## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Diaquabis(tetrazolo[1,5-a]pyridine-8-carboxylato- $\kappa^{2} N^{1}, O$ )manganese(II) dihydrate

Jian-De Zhao

School of Chemistry and Chemical Engineering, Tianjin University of Technology,
Tianjin 300191, People's Republic of China
Correspondence e-mail: jiande-zhao@163.com
Received 7 June 2009; accepted 17 June 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; $R$ factor $=0.032 ; w R$ factor $=0.081$; data-to-parameter ratio $=14.6$.

In the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Mn}^{\mathrm{II}}$ atom is located on a twofold rotation axis and is octahedrally coordinated by the N and O atoms of the chelating tetrazolo[1,5-a]pyridine-8-carboxylate anions and the O atoms of two water molecules. Hydrogen bonds of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ types lead to the formation of layers parallel to (100).

## Related literature

For background to coordination compounds, see: Kulynych \& Shimizu (2002); Liu et al. (2001); Xue \& Liu (2009).

$2 \mathrm{H}_{2} \mathrm{O}$

## Experimental

## Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Orthorhombic, Pnna
$M_{r}=453.25$

$$
\begin{aligned}
& b=11.694(2) \AA \\
& c=7.5371(15) \AA \\
& V=1678.3(6) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.85 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.5 \times 0.5 \times 0.5 \mathrm{~mm}
\end{aligned}
$$

Data collection
Rigaku SCXmini diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.60, T_{\text {max }}=0.662$

## 16422 measured reflections

 1925 independent reflections 1755 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$
## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
132 parameters
$w R\left(F^{2}\right)=0.081$
H -atom parameters constrained
$S=1.20$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{\AA^{-3}}$
1925 reflections

Table 1
Hydrogen-bond geometry ( $\AA \AA^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 1 W-\mathrm{H} 11 \cdots \mathrm{O}^{\text {i }}$ | 0.85 | 1.93 | 2.7644 (17) | 166 |
| $\mathrm{O} 1 W-\mathrm{H} 12 \cdots \mathrm{O} 2 W^{\text {ii }}$ | 0.85 | 1.91 | 2.7538 (19) | 171 |
| $\mathrm{O} 2 W-\mathrm{H} 21 \cdots \mathrm{O} 1$ | 0.89 | 1.95 | 2.8287 (18) | 172 |
| $\mathrm{O} 2 W-\mathrm{H} 22 \cdots \mathrm{~N} 2^{\text {iii }}$ | 0.76 | 2.25 | 3.003 (2) | 169 |

Symmetry codes: (i) $x,-y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $x, y, z+1$; (iii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.

Data collection: SCXmini (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESSAUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2463).

## References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Kulynych, A. K. \& Shimizu, G. K. H. (2002). CrystEngComm, 4, 102-105
Liu, C.-M., Gao, S., Hu, H.-M. \& Wang, Z.-M. (2001). Chem Commun. pp. 1636-1637.
Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.
Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Xue, M. \& Liu, F.-C. (2009). Acta Cryst. E65, m684.

## supporting information

Acta Cryst. (2009). E65, m812 [doi:10.1107/S1600536809023253]

# Diaquabis(tetrazolo[1,5-a]pyridine-8-carboxylato- $\kappa^{2} N^{1}, O$ )manganese(II) dihydrate 

Jian-De Zhao

## S1. Comment

Coordination complexes have attracted great attention in recent years. (Kulynych \& Shimizu, 2002). Polydentate ligand have some heteroatom can coordinated to metal in different ways, and can form Hydrogen bonds between to give supermolecule net(Liu et al., 2001). The tetrazolo(1,5-a) pyridine-8-carboxylate have multi-coordinated position and may behavs as a polydentate ligand. The related maganese structure with two water molecules as solvent has been recently reported (Xue \& Liu, 2009).
In the title compound, the manganese atom is located on a two fold axis and octahedrally coordinated by two water molecules and two bidentate $\mathrm{N}, \mathrm{O}$ tetrazolo(1,5-a)pyridine-8-carboxylate,(Fig. 1).
Each tetrazolo(1,5-a) pyridine-8-carboxylate chelates to one manganese atom. One type of water coordinates to the manganese atom whereas the other acts as lattice water. A two dimensional supramolecular network parallel to the (100) plane, is formed by the hydrogen bond interactions between the water molecules and the nitrogen of the tetrazolo(1,5a) pyridine-8-carboxylate ligands (Table 1, Fig. 2).

The structure is closely related to the dihydrate complex (Xue \& Liu, 2009), the only difference being the occurence of two solvate water molecules in the previous structure.

## S2. Experimental

A mixture of manganeset(II)nitrate and sodium azide ( 1 mmol ), 2-chloronicotinic acid $(0.5 \mathrm{mmol})$, in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 363 K for 48 h . Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature. Yield $20 \%$ based on manganese(II). Caution: Azides may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.

## S3. Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{U}_{\text {iso }}(\mathrm{H})=$ $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}) . \mathrm{H}$ atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints $\left(\mathrm{O}-\mathrm{H}=0.85(1) \AA\right.$ and $\mathrm{H} \cdots \mathrm{H}=1.39(2) \AA$ ) with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{O})$. In the last stage of refinement they were treated as riding on their parent O atoms.


## Figure 1

A view of the title compound showing the coordination of Mn atom with the atom-labelling scheme. Ellipsoids are drawn at the $30 \%$ probability level. H atoms and the solvate water molecule have been omitted for clarity. [ Symmetry codes: (i) $-x+1 / 2,-y, z]$


Figure 2
Partial packing view showing the formation of layers parallel to the (100) plane. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines.

Diaquabis(tetrazolo[1,5-a]pyridine-8-carboxylato- $\kappa^{2} N^{1}, O$ )manganese(II) dihydrate

## Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=453.25$
Orthorhombic, Pnna
Hall symbol: -P 2a 2bc
$\begin{aligned} a & =19.041(4) \AA \\ b & =11.694(2) \AA \\ c & =7.5371(15) \AA \\ V & =1678.3(6) \AA^{3} \\ Z & =4\end{aligned}$
$F(000)=924$
$D_{\mathrm{x}}=1.794 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 15650 reflections
$\theta=3.2-27.9^{\circ}$
$\mu=0.85 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, yellow
$0.5 \times 0.5 \times 0.5 \mathrm{~mm}$

## Data collection

Rigaku SCXmini
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega$ scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.60, T_{\text {max }}=0.662$

$$
\begin{aligned}
& 16422 \text { measured reflections } \\
& 1925 \text { independent reflections } \\
& 1755 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.029 \\
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=3.2^{\circ} \\
& h=-24 \rightarrow 24 \\
& k=-15 \rightarrow 15 \\
& l=-9 \rightarrow 9
\end{aligned}
$$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.081$
$S=1.20$
1925 reflections
132 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\dot{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| Mn1 | 0.2500 | 0.0000 | $0.86700(4)$ | $0.01925(12)$ |
| O1 | $0.19724(6)$ | $0.09901(10)$ | $0.66846(16)$ | $0.0263(3)$ |
| O1W | $0.21023(6)$ | $0.11467(10)$ | $1.06874(17)$ | $0.0294(3)$ |
| H11 | 0.1888 | 0.1746 | 1.0359 | $0.044^{*}$ |
| H12 | 0.2351 | 0.1270 | 1.1599 | $0.044^{*}$ |
| O2 | $0.12016(6)$ | $0.21215(10)$ | $0.53402(17)$ | $0.0306(3)$ |
| N1 | $0.14757(7)$ | $-0.09265(11)$ | $0.85974(18)$ | $0.0233(3)$ |
| N2 | $0.12692(8)$ | $-0.18779(12)$ | $0.9450(2)$ | $0.0279(3)$ |
| N3 | $0.05962(8)$ | $-0.20081(12)$ | $0.9411(2)$ | $0.0285(3)$ |
| N4 | $0.03454(7)$ | $-0.10924(11)$ | $0.84998(17)$ | $0.0212(3)$ |
| C1 | $0.13563(9)$ | $0.13028(13)$ | $0.6301(2)$ | $0.0201(3)$ |
| C2 | $0.07619(8)$ | $0.05909(13)$ | $0.7039(2)$ | $0.0194(3)$ |
| C3 | $0.00732(9)$ | $0.08539(14)$ | $0.6756(2)$ | $0.0244(3)$ |
| H3 | -0.0036 | 0.1528 | 0.6161 | $0.029^{*}$ |
| C4 | $-0.04836(9)$ | $0.01396(14)$ | $0.7335(2)$ | $0.0276(4)$ |
| H4 | -0.0946 | 0.0355 | 0.7122 | $0.033^{*}$ |


| C5 | $-0.03481(9)$ | $-0.08466(15)$ | $0.8190(2)$ | $0.0261(4)$ |
| :--- | :--- | :--- | :--- | :--- |
| H5 | -0.0706 | -0.1336 | 0.8551 | $0.031^{*}$ |
| C6 | $0.08933(8)$ | $-0.04294(13)$ | $0.7994(2)$ | $0.0185(3)$ |
| O2W | $0.28824(7)$ | $0.12927(11)$ | $0.37555(17)$ | $0.0354(3)$ |
| H21 | 0.2590 | 0.1132 | 0.4635 | $0.053^{*}$ |
| H22 | 0.3103 | 0.1791 | 0.4079 | $0.053^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mn1 | $0.01548(18)$ | $0.02138(19)$ | $0.02089(19)$ | $0.00086(12)$ | 0.000 | 0.000 |
| O1 | $0.0199(6)$ | $0.0302(6)$ | $0.0287(6)$ | $-0.0007(5)$ | $-0.0003(5)$ | $0.0108(5)$ |
| O1W | $0.0325(7)$ | $0.0280(6)$ | $0.0277(6)$ | $0.0091(5)$ | $-0.0033(5)$ | $-0.0048(5)$ |
| O2 | $0.0297(6)$ | $0.0260(6)$ | $0.0362(7)$ | $-0.0035(5)$ | $-0.0053(6)$ | $0.0141(5)$ |
| N1 | $0.0222(7)$ | $0.0181(6)$ | $0.0295(7)$ | $-0.0005(5)$ | $-0.0016(5)$ | $0.0066(5)$ |
| N2 | $0.0295(7)$ | $0.0215(7)$ | $0.0326(8)$ | $-0.0017(6)$ | $0.0003(6)$ | $0.0083(6)$ |
| N3 | $0.0312(8)$ | $0.0219(7)$ | $0.0324(8)$ | $-0.0038(6)$ | $0.0002(6)$ | $0.0079(6)$ |
| N4 | $0.0215(7)$ | $0.0194(6)$ | $0.0226(7)$ | $-0.0044(5)$ | $0.0011(5)$ | $0.0018(5)$ |
| C1 | $0.0230(8)$ | $0.0190(7)$ | $0.0185(7)$ | $-0.0021(6)$ | $-0.0002(6)$ | $0.0016(6)$ |
| C2 | $0.0224(8)$ | $0.0175(7)$ | $0.0183(7)$ | $-0.0011(6)$ | $0.0004(6)$ | $0.0007(6)$ |
| C3 | $0.0248(8)$ | $0.0245(8)$ | $0.0239(8)$ | $0.0018(6)$ | $-0.0025(6)$ | $0.0016(6)$ |
| C4 | $0.0171(7)$ | $0.0369(9)$ | $0.0289(9)$ | $0.0015(7)$ | $-0.0009(7)$ | $-0.0018(7)$ |
| C5 | $0.0178(8)$ | $0.0326(9)$ | $0.0279(8)$ | $-0.0068(7)$ | $0.0027(7)$ | $-0.0021(7)$ |
| C6 | $0.0177(7)$ | $0.0187(7)$ | $0.0190(7)$ | $-0.0023(6)$ | $0.0001(6)$ | $-0.0003(6)$ |
| O2W | $0.0383(8)$ | $0.0386(7)$ | $0.0293(7)$ | $-0.0081(6)$ | $0.0032(5)$ | $-0.0043(5)$ |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| $\mathrm{Mn} 1-\mathrm{O} 1$ | 2.1422 (12) | N3-N4 | 1.3588 (19) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Mn} 1-\mathrm{Ol}^{\text {i }}$ | 2.1422 (12) | N4-C6 | 1.3546 (19) |
| Mn1-O1W | 2.1642 (12) | N4-C5 | 1.372 (2) |
| Mn1-O1W ${ }^{\text {i }}$ | 2.1642 (12) | C1-C2 | 1.511 (2) |
| Mn1-N1 | 2.2317 (14) | C2-C3 | 1.364 (2) |
| $\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$ | 2.2317 (14) | C2-C6 | 1.416 (2) |
| $\mathrm{O} 1-\mathrm{C} 1$ | 1.262 (2) | C3-C4 | 1.418 (2) |
| O1W-H11 | 0.8477 | C3-H3 | 0.9300 |
| O1W-H12 | 0.8471 | C4-C5 | 1.346 (2) |
| O2-C1 | 1.2362 (19) | C4-H4 | 0.9300 |
| N1-C6 | 1.332 (2) | C5-H5 | 0.9300 |
| N1—N2 | 1.3438 (19) | $\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 21$ | 0.8853 |
| N2—N3 | 1.291 (2) | $\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 22$ | 0.7585 |
| $\mathrm{O} 1-\mathrm{Mn1}-\mathrm{Ol}^{\mathrm{i}}$ | 91.38 (7) | N2-N3-N4 | 105.51 (12) |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1 \mathrm{~W}$ | 89.53 (5) | C6-N4-N3 | 108.82 (13) |
| O1-Mn1-O1W | 171.80 (5) | C6-N4-C5 | 125.01 (14) |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}$ | 171.80 (5) | N3-N4-C5 | 126.13 (14) |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}$ | 89.53 (5) | $\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$ | 125.44 (15) |
| O1W-Mn1-O1W ${ }^{\text {i }}$ | 90.73 (7) | $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ | 117.64 (14) |


| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$ | 80.53 (5) | $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | 116.89 (13) |
| :---: | :---: | :---: | :---: |
| O1- ${ }^{\text {i }}$ Mn1-N1 | 97.49 (5) | C3-C2-C6 | 116.08 (14) |
| O1W-Mn1-N1 | 90.70 (5) | C3-C2-C1 | 122.57 (14) |
| O1W ${ }^{\text {i }}$-Mn1-N1 | 91.27 (5) | C6-C2-C1 | 121.27 (14) |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$ | 97.49 (5) | C2-C3-C4 | 122.53 (15) |
| O1-Mn1-N1 ${ }^{\text {i }}$ | 80.53 (5) | C2-C3-H3 | 118.7 |
| O1W-Mn1-N1 ${ }^{\text {i }}$ | 91.27 (5) | C4-C3-H3 | 118.7 |
| O1W ${ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$ | 90.70 (5) | C5-C4-C3 | 120.56 (16) |
| $\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$ | 177.19 (7) | C5-C4-H4 | 119.7 |
| C1-O1-Mn1 | 138.78 (10) | C3-C4-H4 | 119.7 |
| Mn1-O1W-H11 | 118.4 | C4-C5-N4 | 116.47 (15) |
| Mn1-O1W-H12 | 118.7 | C4-C5-H5 | 121.8 |
| H11-O1W-H12 | 111.4 | N4-C5-H5 | 121.8 |
| C6-N1-N2 | 106.31 (13) | N1-C6-N4 | 107.18 (13) |
| C6-N1-Mn1 | 121.61 (10) | N1-C6-C2 | 133.50 (14) |
| N2-N1-Mn1 | 130.24 (11) | N4-C6-C2 | 119.29 (14) |
| N3-N2-N1 | 112.16 (13) | H21-O2W-H22 | 105.7 |

Symmetry code: (i) $-x+1 / 2,-y, z$.

Hydrogen-bond geometry ( $\hat{A},{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 W — \mathrm{H} 11 \cdots \mathrm{O} 2^{\text {ii }}$ | 0.85 | 1.93 | $2.7644(17)$ | 166 |
| $\mathrm{O} 1 W — \mathrm{H} 12 \cdots \mathrm{O} 2 W^{\text {iii }}$ | 0.85 | 1.91 | $2.7538(19)$ | 171 |
| $\mathrm{O} 2 W — \mathrm{H} 21 \cdots \mathrm{O} 1$ | 0.89 | 1.95 | $2.8287(18)$ | 172 |
| $\mathrm{O}^{2} W — \mathrm{H} 22 \cdots \mathrm{~N}^{\text {iv }}$ | 0.76 | 2.25 | $3.003(2)$ | 169 |

Symmetry codes: (ii) $x,-y+1 / 2,-z+3 / 2$; (iii) $x, y, z+1$; (iv) $-x+1 / 2, y+1 / 2,-z+3 / 2$.

