organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-Di-4-pyridyl-2,2'-dithiodipyrimidine

Hai-Bin Zhu,* Hai Wang and Lei Li

School of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China Correspondence e-mail: zhuhaibin@seu.edu.cn

Received 3 June 2009; accepted 10 June 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.158; data-to-parameter ratio = 16.9.

In the title molecule, $C_{18}H_{12}N_6S_2$, the C-S-S-C torsion angle is 96.12 (9)°. The dihedral angles between the pyridyl and pyrimidinyl rings are 16.7 (1) and 1.27 (9)°. In the crystal, intermolecular π - π interactions between the aromatic rings [centroid-centroid distances = 3.888 (2) and 3.572 (1) Å] link molecules into chains propagating in [011].

Related literature

For related crystal structures, see: Ji *et al.* (2009); Higashi *et al.* (1978); Tabellion *et al.* (2001). For general background to heterocyclic disulfides, see: Horikoshi & Mochida (2006).

Experimental

Crystal data

 $C_{18}H_{12}N_6S_2$ $\gamma = 72.983 (1)^{\circ}$
 $M_r = 376.48$ $V = 861.27 (14) Å^3$

 Triclinic, $P\overline{1}$ Z = 2

 a = 9.1060 (8) Å Mo $K\alpha$ radiation

 b = 9.3861 (9) Å $\mu = 0.32 \text{ mm}^{-1}$

 c = 10.9176 (10) Å T = 298 K

 $\alpha = 84.228 (1)^{\circ}$ $0.14 \times 0.12 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.884, T_{max} = 0.920$ (expected range = 0.930–0.968)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.158$ S = 1.123982 reflections 3982 independent reflections 3283 reflections with $I > 2\sigma(I)$ $R_{int} = 0.093$

5665 measured reflections

235 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.63$ e Å⁻³ $\Delta \rho_{min} = -0.50$ e Å⁻³

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the support of the National Natural Science Foundation of China (grant No. 20801011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2571).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Higashi, L. S., Lundeen, M. & Seff, J. (1978). J. Am. Chem. Soc. 100, 8101-8106.

Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595-2609.

- Ji, J.-F., Li, L. & Zhu, H.-B. (2009). Acta Cryst. E65, o1253.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tabellion, F. M., Seidel, S. R., Arif, A. M. & Stang, P. J. (2001). J. Am Chem. Soc. 123, 7740–7741.

supporting information

Acta Cryst. (2009). E65, o1588 [doi:10.1107/S1600536809022004]

4,4'-Di-4-pyridyl-2,2'-dithiodipyrimidine

Hai-Bin Zhu, Hai Wang and Lei Li

S1. Comment

Heterocylic disulfide ligands have been considerably studied in the field of supramolecular chemistry over past years (Horikoshi & Mochida, 2006). Herein, we report the molecular structure of the title compound (I) - the newly synthesized disulfide ligand.

In (I) (Fig. 1), the C—S—S—C torsion angle of 96.12 (9)° is much larger than that in its analogue, namely 2,2'-dithiobis(4-pyridin-3-yl-pyrimidine) (Ji *et al.*, 2009). The S—S bond length of 2.0239 (8) Å in (I) is within the normal range (Higashi *et al.*, 1978; Tabellion *et al.*, 2001). In the crystal, molecules are linked into chains through intermolecular aromatic π - π interactions (Table 1).

S2. Experimental

A solution of SO_2Cl_2 (0.5 ml) in CH_2Cl_2 (20 ml) was added dropwise into the suspension containing 4-(pyridin-4yl)pyrimidine-2-thiol (1.89 g) and 30 ml of CH_2Cl_2 . Upon addition, the mixture was stirred at room temperature for 30 min. The solid was collected by filtration and dissolved into 30 ml of H_2O . The solution PH was adjusted into the range of 8–9 to give white precipitates. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the CH_2Cl_2 solution of the title compound.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figure 1

The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.

4,4'-Di-4-pyridyl-2,2'-dithiodipyrimidine

Crystal data

 $C_{18}H_{12}N_6S_2$ $M_r = 376.48$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.1060 (8) Å b = 9.3861 (9) Å c = 10.9176 (10) Å a = 84.228 (1)° $\beta = 74.926$ (1)° $\gamma = 72.983$ (1)° V = 861.27 (14) Å³

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.884, T_{\max} = 0.920$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.158$ S = 1.123982 reflections 235 parameters Z = 2 F(000) = 388 $D_x = 1.452 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3982 reflections $\theta = 2.3-25.5^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$ T = 298 KBlock, yellow $0.14 \times 0.12 \times 0.10 \text{ mm}$

5665 measured reflections 3982 independent reflections 3283 reflections with $I > 2\sigma(I)$ $R_{int} = 0.093$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 1.9^\circ$ $h = -11 \rightarrow 12$ $k = -10 \rightarrow 11$ $l = -14 \rightarrow 13$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.026$
$w = 1/[\sigma^2(F_o^2) + (0.092P)^2]$	$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.17317 (7)	0.15307 (5)	0.45673 (4)	0.04865 (18)	
S2	0.04746 (6)	0.10746 (6)	0.34511 (5)	0.05008 (19)	
N5	0.33888 (18)	-0.04716 (16)	0.21420 (13)	0.0350 (3)	
N3	0.23093 (18)	0.39811 (16)	0.49060 (14)	0.0390 (3)	
C13	0.4305 (2)	-0.12822 (18)	0.11230 (16)	0.0350 (4)	
C10	0.1865 (2)	0.00258 (19)	0.21737 (17)	0.0372 (4)	
C14	0.6028 (2)	-0.18393 (19)	0.10565 (16)	0.0359 (4)	
N4	0.1100 (2)	-0.01902 (19)	0.13474 (17)	0.0465 (4)	
N2	0.1638 (2)	0.39133 (19)	0.29373 (16)	0.0488 (4)	
C18	0.7094 (2)	-0.2658 (2)	0.00391 (19)	0.0450 (4)	
H18A	0.6733	-0.2889	-0.0618	0.054*	
C9	0.1901 (2)	0.3355 (2)	0.40474 (17)	0.0391 (4)	
C15	0.6663 (2)	-0.1528 (2)	0.19982 (18)	0.0445 (4)	
H15A	0.6009	-0.0976	0.2695	0.053*	
C6	0.2505 (2)	0.53454 (19)	0.45950 (17)	0.0382 (4)	
C5	0.2986 (2)	0.6052 (2)	0.55342 (17)	0.0398 (4)	
N6	0.9295 (2)	-0.2845 (2)	0.09198 (18)	0.0547 (5)	
C1	0.3575 (2)	0.7282 (2)	0.5210 (2)	0.0477 (5)	
H1A	0.3689	0.7692	0.4391	0.057*	
C17	0.8683 (3)	-0.3123 (3)	0.0009 (2)	0.0537 (5)	
H17A	0.9372	-0.3662	-0.0684	0.064*	
C11	0.2021 (2)	-0.0998 (2)	0.03537 (19)	0.0481 (5)	
H11A	0.1556	-0.1189	-0.0254	0.058*	
C7	0.2231 (3)	0.6050(2)	0.3465 (2)	0.0510 (5)	
H7A	0.2337	0.7005	0.3253	0.061*	
C12	0.3641 (2)	-0.1563 (2)	0.01909 (19)	0.0445 (4)	
H12A	0.4265	-0.2112	-0.0517	0.053*	
C16	0.8274 (3)	-0.2050 (3)	0.1883 (2)	0.0525 (5)	
H16A	0.8673	-0.1831	0.2522	0.063*	
C4	0.2837 (3)	0.5510(3)	0.6763 (2)	0.0586 (6)	
H4B	0.2450	0.4686	0.7018	0.070*	
N1	0.3860 (3)	0.7375 (2)	0.7322 (2)	0.0695 (6)	

supporting information

C8	0 1796 (3)	0 5286 (2)	0 2664 (2)	0 0546 (5)
H8A	0.1605	0.5747	0.1904	0.066*
C2	0.3989 (3)	0.7884 (3)	0.6135 (2)	0.0584 (6)
H2B	0.4387	0.8704	0.5905	0.070*
C3	0.3270 (4)	0.6206 (3)	0.7623 (2)	0.0737 (8)
H3B	0.3142	0.5837	0.8455	0.088*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S 1	0.0729 (4)	0.0372 (3)	0.0380 (3)	-0.0224 (2)	-0.0072 (2)	-0.0058 (2)
S2	0.0442 (3)	0.0486 (3)	0.0559 (3)	-0.0174 (2)	0.0021 (2)	-0.0188 (2)
N5	0.0447 (8)	0.0311 (7)	0.0309 (7)	-0.0148 (6)	-0.0068 (6)	-0.0009 (6)
N3	0.0498 (9)	0.0321 (7)	0.0342 (7)	-0.0121 (6)	-0.0061 (6)	-0.0053 (6)
C13	0.0472 (9)	0.0291 (8)	0.0291 (8)	-0.0153 (7)	-0.0047 (7)	-0.0005 (6)
C10	0.0462 (10)	0.0306 (8)	0.0372 (9)	-0.0179 (7)	-0.0061 (7)	-0.0008 (7)
C14	0.0467 (10)	0.0302 (8)	0.0311 (8)	-0.0141 (7)	-0.0065 (7)	0.0013 (6)
N4	0.0465 (9)	0.0481 (9)	0.0506 (9)	-0.0194 (7)	-0.0123 (7)	-0.0064 (7)
N2	0.0622 (11)	0.0463 (9)	0.0425 (9)	-0.0183 (8)	-0.0164 (8)	-0.0035 (7)
C18	0.0487 (11)	0.0450 (10)	0.0391 (9)	-0.0091 (8)	-0.0082 (8)	-0.0087 (8)
C9	0.0438 (9)	0.0359 (9)	0.0345 (8)	-0.0099 (7)	-0.0032 (7)	-0.0071 (7)
C15	0.0516 (11)	0.0480 (11)	0.0344 (9)	-0.0162 (8)	-0.0078 (8)	-0.0036 (8)
C6	0.0430 (9)	0.0324 (8)	0.0372 (9)	-0.0090 (7)	-0.0062 (7)	-0.0047 (7)
C5	0.0448 (10)	0.0307 (8)	0.0414 (9)	-0.0081 (7)	-0.0061 (8)	-0.0084 (7)
N6	0.0498 (10)	0.0580 (11)	0.0529 (10)	-0.0117 (8)	-0.0121 (8)	0.0037 (8)
C1	0.0515 (11)	0.0438 (10)	0.0470 (11)	-0.0161 (8)	-0.0045 (8)	-0.0085 (8)
C17	0.0528 (12)	0.0509 (12)	0.0489 (11)	-0.0052 (9)	-0.0055 (9)	-0.0087 (9)
C11	0.0554 (11)	0.0548 (12)	0.0429 (10)	-0.0236 (9)	-0.0148 (9)	-0.0085 (9)
C7	0.0694 (13)	0.0378 (10)	0.0502 (11)	-0.0189 (9)	-0.0198 (10)	0.0054 (8)
C12	0.0541 (11)	0.0462 (11)	0.0367 (9)	-0.0179 (8)	-0.0092 (8)	-0.0101 (8)
C16	0.0558 (12)	0.0634 (13)	0.0444 (11)	-0.0225 (10)	-0.0180 (9)	0.0042 (9)
C4	0.0924 (17)	0.0458 (12)	0.0475 (12)	-0.0306 (11)	-0.0207 (11)	-0.0032 (9)
N1	0.0925 (16)	0.0651 (13)	0.0639 (13)	-0.0318 (11)	-0.0235 (12)	-0.0193 (10)
C8	0.0737 (14)	0.0501 (12)	0.0465 (11)	-0.0202 (10)	-0.0255 (11)	0.0069 (9)
C2	0.0635 (14)	0.0516 (13)	0.0656 (15)	-0.0244 (10)	-0.0103 (11)	-0.0161 (11)
C3	0.120 (2)	0.0663 (16)	0.0496 (13)	-0.0387 (16)	-0.0302 (15)	-0.0036 (11)

Geometric parameters (Å, °)

<u>81—C9</u>	1.7867 (19)	C5—C4	1.374 (3)	
S1—S2	2.0238 (7)	C5—C1	1.388 (3)	
S2—C10	1.7734 (19)	N6—C17	1.339 (3)	
N5-C10	1.321 (2)	N6—C16	1.331 (3)	
N5-C13	1.352 (2)	C1—C2	1.385 (3)	
N3—C9	1.335 (2)	C1—H1A	0.9300	
N3—C6	1.342 (2)	C17—H17A	0.9300	
C13—C12	1.392 (2)	C11—C12	1.384 (3)	
C13—C14	1.486 (3)	C11—H11A	0.9300	

C10—N4	1.336 (2)	C7—C8	1.382 (3)
C14—C18	1.393 (3)	С7—Н7А	0.9300
C14—C15	1.395 (3)	C12—H12A	0.9300
N4—C11	1.332 (3)	C16—H16A	0.9300
N2—C8	1.333 (3)	C4—C3	1.389 (3)
N2—C9	1.323 (2)	C4—H4B	0.9300
C18—C17	1 377 (3)	N1-C2	1 323 (3)
C18—H18A	0.9300	N1—C3	1.325(3)
C_{15}	1 380 (3)	C8_H8A	0.9300
C15U15A	0.0300	C_2 H_2B	0.9300
C6 C7	1 296 (2)	$C_2 = H_2 D$	0.9300
	1.360 (3)	Сэ—пэв	0.9300
0-05	1.491 (2)		
Cg1···Cg2 ⁱ	3.888 (2)	Cg3····Cg4 ⁱⁱ	3.572 (1)
C9—S1—S2	104.02 (6)	C2—C1—C5	118.5 (2)
C10—S2—S1	106.81 (6)	C2—C1—H1A	120.8
C10—N5—C13	115.68 (14)	С5—С1—Н1А	120.8
C9—N3—C6	115 86 (16)	N6-C17-C18	123 76 (19)
N5-C13-C12	120.70(17)	N6-C17-H17A	118.1
N5-C13-C14	116 75 (15)	C18 - C17 - H17A	118.1
C_{12} C_{13} C_{14}	122 55 (16)	N4 C11 C12	122 50 (16)
N5 C10 N4	122.33(10) 128.71(17)	N4 - C11 + H11A	122.30 (10)
N5 C10 S2	120.71(17) 122.14(12)	N4-CII-HIIA	110.0
N5-C10-S2	122.14 (13)		118.7
N4—C10—S2	109.10 (13)		117.84 (19)
C18—C14—C15	116.68 (17)	С8—С/—Н/А	121.1
C18—C14—C13	121.97 (16)	С6—С7—Н7А	121.1
C15—C14—C13	121.33 (16)	C11—C12—C13	117.66 (17)
C10—N4—C11	114.73 (16)	C11—C12—H12A	121.2
C8—N2—C9	114.58 (16)	C13—C12—H12A	121.2
C17—C18—C14	119.77 (18)	N6—C16—C15	124.43 (18)
C17—C18—H18A	120.1	N6—C16—H16A	117.8
C14—C18—H18A	120.1	C15—C16—H16A	117.8
N3—C9—N2	128.50 (18)	C5—C4—C3	119.3 (2)
N3—C9—S1	111.00 (14)	C5—C4—H4B	120.4
N2—C9—S1	120.50 (14)	C3—C4—H4B	120.4
C16—C15—C14	119.14 (18)	C2—N1—C3	116.0 (2)
C16—C15—H15A	120.4	N2-C8-C7	122.63(19)
C14— $C15$ — $H15A$	120.1	N2-C8-H8A	118 7
N3_C6_C7	120.4 120.54(17)	C7 - C8 - H8A	118.7
$N_3 = C_6 = C_7$	120.34(17) 116.60(16)	$N_1 = C_2 = C_1$	124.7(2)
13-20-23	110.00(10) 122.84(17)	N1 = C2 = C1	124.7 (2)
$C_1 = C_2 = C_3$	122.04(17) 117.72(19)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117.0
$C_4 = C_5 = C_1$	117.73(10) 120.55(10)	$C_1 - C_2 - \Pi_2 D$	11/.0
$\begin{array}{c} \mathbf{C} \mathbf{A} = \mathbf{C} \mathbf{C} \mathbf{A} \\ \mathbf{C} \mathbf{A} = \mathbf{C} \mathbf{C} \mathbf{C} \\ \mathbf{C} \mathbf{A} = \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \\ \mathbf{C} \mathbf{A} = \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \\ \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \\ \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}$	120.55 (18)	NI-C3-U2D	123.8 (2)
C1—C5—C6	121.71 (18)	NI-C3-H3B	118.1
C17—N6—C16	116.21 (18)	C4—C3—H3B	118.1

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*.