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, College of Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China, ${ }^{\mathbf{b}}$ State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {c }}$ College of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
Correspondence e-mail: liuws@lzu.edu.cn

Received 15 May 2009; accepted 12 June 2009

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.035 ; w R$ factor $=0.076$; data-to-parameter ratio $=16.8$.

In the molecule of the title compound, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$, the phenol O and hydroxymethyl C atoms lie in the ring plane [deviations of -0.015 (3) and and 0.013 (3) \AA, respectively]. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules into a network. A weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction is also found.

Related literature

For a related structure, see: Tale et al. (2003). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=124.13$
Orthorhombic, Pna2 $_{1}$ $a=9.524$ (3) £

$$
\begin{aligned}
& b=11.006(4) \AA \AA^{\prime}=5.942(2) \AA \AA^{3} \\
& V=622.9(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

Mo $\mathrm{K} \alpha$ radiation	$T=298 \mathrm{~K}$
$\mu=0.10 \mathrm{~mm}^{-1}$	$0.65 \times 0.62 \times 0.55 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector	3751 measured reflections
\quad diffractometer	1414 independent reflections
Absorption correction: multi-scan	1200 reflections with $I>2 \sigma(I)$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$R_{\text {int }}=0.036$
$\quad T_{\min }=0.940, T_{\max }=0.949$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$	1 restraint
$w R\left(F^{2}\right)=0.076$	H -atom parameters constrained
$S=1.00$	$\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3}$
1414 reflections	$\Delta \rho_{\min }=-0.17 \mathrm{e} \AA^{-3}$
84 parameters	

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.82	1.86	2.668 (3)	169
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.82	2.01	2.817 (3)	167
$\mathrm{C} 1-\mathrm{H} 1 B \cdots C g 1{ }^{\text {iii }}$	0.97	2.77	3.694 (3)	159

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL and PLATON.

The authors thank the National Natural Science Foundation of China (grant Nos. 20771048 and 20621091) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2691).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tale, R.-H., Patil, K.-M. \& Dapurkar, S.-E. (2003). Tetrahedron Lett. 44, 34273428.

supporting information

Acta Cryst. (2009). E65, o1689 [doi:10.1107/S1600536809022466]

4-(Hydroxymethyl)phenol

Wei-Sheng Liu, Rui-Ping Wei, Xiao-Liang Tang, Wen-Hua Wang and Zheng-Hua Ju

S1. Comment

The reduction of carboxylic acids to alcohols is a key synthetic transformation in organic chemistry. There are several ways to bring about this transformation. It is conventionally carried out using sodium borohydride as a reducing agent. We report herein the crystal structure of the title compound.
In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C2-C7) is, of course, planar. Atoms O1, O2 and C1 are -0.015 (3), 1.279 (3) and 0.013 (3) \AA away from the ring plane, respectively.
In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the molecules into a network, in which they may be effective in the stabilization of the structure. There also exists a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (Table 1).

S2. Experimental

The title compound was prepared by reducing corresponding carboxylic acid using sodium borohydride in THF solution according to a literatue method (Tale et al., 2003). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

S3. Refinement

H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ (for OH) and $\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA$ for aromatic and methylene H , respectively, and constrained to ride on their parent atoms, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=\mathrm{xU}_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$, where $\mathrm{x}=1.5$ for OH H and $\mathrm{x}=1.2$ for all other H atoms. The absolute structure could not be determined reliably, and 605 Friedel pairs were averaged before the last cycle of refinement.

Figure 1
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

4-(Hydroxymethyl)phenol

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=124.13$
Orthorhombic, $\mathrm{Pna2}_{1}$
Hall symbol: P 2c - 2 n
$a=9.524$ (3) \AA
$b=11.006$ (4) \AA
$c=5.942(2) \AA$
$V=622.9(4) \AA^{3}$
$Z=4$
$F(000)=264$
$D_{\mathrm{x}}=1.324 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1897 reflections
$\theta=2.8-27.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colorless
$0.65 \times 0.62 \times 0.55 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.940, T_{\text {max }}=0.949$

> 3751 measured reflections
> 1414 independent reflections
> 1200 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.036$
> $\theta_{\max }=27.8^{\circ}, \theta_{\min }=2.8^{\circ}$
> $h=-12 \rightarrow 8$
> $k=-14 \rightarrow 14$
> $l=-7 \rightarrow 7$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.076$
$S=1.00$
1414 reflections
84 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.65915(14)$	$0.47478(11)$	$0.5585(2)$	$0.0477(3)$
H1	0.6206	0.5344	0.5036	0.072^{*}
O2	$0.99603(14)$	$0.15137(10)$	$-0.1224(3)$	$0.0470(3)$
H2	1.0542	0.1183	-0.2037	0.071^{*}
C1	$1.05125(18)$	$0.26412(15)$	$-0.0417(3)$	$0.0422(4)$
H1A	1.0696	0.3180	-0.1675	0.051^{*}
H1B	1.1391	0.2500	0.0366	0.051^{*}
C2	$0.94754(17)$	$0.32168(14)$	$0.1149(3)$	$0.0351(4)$
C3	$0.87551(17)$	$0.42678(14)$	$0.0552(3)$	$0.0367(4)$
H3	0.8929	0.4626	-0.0838	0.044^{*}
C4	$0.77818(18)$	$0.47925(15)$	$0.1993(3)$	$0.0356(4)$
H4	0.7304	0.5492	0.1563	0.043^{*}
C5	$0.75251(16)$	$0.42727(13)$	$0.4065(3)$	$0.0349(4)$
C6	$0.82324(18)$	$0.32200(15)$	$0.4694(3)$	$0.0406(4)$
H6	0.8058	0.2864	0.6086	0.049^{*}
C7	$0.91947(18)$	$0.27084(15)$	$0.3239(3)$	$0.0411(4)$

H7	0.9666	0.2006	0.3668	0.049^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0571(8)$	$0.0424(7)$	$0.0437(8)$	$0.0143(6)$	$0.0121(7)$	$0.0079(6)$
O2	$0.0487(7)$	$0.0391(6)$	$0.0532(8)$	$-0.0069(6)$	$0.0148(6)$	$-0.0085(6)$
C1	$0.0361(9)$	$0.0379(8)$	$0.0526(11)$	$-0.0041(7)$	$0.0067(8)$	$-0.0032(9)$
C2	$0.0326(8)$	$0.0322(8)$	$0.0404(10)$	$-0.0045(7)$	$-0.0004(7)$	$-0.0027(7)$
C3	$0.0432(9)$	$0.0326(8)$	$0.0345(9)$	$-0.0051(7)$	$0.0014(8)$	$0.0037(8)$
C4	$0.0412(9)$	$0.0277(7)$	$0.0381(10)$	$0.0003(7)$	$-0.0028(8)$	$0.0030(7)$
C5	$0.0365(8)$	$0.0308(7)$	$0.0374(9)$	$0.0000(6)$	$-0.0008(7)$	$-0.0008(7)$
C6	$0.0475(10)$	$0.0382(9)$	$0.0362(9)$	$0.0035(8)$	$0.0012(8)$	$0.0088(7)$
C7	$0.0425(9)$	$0.0353(8)$	$0.0454(10)$	$0.0079(7)$	$-0.0023(8)$	$0.0035(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-H1	0.8200	C3-H3	0.9300
$\mathrm{O} 2-\mathrm{H} 2$	0.8200	C4-C5	1.380 (2)
$\mathrm{C} 1-\mathrm{O} 2$	1.430 (2)	C4-H4	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.498 (2)	C5-O1	1.371 (2)
C1-H1A	0.9700	C5-C6	1.391 (2)
C1-H1B	0.9700	C6-C7	1.380 (3)
C2-C7	1.388 (3)	C6-H6	0.9300
C2-C3	1.391 (2)	C7-H7	0.9300
C3-C4	1.388 (2)		
C5-O1-H1	109.5	C2-C3-H3	119.4
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{H} 2$	109.5	C5-C4-C3	119.76 (15)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	109.44 (13)	C5-C4-H4	120.1
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.8	C3-C4-H4	120.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.8	O1-C5-C4	123.00 (14)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.8	O1-C5-C6	117.03 (16)
C2-C1-H1B	109.8	C4-C5-C6	119.96 (16)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.2	C7-C6-C5	119.52 (17)
C7-C2-C3	117.92 (16)	C7-C6-H6	120.2
C7-C2-C1	120.83 (15)	C5-C6-H6	120.2
C3-C2-C1	121.25 (16)	C6-C7-C2	121.61 (16)
C4-C3-C2	121.22 (17)	C6-C7-H7	119.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.4	C2-C7-H7	119.2
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	68.9 (2)	C3-C4-C5-C6	-0.6 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-110.49 (18)	O1-C5-C6-C7	-179.38 (16)
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.2 (2)	C4-C5-C6-C7	0.4 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	179.21 (16)	C5-C6-C7-C2	-0.2 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	0.5 (2)	C3-C2-C7-C6	0.1 (3)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	179.21 (15)	C1-C2-C7-C6	-179.37 (16)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.86	$2.668(3)$	169
$\mathrm{O} 2 — \mathrm{H} 2 \cdots 1^{\mathrm{ii}}$	0.82	2.01	$2.817(3)$	167
$\mathrm{C} 1 — \mathrm{H} 1 B \cdots C g 1^{\mathrm{iii}}$	0.97	2.77	$3.694(3)$	159

Symmetry codes: (i) $-x+3 / 2, y+1 / 2, z+1 / 2$; (ii) $x+1 / 2,-y+1 / 2, z-1$; (iii) $-x+1 / 2, y+1 / 2, z+1 / 2$.

