Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Methyl-4,6-bis(1-methylhydrazino)pyrimidine

Daniel J. Hutchinson, Lyall R. Hanton* and Stephen C. Moratti

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand Correspondence e-mail: Ihanton@chemistry.otago.ac.nz

Received 19 March 2009; accepted 8 June 2009
Key indicators: single-crystal X-ray study; $T=90 \mathrm{~K} ;$ mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA ; R$ factor $=$ $0.035 ; w R$ factor $=0.096$; data-to-parameter ratio $=12.7$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{6}$, the amine groups of the two methylhydrazino substituents are orientated in the opposite direction to the methyl substituent at the 2-position of the pyrimidine ring. The molecule is almost planar with only the two amine N atoms lying substantially out of the mean plane of the pyrimidine ring [by 0.1430 (2) and 0.3092 (2) Å]. The H atoms on these amine groups point inwards towards the aromatic ring, such that the lone pair of electrons points outwards from the molecule. Each molecule is linked to two others through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds between the two amino groups, forming a one-dimensional chain in the [010] direction. Offset face-to-face $\pi-\pi$ stacking interactions between the pyrimidine rings organize these chains into a two-dimensional array [centroid-centroid distance = 3.789 (2) \AA].

Related literature

For the use of related compounds in the synthesis of molecular strands see: Schmitt et al. (2003), Schmitt \& Lehn (2003), Gardinier et al. (2000).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{6}$

$$
M_{r}=182.24
$$

Monoclinic, $P 2_{1} / n$
$a=9.2255$ (6) A
$Z=4$
$b=8.5075$ (6) \AA
Mo $K \alpha$ radiation
$c=12.2323(7) \AA$
$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=109.233(3)^{\circ}$
$T=90 \mathrm{~K}$
$V=906.48(10) \AA^{3}$
$0.40 \times 0.32 \times 0.18 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2006)
$T_{\text {min }}=0.905, T_{\text {max }}=0.980$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.096$
$S=1.04$
1691 reflections
133 parameters

16072 measured reflections
1691 independent reflections 1652 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 6-\mathrm{H} 61 \cdots \mathrm{~N} 4^{\mathrm{i}}$	$0.932(16)$	$2.177(17)$	$3.0933(18)$	$167.5(14)$
$\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{~N} 2^{\text {ii }}$	$0.909(16)$	$2.504(16)$	$3.3319(18)$	$151.6(12)$
$\mathrm{N} 6-\mathrm{H} 62 \cdots \mathrm{~N} 1^{\text {ii }}$	$0.945(17)$	$2.418(17)$	$3.334(2)$	$163.3(13)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 2^{\text {iii }}$	$0.930(16)$	$2.268(16)$	$3.1722(18)$	$164.2(13)$
Symmetry codes:	(i)	$-x+\frac{5}{2}, y+\frac{1}{2},-z+\frac{3}{2} ;$	(ii)	$-x+2,-y,-z+1 ;$
$x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.				

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004).

We wish to thank the New Economic Research Fund (grant No UOO-X0808) of the New Zealand Foundation of Research Science and Technology for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2120).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Gardinier, K. M., Khoury, R. G. \& Lehn, J.-M. (2000). Chem. Eur. J. 6, 41244131.

Schmitt, J.-L. \& Lehn, J.-M. (2003). Helv. Chim. Acta, 86, 3417-3426.
Schmitt, J.-L., Stadler, A.-M., Kyritsakas, N. \& Lehn, J.-M. (2003). Helv. Chim. Acta, 86, 1598-1624.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1546 [doi:10.1107/S1600536809021643]

2-Methyl-4,6-bis(1-methylhydrazino)pyrimidine

Daniel J. Hutchinson, Lyall R. Hanton and Stephen C. Moratti

S1. Comment

Although 1 is unstable in air, we were able to isolate X-ray quality crystals. Compound 1 was prepared in quantitative yield through the reaction of methylhydrazine and 4,6-dichloro-2-methylpyrimidine under an inert N_{2} atmosphere. In 1 the amine groups (N 4 and N 6) were orientated in the opposite direction to the methyl group (C5). The molecule was planar with only N4 and N6 being out of the mean plane of the pyrimidine ring by 0.1430 (2) and 0.3092 (2) \AA, respectively. The hydrogen atoms on these amine groups were located from difference Fourier maps and freely refined. They pointed inwards towards C3 such that the lone pair of electrons on N4 and N6 pointed outwards from the molecule.

Each molecule of 1 was linked to two others through H-bonding between N4 and N6 (Figure 2). The N6-H $\cdots \mathrm{N} 4$ distance was measured as 2.177 (16) \AA, which corresponded to a N6 $\cdots \mathrm{N} 4$ distance of 3.093 (2) \AA. This H-bond linked molecules of 1 together to form a one dimensional chain in the [$01-1$ direction. The angle between the planes of adjacent H-bonded molecules was 72.97 (1) ${ }^{\circ}$. Offset, face-to-face $\pi-\pi$ stacking interactions between the pyrimidine rings organized these chains into a two dimensional array. The centroid to centroid distance for this $\pi-\pi$ interaction was 3.789 (2) Å.

S2. Experimental

Under magnetic stirring, 4,6-dichloro-2-methylpyrimidine, ($0.4792 \mathrm{~g}, 2.94 \mathrm{mmol}$) dissolved in EtOH (30 ml), was added by portions over 20 min to ice cooled methylhydrazine ($2.00 \mathrm{ml}, 38.0 \mathrm{mmol}$) flushed with Ar. The mixture was refluxed for 6 h under an inert atmosphere of N_{2}. After cooling, residual methylhydrazine and EtOH were evaporated, $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.025 \mathrm{~g})$ and $\mathrm{CHCl}_{3}(50 \mathrm{ml})$ were added to the solid residue, and the mixture was stirred for 20 min . The liquid phase was filtered and the solid was washed with more $\mathrm{CHCl}_{3}(50 \mathrm{ml}$ then 30 ml$)$. The combined liquid fractions were evaporated and the resulting solid was dried in vacuo to gave 1 as a white solid (0.5566 g , quant.), unstable in air: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta /$ p.p.m.: $5.95(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 5), 3.99\left(4 \mathrm{H}, \mathrm{bs}, \mathrm{NH}_{2}\right), 3.22(6 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 7) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta /$ p.p.m.: $166.0(\mathrm{C} 2), 165.2(\mathrm{C} 4, \mathrm{C} 6), 78.1(\mathrm{C} 5), 39.9(\mathrm{C} 8), 26.2$ (C7). ESMS m$/ z$ Found: 365.1063 $[2 M+H]^{+}, 183.1353[M+H]^{+}, 151.0966\left[M-\left(\mathrm{NH}_{2}\right)_{2}\right]^{+}$. Calc. for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{6}:[M+\mathrm{H}]^{+}$183.1353. Selected IR (KBr disc) v / cm^{-1} : 3296 (s, NH str), 3177 (m, CH str), 2933 (m, CH str), 1588 (s , br, NH bend), 1499 (m, pym str), 1399 (m, CH bend), 1136 (w, CN str). Crystals suitable for X-ray determination were grown by slow evaporation of a CDCl_{3} solution of 1.

S3. Refinement

All H -atoms bound to carbon were refined using a riding model with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.93 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for the CH H atoms and $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.96 \AA, U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{C})$ for the $\mathrm{CH}_{3} \mathrm{H}$ atoms. All H -atoms bound to nitrogen were located from difference Fourier maps and freely refined with $U_{\mathrm{iso}}=1.5 U_{\text {eq }}(\mathrm{N})$.

Figure 1
The asymmetric unit of (1) showing the atom numbering with displacement ellipsoids drawn at the 50% probability level.

Figure 2
View of the arrangement of 1 into one-dimensional chains through H -bonding and organization of the chains into a twodimensional array through $\pi-\pi$ stacking.

2-Methyl-4,6-bis(1-methylhydrazino)pyrimidine

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{6}$
$M_{r}=182.24$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=9.2255$ (6) \AA
$b=8.5075$ (6) \AA
$c=12.2323(7) \AA$
$\beta=109.233$ (3) ${ }^{\circ}$
$V=906.48(10) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=392 \\
& D_{\mathrm{x}}=1.335 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71069 \AA \\
& \text { Cell parameters from } 6739 \text { reflections } \\
& \theta=2.4-39.2^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=90 \mathrm{~K} \\
& \text { Rhomb, colourless } \\
& 0.40 \times 0.32 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
$T_{\text {min }}=0.905, T_{\text {max }}=0.980$

> 16072 measured reflections
> 1691 independent reflections
> 1652 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.026$
> $\theta_{\max }=25.5^{\circ}, \theta_{\min }=3.0^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-10 \rightarrow 10$
> $l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.096$
$S=1.04$
1691 reflections
133 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.73886(13)$	$0.17687(13)$	$0.47904(9)$	$0.0164(3)$
C2	$0.93621(12)$	$0.07975(13)$	$0.63049(9)$	$0.0154(3)$
C3	$1.04186(12)$	$0.15748(13)$	$0.59004(9)$	$0.0161(3)$

H3	1.1469	0.1510	0.6289	0.019^{*}
C4	$0.98251(13)$	$0.24539(13)$	$0.48866(10)$	$0.0157(3)$
C5	$0.56857(13)$	$0.18783(15)$	$0.41657(10)$	$0.0222(3)$
H5A	0.5198	0.0927	0.4284	0.033^{*}
H5B	0.5501	0.2024	0.3353	0.033^{*}
H5C	0.5273	0.2754	0.4462	0.033^{*}
C6	$0.87526(13)$	$-0.07473(15)$	$0.78187(10)$	$0.0208(3)$
H6A	0.8765	-0.0070	0.8449	0.031^{*}
H6B	0.9064	-0.1786	0.8108	0.031^{*}
H6C	0.7734	-0.0785	0.7268	0.031^{*}
C7	$1.01177(14)$	$0.42150(15)$	$0.33820(11)$	$0.0233(3)$
H7A	0.9543	0.3559	0.2749	0.035^{*}
H7B	1.0940	0.4712	0.3194	0.035^{*}
H7C	0.9454	0.5004	0.3519	0.035^{*}
N1	$0.78212(10)$	$0.08954(11)$	$0.57463(8)$	$0.0164(2)$
N2	$0.82871(11)$	$0.25598(11)$	$0.43155(8)$	$0.0167(2)$
N3	$0.98058(10)$	$-0.01433(12)$	$0.72595(8)$	$0.0186(2)$
N4	$1.13791(11)$	$-0.04093(12)$	$0.78658(8)$	$0.0186(2)$
H4A	$1.1891(17)$	$0.0522(19)$	$0.8151(13)$	0.028^{*}
H4B	$1.1821(17)$	$-0.0851(19)$	$0.7376(14)$	0.028^{*}
N5	$1.07451(11)$	$0.32649(12)$	$0.44126(8)$	$0.0196(2)$
N6	$1.23407(11)$	$0.29663(13)$	$0.47455(9)$	$0.0202(2)$
H61	$1.2826(18)$	$0.3324(19)$	$0.5497(14)$	0.030^{*}
H62	$1.2505(17)$	$0.187(2)$	$0.4720(13)$	0.030^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0154(6)$	$0.0164(5)$	$0.0172(6)$	$0.0002(4)$	$0.0053(4)$	$-0.0020(4)$
C2	$0.0170(5)$	$0.0143(5)$	$0.0147(5)$	$0.0007(4)$	$0.0048(4)$	$-0.0043(4)$
C3	$0.0129(5)$	$0.0173(5)$	$0.0171(5)$	$-0.0002(4)$	$0.0035(4)$	$-0.0027(4)$
C4	$0.0156(5)$	$0.0142(5)$	$0.0175(5)$	$-0.0010(4)$	$0.0059(4)$	$-0.0041(4)$
C5	$0.0146(6)$	$0.0280(7)$	$0.0226(6)$	$-0.0004(5)$	$0.0044(5)$	$0.0059(5)$
C6	$0.0194(6)$	$0.0255(6)$	$0.0187(6)$	$0.0002(5)$	$0.0078(5)$	$0.0020(5)$
C7	$0.0199(6)$	$0.0246(6)$	$0.0265(6)$	$0.0002(5)$	$0.0090(5)$	$0.0065(5)$
N1	$0.0142(5)$	$0.0180(5)$	$0.0171(5)$	$0.0004(4)$	$0.0052(4)$	$-0.0008(4)$
N2	$0.0144(5)$	$0.0179(5)$	$0.0174(5)$	$-0.0002(4)$	$0.0047(4)$	$-0.0002(4)$
N3	$0.0135(5)$	$0.0244(5)$	$0.0172(5)$	$0.0009(4)$	$0.0040(4)$	$0.0036(4)$
N4	$0.0146(5)$	$0.0213(5)$	$0.0179(5)$	$0.0020(4)$	$0.0026(4)$	$0.0000(4)$
N5	$0.0121(5)$	$0.0238(5)$	$0.0228(5)$	$-0.0001(4)$	$0.0056(4)$	$0.0035(4)$
N6	$0.0138(5)$	$0.0238(6)$	$0.0226(5)$	$-0.0011(4)$	$0.0056(4)$	$-0.0020(4)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.3308(15)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9600
$\mathrm{C} 1-\mathrm{N} 2$	$1.3397(15)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9600
$\mathrm{C} 1-\mathrm{C} 5$	$1.5067(17)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	0.9600
$\mathrm{C} 2-\mathrm{N} 1$	$1.3619(16)$	$\mathrm{C} 7-\mathrm{N} 5$	$1.4480(16)$

C2-N3
C2-C3
C3-C4
C3-H3
$\mathrm{C} 4-\mathrm{N} 2$
C4—N5
C5-H5A
C5-H5B
C5-H5C
C6-N3
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$
N1-C1-C5
N2- $\mathrm{C} 1-\mathrm{C} 5$
N1-C2-N3
N1-C2-C3
N3-C2-C3
C4-C3-C2
C4-C3-H3
C2-C3-H3
N2-C4-N5
N2-C4-C3
N5-C4-C3
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$
C1-C5—H5B
H5A-C5-H5B
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$
H5A-C5-H5C
H5B-C5-H5C
N3-C6-H6A
N3-C6-H6B
H6A-C6-H6B
N3-C6-H6C
1.3625 (15)
1.3965 (16)
1.3963 (17)
0.9300
1.3626 (16)
1.3626 (16)
0.9600
0.9600
0.9600
1.4540 (15)
127.74 (10)
116.17 (10)
116.09 (10)
115.80 (10)
121.89 (10)
122.28 (10)
116.94 (10)
121.5
121.5
115.97 (10)
121.89 (10)
122.15 (10)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5

$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9600
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9600
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9600
N3-N4	$1.4138(14)$
N4—H4A	$0.930(16)$
N4-H4B	$0.909(16)$
N5-N6	$1.4151(15)$
N6-H61	$0.932(16)$
N6-H62	$0.945(17)$

H6A-C6-H6C	109.5
H6B-C6-H6C	109.5
N5-C7-H7A	109.5
N5-C7-H7B	109.5
H7A-C7-H7B	109.5
N5-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
C1-N1-C2	$115.87(9)$
C1-N2-C4	$115.66(10)$
C2-N3-N4	$120.69(9)$
C2-N3-C6	$123.50(10)$
N4-N3-C6	$115.24(9)$
N3-N4-H4A	$111.5(9)$
N3-N4-H4B	$109.0(9)$
H4A-N4-H4B	$108.5(13)$
C4-N5-N6	$121.43(10)$
C4-N5-C7	$121.78(10)$
N6-N5-C7	$115.49(9)$
N5-N6-H61	$110.0(10)$
N5-N6-H62	$109.3(9)$
H61-N6-H62	$108.9(13)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6—H61 $\cdots \mathrm{N} 4$	i	$0.932(16)$	$2.177(17)$	$3.0933(18)$
N4—H4B $\cdots \mathrm{N} 2^{\mathrm{iii}}$	$0.909(16)$	$2.504(16)$	$3.3319(18)$	$167.5(14)$
N6—H62 $\cdots \mathrm{N} 1^{\mathrm{ii}}$	$0.945(17)$	$2.418(17)$	$3.334(2)$	$163.3(13)$
N4—H4A $\cdots \mathrm{N} 2^{\mathrm{iii}}$	$0.930(16)$	$2.268(16)$	$3.1722(18)$	$164.2(13)$

[^0]
[^0]: Symmetry codes: (i) $-x+5 / 2, y+1 / 2,-z+3 / 2$; (ii) $-x+2,-y,-z+1$; (iii) $x+1 / 2,-y+1 / 2, z+1 / 2$.

