

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-{[3-(Hydroxymethyl)-1,3-thiazolidin-2-ylidene]amino}formonitrile

Xin-Lin Liu and Yu-Ming Li*

Institute of Cardiovascular Disease, Pingjin Hospital, Medical College of Armed Police Force, Tianjin 300162, People's Republic of China Correspondence e-mail: yuming_li2009@yahoo.cn

Received 13 June 2009; accepted 16 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.119; data-to-parameter ratio = 12.9.

In the title molecule, C₅H₇N₃OS, all the non-hydrogen atoms except the O atom are almost planar [maximum least squares plane deviation = 0.035 (3) Å for the N atom]. The crystal packing is stabilized by intermolecular O-H···N hydrogen bonds, which link the molecules into inversion dimers.

Related literature

For a related structure, see: Xie (2008). For the biological activity of thiazolidine-containing compounds, see: Iwata et al. (1988). For bond-length data, see: Allen et al. (1987).

 $M_r = 157.20$

Experimental

Crystal data C₅H₇N₃OS

Triclinic, $P\overline{1}$ a = 5.5321 (11) Åb = 8.1790 (16) Åc = 8.4978 (17) Å $\alpha = 101.56 (3)^{\circ}$ $\beta = 100.39 (3)^{\circ}$ $\gamma = 105.47 (3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID IP area-
detector diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.919, T_{\max} = 0.951$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.119$	independent and constrained
S = 1.19	refinement
1234 reflections	$\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$
96 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $O1 - H1A \cdot \cdot \cdot N3^{i}$ 0.80(3)2.04(3)2.839 (3) 174 (3) Symmetry code: (i) -x, -y + 1, -z + 2.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2526).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Iwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katsurada, M. & Imanishi, T. (1988). Synthesis, 3, 261-262. Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Xie, B. (2008). Acta Cryst. E64, o1237.

V = 351.75 (16) Å³

Mo $K\alpha$ radiation

 $0.22 \times 0.17 \times 0.13 \text{ mm}$

2778 measured reflections 1234 independent reflections 1027 reflections with $I > 2\sigma(I)$

 $\mu = 0.39 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.014$

7 - 2

supporting information

Acta Cryst. (2009). E65, o1645 [doi:10.1107/S1600536809023095]

(Z)-{[3-(Hydroxymethyl)-1,3-thiazolidin-2-ylidene]amino}formonitrile

Xin-Lin Liu and Yu-Ming Li

S1. Comment

Thiazolidine is an important kind of group in organic chemistry. Many compounds containing Thiazolidine groups possess a broad spectrum of biological activities (Iwata *et al.*, 1988). Here, we report the title crystal structure.

In (*Z*)-(3-(hydroxymethyl)thiazolidin-2-ylideneamino)formonitrile (Fig. 1), all bond lengths are normal (Allen *et al.*, 1987) and in a good agreement with those reported previously (Xie, 2008). It is known that the imino tautomers can exist as two geometrical isomers, *syn* (*Z*) and anti (E), but in this crystal, only *Z* isomers have been observed. The atoms of whole molecule except O atom (C1-C5/N1-N3/S1) are almost planar [maximum least squares plane deviation for N1 0.035 (3) Å]. The crystal packing is stabilized by intermolecular O—H…N hydrogen bonds, which link the molecules into dimers.

S2. Experimental

A mixture of (Z)-(thiazolidin-2-ylideneamino)formonitrile 10 mmol (1.27 g), paraformaldehyde (0.36 g, 12 mmol) and 0.01 g triethylamine were refluxed in absolute EtOH (20 mL) for 3 h. On cooling, the product crystallizes and was filtered and then recrystallized from absolute ethanol. Yield 1.51 g (96%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

S3. Refinement

All H atoms were found on difference maps. The hydroxyl H atoms were refined freely, giving an O—H bond distance of 0.80 Å. The remaining H atoms were placed in calculated positions, with C—H = 0.97 Å with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figure 1

The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.

(Z)-{[3-(Hydroxymethyl)-1,3-thiazolidin-2-ylidene]amino}formonitrile

Crystal data	
Crystal data $C_5H_7N_3OS$ $M_r = 157.20$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 5.5321 (11) Å b = 8.1790 (16) Å c = 8.4978 (17) Å	Z = 2 F(000) = 164 $D_x = 1.484 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2501 reflections $\theta = 2.3-25.1^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$
$\alpha = 101.56 (3)^{\circ}$ $\beta = 100.39 (3)^{\circ}$	T = 293 K Needle colorless
$\begin{aligned} \alpha &= 101.56 \ (3)^{\circ} \\ \beta &= 100.39 \ (3)^{\circ} \\ v &= 105.47 \ (3)^{\circ} \end{aligned}$	T = 293 K Needle, colorless $0.22 \times 0.17 \times 0.13 \text{ mm}$
$V = 351.75 (16) Å^3$	0.22 ·· 0.17 ·· 0.15 mm

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer Radiation source: Rotating Anode Graphite monochromator ω oscillation scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{\min} = 0.919, T_{\max} = 0.951$ Refinement	2778 measured reflections 1234 independent reflections 1027 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -6 \rightarrow 6$ $k = -9 \rightarrow 9$ $l = -10 \rightarrow 10$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of independent
$wR(F^2) = 0.119$	and constrained refinement
S = 1.19	$w = 1/[\sigma^2(F_o^2) + (0.0703P)^2 + 0.06P]$
1234 reflections	where $P = (F_o^2 + 2F_c^2)/3$
96 parameters	$(\Delta/\sigma)_{max} < 0.001$
0 restraints	$\Delta\rho_{max} = 0.33$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta\rho_{min} = -0.25$ e Å ⁻³
direct methods	Extinction correction: <i>SHELXTL</i> (Sheldrick,
Secondary atom site location: difference Fourier	2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}
map	Extinction coefficient: 0.052 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.15141 (12)	0.91511 (8)	0.84635 (8)	0.0509 (3)	
01	0.3210 (4)	0.3944 (2)	0.6397 (3)	0.0640 (6)	
N1	0.3875 (3)	0.6968 (2)	0.7503 (2)	0.0450 (5)	
N2	0.2714 (4)	0.6719 (2)	0.9942 (2)	0.0490 (5)	
N3	0.0736 (5)	0.7702 (3)	1.2185 (3)	0.0640 (6)	
C1	0.3729 (7)	0.7839 (5)	0.6182 (4)	0.0724 (9)	
H1B	0.2783	0.6980	0.5138	0.087*	
H1C	0.5460	0.8400	0.6090	0.087*	
C2	0.2400 (6)	0.9180 (4)	0.6529 (3)	0.0592 (7)	
H2B	0.0866	0.8916	0.5642	0.071*	
H2C	0.3545	1.0335	0.6600	0.071*	
C3	0.4959 (5)	0.5525 (3)	0.7414 (3)	0.0529 (6)	
H3A	0.6495	0.5809	0.6993	0.063*	
H3B	0.5477	0.5389	0.8521	0.063*	
C4	0.2782 (4)	0.7467 (3)	0.8711 (3)	0.0395 (5)	

supporting information

C5	0.1620 (5)	0.7289 (3)	1.1096 (3)	0.0482 (6)
H1A	0.216 (6)	0.353 (4)	0.686 (4)	0.080 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0639 (4)	0.0564 (4)	0.0506 (4)	0.0356 (3)	0.0251 (3)	0.0217 (3)
01	0.0818 (13)	0.0500 (10)	0.0697 (13)	0.0227 (9)	0.0443 (11)	0.0109 (9)
N1	0.0543 (11)	0.0508 (10)	0.0416 (11)	0.0272 (9)	0.0206 (9)	0.0158 (8)
N2	0.0661 (12)	0.0492 (11)	0.0457 (12)	0.0278 (9)	0.0249 (9)	0.0202 (9)
N3	0.0854 (16)	0.0641 (13)	0.0531 (14)	0.0263 (12)	0.0342 (12)	0.0195 (11)
C1	0.101 (2)	0.102 (2)	0.0584 (17)	0.0688 (19)	0.0462 (16)	0.0452 (16)
C2	0.0827 (17)	0.0620 (15)	0.0481 (15)	0.0335 (14)	0.0262 (13)	0.0240 (12)
C3	0.0601 (14)	0.0561 (14)	0.0562 (15)	0.0318 (12)	0.0255 (12)	0.0166 (12)
C4	0.0416 (11)	0.0386 (10)	0.0389 (12)	0.0140 (9)	0.0111 (9)	0.0087 (9)
C5	0.0622 (14)	0.0462 (12)	0.0421 (14)	0.0191 (11)	0.0171 (11)	0.0179 (10)

Geometric parameters (Å, °)

<u></u> <u>S1C4</u>	1 735 (2)	N3—C5	1 156 (3)
S1—C2	1.801 (3)	C1—C2	1.486 (4)
01-C3	1.392 (3)	C1—H1B	0.9700
O1—H1A	0.80 (3)	C1—H1C	0.9700
N1—C4	1.331 (3)	C2—H2B	0.9700
N1—C1	1.447 (3)	C2—H2C	0.9700
N1—C3	1.455 (3)	С3—НЗА	0.9700
N2—C5	1.314 (3)	С3—Н3В	0.9700
N2—C4	1.315 (3)		
C4—S1—C2	92.28 (11)	S1—C2—H2B	110.0
C3—O1—H1A	111 (2)	C1—C2—H2C	110.0
C4—N1—C1	116.2 (2)	S1—C2—H2C	110.0
C4—N1—C3	122.77 (19)	H2B—C2—H2C	108.4
C1—N1—C3	120.8 (2)	O1—C3—N1	112.3 (2)
C5—N2—C4	118.1 (2)	O1—C3—H3A	109.1
N1—C1—C2	110.0 (2)	N1—C3—H3A	109.1
N1—C1—H1B	109.7	O1—C3—H3B	109.1
C2—C1—H1B	109.7	N1—C3—H3B	109.1
N1—C1—H1C	109.7	НЗА—СЗ—НЗВ	107.9
C2—C1—H1C	109.7	N2-C4-N1	121.5 (2)
H1B—C1—H1C	108.2	N2-C4-S1	125.35 (17)
C1—C2—S1	108.30 (18)	N1-C4-S1	113.20 (17)
C1—C2—H2B	110.0	N3—C5—N2	174.2 (3)
C4—N1—C1—C2	1.7 (4)	C1—N1—C4—N2	177.4 (2)
C3—N1—C1—C2	176.5 (2)	C3—N1—C4—N2	2.8 (3)
N1—C1—C2—S1	-0.2 (3)	C1—N1—C4—S1	-2.5 (3)
C4—S1—C2—C1	-0.9 (2)	C3—N1—C4—S1	-177.14 (17)

C4—N1—C3—O1	95.2 (3)	C2—S1—C4—N2	-178.0 (2)
C1—N1—C3—O1	-79.2 (3)	C2—S1—C4—N1	1.95 (18)
C5—N2—C4—N1	179.5 (2)	C4—N2—C5—N3	-171 (3)
C5—N2—C4—S1	-0.6 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1A···N3 ⁱ	0.80 (3)	2.04 (3)	2.839 (3)	174 (3)

Symmetry code: (i) -x, -y+1, -z+2.