Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[(2,3,5,6-ŋ)-Bicyclo[2.2.1]hepta-2,5diene]dibromidopalladium(II)

Nam-Ho Kim and Kwang Ha*
School of Applied Chemical Engineering, the Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
Correspondence e-mail: hakwang@chonnam.ac.kr

Received 28 May 2009; accepted 30 May 2009

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$; R factor $=0.026 ; w R$ factor $=0.071$; data-to-parameter ratio $=18.2$.

In the title complex, $\left[\mathrm{PdBr}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\right]$, the $\mathrm{Pd}^{\mathrm{II}}$ ion lies in a distorted square-planar environment defined by the two Br atoms and the mid-points of the two π-coordinated double bonds of bicyclo[2.2.1]hepta-2,5-diene. The complex is disposed about a crystallographic mirror plane parallel to the ac plane passing through the Pd, Br atoms and the centre of the diene ligand.

Related literature

For the preparation of $\left[\mathrm{Pd} X_{2}(\mathrm{nbd})\right](X=\mathrm{Cl}$ or Br ; $\mathrm{nbd}=$ (norbornadiene), see: Alexander et al. (1960). For the crystal structure of $\left[\mathrm{PdCl}_{2}(\mathrm{nbd})\right]$, see: Baenziger et al. (1965). For the gas electron diffraction structure of norbornadiene, see: Yokozeki \& Kuchitsu (1971).

Experimental

Crystal data
$\left[\mathrm{PdBr}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\right]$
$M_{r}=358.35$
Orthorhombic, Pnma
$a=12.758$ (2) \AA
$b=7.4313$ (11) A
$c=9.0138(14) \AA$
Data collection
Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.126, T_{\text {max }}=0.180$
$V=854.6$ (2) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=11.44 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.22 \times 0.20 \times 0.15 \mathrm{~mm}$

5210 measured reflections 944 independent reflections 673 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026 \quad 52$ parameters
$w R\left(F^{2}\right)=0.071$
H -atom parameters constrained
$S=0.99$
944 reflections
$\Delta \rho_{\max }=1.10 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.79 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-412-J02001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2172).

References

Alexander, R. A., Baenziger, N. C., Carpenter, C. \& Doyle, J. R. (1960). J. Am. Chem. Soc. 82, 535-538.
Baenziger, N. C., Richards, G. F. \& Doyle, J. R. (1965). Acta Cryst. 18, 924-926.
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yokozeki, A. \& Kuchitsu, K. (1971). Bull. Chem. Soc. Jpn, 44, 2356-2363

supporting information

Acta Cryst. (2009). E65, m727 [doi:10.1107/S1600536809020583]

[(2,3,5,6- $\boldsymbol{\eta})$-Bicyclo[2.2.1]hepta-2,5-diene]dibromidopalladium(II)

Nam-Ho Kim and Kwang Ha

S1. Comment

The title complex, $\left[\mathrm{PdBr}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\right]$, is isomorphous with the analogous $\mathrm{Pd}(\mathrm{II})$ complex $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\right]($ Baenziger et al., 1965). In the complex, the central $\mathrm{Pd}^{\text {II }}$ ion is essentially in a square-planar environment defined by the two Br atoms and the two midpoints (M1, M2) of the π-coordinated double bonds of the bicyclo[2.2.1]hepta-2,5-diene (norbornadiene; nbd) ligand [M1 and M2 denote the midpoints of the olefinic bonds $\mathrm{C} 1-\mathrm{C} 1 \mathrm{a}$ and $\mathrm{C} 2-\mathrm{C} 2 \mathrm{a}$, respectively; symmetry code: (a) $x, 1 / 2-y, z]$ (Fig. 1). The complex is disposed about a crystallographic mirror plane parallel to the $a c$ plane passing through the Pd atom, the Br atoms and the centre of the ligand with the special positions $(x, 1 / 4, z)$ (Fig. 2). The pairs of $\mathrm{Pd}-\mathrm{Br}$ and $\mathrm{Pd}-\mathrm{C}$ bond lengths are almost equal ($\mathrm{Pd}-\mathrm{Br}: 2.4258$ (11) and 2.4294 (10) \AA; $\mathrm{Pd}-\mathrm{C}: 2.165$ (5) and $2.170(5) \AA$). The nbd ligand coordinates symmetrically to the Pd atom, and displays a slight increase in the double-bond distances (1.389 (10) and $1.388(10) \AA$) compared with the non-coordinating double bonds of $n b d$ in the gas phase (1.343 (3) Å; Yokozeki \& Kuchitsu, 1971).

S2. Experimental

To a solution of (bicyclo[2.2.1]hepta-2,5-diene)dichloridopalladium(II) ($0.200 \mathrm{~g}, 0.742 \mathrm{mmol}$) in EtOH (20 ml) was added $\mathrm{NaBr}(0.816 \mathrm{~g}, 7.931 \mathrm{mmol})$, and refluxed for 1 h . The formed precipitate was separated by filtration and washed with EtOH and water and dried under vacuum, to give an orange powder (0.053 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a $\mathrm{CH}_{3} \mathrm{CN}$ solution.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms $[\mathrm{C}-\mathrm{H}=0.98(\mathrm{CH})$ or 0.97
$\AA\left(\mathrm{CH}_{2}\right)$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Figure 1
The structure of the title complex, with displacement ellipsoids drawn at the 40% probability level for non-H atoms [Symmetry code: (a) x, 1/2-y,z].

Figure 2
View of the unit-cell contents of the title complex.

[(2,3,5,6- $)$-Bicyclo[2.2.1]hepta-2,5-diene]dibromidopalladium(II)

Crystal data

$\left[\mathrm{PdBr}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\right]$
$M_{r}=358.35$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=12.758$ (2) \AA
$b=7.4313$ (11) \AA
$c=9.0138(14) \AA$
$V=854.6$ (2) \AA^{3}
$Z=4$

$$
\begin{aligned}
& F(000)=664 \\
& D_{\mathrm{x}}=2.785 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \text { Ka radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2031 \text { reflections } \\
& \theta=2.7-27.9^{\circ} \\
& \mu=11.44 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Block orange } \\
& 0.22 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1000 CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.126, T_{\text {max }}=0.180$

$$
\begin{aligned}
& 5210 \text { measured reflections } \\
& 944 \text { independent reflections } \\
& 673 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.042 \\
& \theta_{\text {max }}=26.4^{\circ}, \theta_{\min }=2.8^{\circ} \\
& h=-14 \rightarrow 15 \\
& k=-8 \rightarrow 9 \\
& l=-11 \rightarrow 6
\end{aligned}
$$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.071$
$S=0.99$
944 reflections
52 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) $e t c$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Pd1	$0.06852(4)$	0.2500	$0.92135(7)$	$0.0312(2)$
Br1	$0.19165(7)$	0.2500	$1.12643(11)$	$0.0462(3)$
Br2	$-0.08564(6)$	0.2500	$1.07957(11)$	$0.0491(3)$
C1	$0.1765(4)$	$0.1566(7)$	$0.7528(6)$	$0.0363(14)$
H1	0.2388	0.0844	0.7752	0.044^{*}

C2	$-0.0067(4)$	$0.1566(7)$	$0.7196(6)$	$0.0380(14)$
H2	-0.0709	0.0844	0.7192	0.046^{*}
C3	$0.0934(4)$	$0.0997(8)$	$0.6402(7)$	$0.0419(15)$
H3	0.0967	-0.0241	0.6031	0.050^{*}
C4	$0.1048(6)$	0.2500	$0.5270(11)$	$0.052(2)$
H4A	0.1727	0.2500	0.4786	0.063^{*}
H4B	0.0492	0.2500	0.4536	0.063^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	$0.0263(3)$	$0.0349(4)$	$0.0325(4)$	0.000	$0.0009(3)$	0.000
Br1	$0.0491(5)$	$0.0448(5)$	$0.0448(6)$	0.000	$-0.0147(4)$	0.000
Br2	$0.0430(5)$	$0.0488(6)$	$0.0556(7)$	0.000	$0.0181(4)$	0.000
C1	$0.025(2)$	$0.046(3)$	$0.038(4)$	$0.007(2)$	$0.006(2)$	$-0.005(3)$
C2	$0.032(3)$	$0.048(3)$	$0.034(3)$	$-0.006(2)$	$-0.007(3)$	$-0.002(3)$
C3	$0.043(3)$	$0.040(3)$	$0.042(4)$	$0.003(3)$	$0.002(3)$	$-0.013(3)$
C4	$0.043(5)$	$0.073(7)$	$0.040(6)$	0.000	$0.005(4)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

Pd1- $\mathrm{Cl}^{\text {i }}$	2.165 (5)	C2-C2 ${ }^{\text {i }}$	1.388 (10)
Pd1-C1	2.165 (5)	C2-C3	1.523 (7)
$\mathrm{Pd} 1-\mathrm{C} 2{ }^{\text {i }}$	2.170 (5)	C2-H2	0.9800
Pd1-C2	2.170 (5)	C3-C4	1.520 (9)
$\mathrm{Pd} 1-\mathrm{Br} 1$	2.4258 (11)	C3-H3	0.9800
$\mathrm{Pd} 1-\mathrm{Br} 2$	2.4294 (10)	C4-C3 ${ }^{\text {i }}$	1.520 (9)
$\mathrm{C} 1-\mathrm{Cl}^{\mathrm{i}}$	1.389 (10)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
C1-C3	1.527 (7)	C4—H4B	0.9700
C1-H1	0.9800		
C1- ${ }^{\text {i }}$ Pd1-C1	37.4 (3)	$\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{H} 1$	123.2
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 2^{\text {i }}$	65.8 (2)	C2- 2 - $2-\mathrm{C} 3$	106.1 (3)
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 2^{\text {i }}$	78.2 (2)	$\mathrm{C} 2 \mathrm{i}-\mathrm{C} 2-\mathrm{Pd} 1$	71.35 (14)
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 2$	78.2 (2)	C3-C2—Pd1	96.4 (3)
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 2$	65.8 (2)	$\mathrm{C} 2-\mathrm{C} 2-\mathrm{H} 2$	123.2
$\mathrm{C} 2 \mathrm{i}-\mathrm{Pd} 1-\mathrm{C} 2$	37.3 (3)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	123.2
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{Br} 1$	97.05 (14)	$\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{H} 2$	123.2
C1—Pd1— Br 1	97.05 (14)	C4-C3-C2	101.0 (5)
$\mathrm{C} 2{ }^{\text {i }}$-Pd1——Br1	157.65 (14)	C4-C3-C1	100.2 (5)
$\mathrm{C} 2-\mathrm{Pd} 1-\mathrm{Br} 1$	157.65 (14)	C2-C3-C1	101.1 (4)
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{Br} 2$	157.97 (13)	C4-C3-H3	117.2
C1—Pd1—-Br2	157.97 (13)	C2-C3-H3	117.2
$\mathrm{C} 2{ }^{\text {i }}-\mathrm{Pd} 1-\mathrm{Br} 2$	97.71 (14)	C1-C3-H3	117.2
$\mathrm{C} 2-\mathrm{Pd} 1-\mathrm{Br} 2$	97.71 (14)	C3--C4-C3	94.6 (7)
$\mathrm{Br} 1-\mathrm{Pd} 1-\mathrm{Br} 2$	94.41 (4)	C3- ${ }^{\text {C }} 4-\mathrm{H} 4 \mathrm{~A}$	112.8
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{C} 1-\mathrm{C} 3$	106.1 (3)	C3-C4-H4A	112.8
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{Pd} 1$	71.29 (13)	C3- ${ }^{\text {- } 4-\mathrm{H} 4 \mathrm{~B}}$	112.8

C3-C1-Pd1	96.5 (3)	C3-C4-H4B	112.8
C1- ${ }^{\text {i }} 1-\mathrm{H} 1$	123.2	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.3
C3-C1-H1	123.2		
C2 ${ }^{\text {i }}$ - $\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{Cl}^{\text {i }}$	65.45 (15)	C2 ${ }^{\text {i }}$ - $\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 3$	104.9 (3)
$\mathrm{C} 2-\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{Cl}^{\text {i }}$	102.59 (16)	$\mathrm{Br} 1-\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 3$	-40.3 (6)
$\mathrm{Br} 2-\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 1^{\text {i }}$	146.8 (4)	$\mathrm{Br} 2-\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 3$	-162.5 (3)
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 3$	-104.8 (3)	$\mathrm{C} 2{ }^{\text {i }}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-33.3 (5)
$\mathrm{C} 2{ }^{\text {i }}$ - $\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 3$	-39.3 (3)	$\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-105.7 (4)
$\mathrm{C} 2-\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 3$	-2.2 (3)	C2 ${ }^{\text {i }}$ - $22-\mathrm{C} 3-\mathrm{C} 1$	69.5 (4)
$\mathrm{Br} 1-\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 3$	162.8 (3)	$\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1$	-2.9 (4)
$\mathrm{Br} 2-\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 3$	42.0 (6)	$\mathrm{C} 1{ }^{\text {i }}-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4$	34.0 (4)
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 2^{\text {i }}$	-65.40 (15)	Pd1-C1-C3-C4	106.4 (4)
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 2{ }^{\text {i }}$	-102.69 (16)	$\mathrm{C} 1{ }^{\text {i }}-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2$	-69.5 (4)
$\mathrm{Br} 1-\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 2{ }^{\text {i }}$	-145.2 (4)	$\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2$	2.9 (4)
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 3$	39.5 (3)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	51.1 (6)
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 3$	2.2 (3)	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	-52.5 (6)

