

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-[(7R,14R)-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$](oxalato- $\kappa^2 O$,O')nickel(II) oxalic acid solvate

Guang-Chuan Ou,* Yong-Qiang Dai and Man-Sheng Tang

Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China Correspondence e-mail: ouguangchuan@yahoo.com.cn

Received 14 May 2009; accepted 26 May 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.064; data-to-parameter ratio = 17.8.

Both molecules of the title compound, $[Ni(C_2O_4)-(C_{16}H_{36}N_4)]\cdot C_2H_2O_4$, are located on a crystallographic twofold rotation axis. The Ni^{II} atom shows a distorted octahedral geometry. The crystal packing is stabilized by $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds.

Related literature

For general background, see: Tait & Busch (1976); Curtis (1965). For a related crystal structure, see: Tang *et al.* (2002).

Experimental

Crystal data [Ni(C₂O₄)(C₁₆H₃₆N₄)]·C₂H₂O₄ $M_r = 521.25$

Orthorhombic, $P2_{1}2_{1}2_{1}2_{1}a = 10.1261 (15) \text{ Å}^{12}$

b = 15.515 (2) Å c = 8.0467 (11) Å V = 1264.2 (3) Å³ Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.695, T_{\rm max} = 0.887$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.064$ S = 1.082740 reflections 154 parameters H-atom parameters constrained Mo $K\alpha$ radiation $\mu = 0.82 \text{ mm}^{-1}$ T = 173 K $0.48 \times 0.21 \times 0.15 \text{ mm}$

5665 measured reflections 2740 independent reflections 2435 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.40 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{\rm min} = -0.19 \ e \ \mathring{A}^{-3} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ 1131 \ {\rm Friedel \ pairs} \\ {\rm Flack \ parameter: \ 0.027 \ (13)} \end{array}$

3.075 (2)

2.987 (2)

 $D - H \cdot \cdot \cdot A$

164

152

Table 1Hydrogen-bond geometry (Å, °).

 $N1 - H1C \cdot \cdot \cdot O4^{i}$

 $N2-H2C\cdots O2^{ii}$

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$

0.93

0.93

$O3-H3A\cdots O2^{iii}$	0.84	1.70	2.532 (2)	170
Symmetry codes: (i) x, y	-1, z; (ii)	x, y, z + 1; (iii) -	x + 2, -y + 1, z.	

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

2.17

2.13

This work was supported financially by the Foundation for University Key Teachers by the Education Department of Hunan Province and the Key Subject Construction Project of Hunan Province (No. 2006–180).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2961).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Curtis, N. F. (1965). J. Chem. Soc. A, pp. 924-931.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Tait, A. M. & Busch, D. H. (1976). Inorg. Synth. 18, 4-7.
- Tang, J. K., Gao, E. Q., Zhang, L., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2002). J. Coord. Chem. 55, 527–535.

supporting information

Acta Cryst. (2009). E65, m723 [doi:10.1107/S1600536809020042]

cis-[(7*R*,14*R*)-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$](oxalato- $\kappa^2 O$,O')nickel(II) oxalic acid solvate

Guang-Chuan Ou, Yong-Qiang Dai and Man-Sheng Tang

S1. Comment

Recently, many helical structures have been constructed through the coordination interactions of the organic ligand with suitable metal ions. Helical polymers constructed *via* hydrogen bonding, which is a versatile and efficient strategy, are still rare, and only a few cases have been reported. Then we employ chiral macrocyclic ligand *L* and oxalic acid as building blocks to construct helical structure, and unfortunately the helical structure is not obtained.

As illustrated in Fig.1, the six-coordinated Ni centre displays a distorted octahedral geometry. Neighbouring molecules are connected through intermolecular N-H···O and O-H···O hydrogen bonds (Fig. 2).

S2. Experimental

Oxalic acid (0.5 g, 4 mmol) and NaOH (0.08 g, 2 mmol) were dissolved in 15 ml of water. To this solution was added $[Ni(C_{16}H_{36}N_4)](ClO_4)_2$ (0.54 g, 1 mmol) dissolved in 2 ml of CH₃CN. The solution was left to stand at room temperature and violet crystals formed after several weeks.

S3. Refinement

All H atoms were placed in calculated positions (O—H = 0.84Å, N—H = 0.93Å, C—H 0.98 to 1.00 Å) and were included in the refinement in the riding model approximation, with U_{iso} (H) set to 1.2 U_{eq} (C,N) or 1.5 U_{eq} (C_{methyl},O).

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level; symmetry codes for the generated atoms: A(1 - x, 2 - y, z), B(2 - x, -y, z). H-atoms have been excluded for clarity.

Figure 2

The hydrogen bond pattern in the title compound.

cis-[(7*R*,14*R*)-5,5,7,12,12,14-Hexamethyl-1,4,8,11- tetraazacyclotetradecane- $\kappa^4 N$](oxalato- $\kappa^2 O$,O')nickel(II) oxalic acid solvate

F(000) = 556

 $\theta = 2.4 - 26.9^{\circ}$

 $\mu = 0.82 \text{ mm}^{-1}$

Prism, violet

 $0.48 \times 0.21 \times 0.15 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.369 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3630 reflections

Crystal data

 $[Ni(C_2O_4)(C_{16}H_{36}N_4)] \cdot C_2H_2O_4$ $M_r = 521.25$ Orthorhombic, $P2_12_12$ Hall symbol: P 2 2ab a = 10.1261 (15) Å b = 15.515 (2) Å c = 8.0467 (11) Å $V = 1264.2 (3) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART CCD area-detector	5665 measured reflections
diffractometer	2740 independent reflections
Radiation source: fine-focus sealed tube	2435 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
φ and ω scans	$\theta_{\rm max} = 27.1^\circ, \ \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Sheldrick, 1996)	$k = -19 \rightarrow 8$
$T_{\min} = 0.695, \ T_{\max} = 0.887$	$l = -10 \longrightarrow 8$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.064$	$w = 1/[\sigma^2(F_o^2) + (0.0267P)^2]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
2740 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
154 parameters	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1131 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.027 (13)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	1.0000	0.0000	0.60729 (3)	0.02079 (9)
C10	0.57461 (18)	1.00225 (19)	0.2451 (2)	0.0304 (4)

01	1.09484 (13)	0.05954 (8)	0.40383 (17)	0.0245 (3)
N1	0.81963 (17)	0.07108 (10)	0.6220 (2)	0.0256 (4)
H1C	0.7759	0.0597	0.5227	0.031*
C3	1.0605 (3)	0.17864 (15)	0.7602 (3)	0.0338 (6)
H3	1.0887	0.1991	0.6478	0.041*
C5	0.9146 (3)	0.19508 (15)	0.7775 (3)	0.0366 (6)
H5A	0.9025	0.2577	0.7950	0.044*
H5B	0.8846	0.1659	0.8801	0.044*
N2	1.09305 (18)	0.08487 (10)	0.7733 (2)	0.0271 (4)
H2C	1.0718	0.0672	0.8804	0.032*
O2	1.12362 (14)	0.03860 (10)	0.13153 (16)	0.0360 (4)
O3	0.62920 (15)	0.94107 (11)	0.1583 (2)	0.0423 (4)
H3A	0.7117	0.9467	0.1609	0.064*
O4	0.63195 (17)	1.05745 (11)	0.3227 (2)	0.0520 (5)
C2	1.2350 (2)	0.06808 (14)	0.7481 (3)	0.0331 (5)
H2A	1.2869	0.0964	0.8369	0.040*
H2B	1.2636	0.0920	0.6399	0.040*
C9	1.0624 (2)	0.02855 (12)	0.2656 (2)	0.0249 (4)
C1	0.7410 (2)	0.02740 (14)	0.7515 (3)	0.0334 (5)
H1A	0.6460	0.0390	0.7329	0.040*
H1B	0.7652	0.0505	0.8620	0.040*
C6	0.8215 (2)	0.16770 (13)	0.6365 (2)	0.0301 (5)
C4	1.1353 (3)	0.23189 (14)	0.8912 (3)	0.0486 (7)
H4A	1.1131	0.2930	0.8782	0.073*
H4B	1.2306	0.2240	0.8764	0.073*
H4C	1.1097	0.2126	1.0027	0.073*
C8	0.6827 (3)	0.20270 (16)	0.6697 (3)	0.0452 (6)
H8A	0.6209	0.1782	0.5888	0.068*
H8B	0.6833	0.2656	0.6594	0.068*
H8C	0.6551	0.1866	0.7823	0.068*
C7	0.8682 (2)	0.20360 (14)	0.4693 (3)	0.0343 (5)
H7A	0.9557	0.1803	0.4432	0.051*
H7B	0.8731	0.2666	0.4756	0.051*
H7C	0.8057	0.1869	0.3821	0.051*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Nil	0.02928 (17)	0.02073 (15)	0.01236 (14)	-0.00015 (18)	0.000	0.000	
C10	0.0352 (10)	0.0320 (10)	0.0240 (9)	-0.0018 (13)	-0.0030 (8)	0.0069 (14)	
O1	0.0311 (7)	0.0263 (7)	0.0160 (7)	0.0006 (6)	-0.0020 (6)	0.0021 (6)	
N1	0.0341 (9)	0.0269 (8)	0.0159 (8)	0.0017 (7)	0.0010 (8)	-0.0023 (7)	
C3	0.0562 (15)	0.0247 (11)	0.0205 (11)	-0.0054 (11)	-0.0064 (11)	-0.0006 (9)	
C5	0.0602 (18)	0.0221 (11)	0.0277 (13)	0.0046 (11)	-0.0021 (12)	-0.0058 (10)	
N2	0.0421 (11)	0.0249 (9)	0.0142 (8)	-0.0023 (8)	-0.0032 (7)	0.0006 (7)	
O2	0.0294 (8)	0.0628 (10)	0.0158 (7)	-0.0010 (7)	0.0028 (6)	0.0070 (7)	
O3	0.0281 (8)	0.0581 (11)	0.0408 (9)	-0.0047 (8)	0.0026 (7)	-0.0161 (8)	
04	0.0439 (10)	0.0474 (10)	0.0647 (12)	0.0033 (8)	-0.0190 (9)	-0.0187 (9)	

supporting information

C2	0.0385 (13)	0.0368 (13)	0.0239 (11)	-0.0086 (11)	-0.0034 (10)	-0.0029 (10)
C9	0.0278 (10)	0.0297 (10)	0.0170 (9)	0.0073 (8)	-0.0008 (8)	0.0048 (8)
C1	0.0356 (12)	0.0391 (13)	0.0255 (11)	0.0041 (10)	0.0104 (10)	-0.0003 (9)
C6	0.0404 (13)	0.0262 (10)	0.0238 (11)	0.0077 (9)	-0.0002 (10)	-0.0034 (9)
C4	0.0816 (19)	0.0296 (11)	0.0346 (13)	-0.0077 (12)	-0.0185 (15)	-0.0059 (12)
C8	0.0556 (16)	0.0412 (13)	0.0388 (13)	0.0170 (12)	0.0040 (12)	-0.0066 (11)
C8	0.0556 (16)	0.0412 (13)	0.0388 (13)	0.0170 (12)	0.0040 (12)	-0.0066 (11)
C7	0.0477 (14)	0.0283 (11)	0.0269 (11)	0.0057 (10)	-0.0066 (11)	0.0049 (9)

Geometric parameters (Å, °)

Ni1—N2	2.0990 (17)	N2—H2C	0.9300
Ni1—N2 ⁱ	2.0990 (17)	O2—C9	1.254 (2)
Ni1—O1 ⁱ	2.1110 (13)	O3—H3A	0.8400
Nil—O1	2.1110 (13)	$C2-C1^{i}$	1.501 (3)
Ni1—N1	2.1368 (16)	C2—H2A	0.9900
Ni1—N1 ⁱ	2.1368 (16)	C2—H2B	0.9900
C10—O4	1.209 (3)	C9—C9 ⁱ	1.543 (4)
C10—O3	1.302 (3)	C1—C2 ⁱ	1.501 (3)
C10-C10 ⁱⁱ	1.513 (4)	C1—H1A	0.9900
O1—C9	1.255 (2)	C1—H1B	0.9900
N1-C1	1.477 (3)	C6—C8	1.530 (3)
N1—C6	1.504 (2)	C6—C7	1.531 (3)
N1—H1C	0.9300	C4—H4A	0.9800
C3—N2	1.495 (3)	C4—H4B	0.9800
C3—C5	1.506 (3)	C4—H4C	0.9800
C3—C4	1.539 (3)	C8—H8A	0.9800
С3—Н3	1.0000	C8—H8B	0.9800
C5—C6	1.535 (3)	C8—H8C	0.9800
C5—H5A	0.9900	C7—H7A	0.9800
C5—H5B	0.9900	С7—Н7В	0.9800
N2—C2	1.475 (3)	C7—H7C	0.9800
N2-Ni1-N2 ⁱ	100.97 (9)	Ni1—N2—H2C	107.5
N2-Ni1-O1 ⁱ	166.48 (6)	С10—О3—НЗА	109.5
N2 ⁱ —Ni1—O1 ⁱ	90.84 (6)	$N2-C2-C1^{i}$	109.25 (19)
N2—Ni1—O1	90.84 (6)	N2—C2—H2A	109.8
N2 ⁱ —Ni1—O1	166.48 (6)	C1 ⁱ —C2—H2A	109.8
O1 ⁱ —Ni1—O1	78.29 (7)	N2—C2—H2B	109.8
N2—Ni1—N1	91.42 (7)	$C1^{i}$ — $C2$ — $H2B$	109.8
N2 ⁱ —Ni1—N1	84.55 (6)	H2A—C2—H2B	108.3
Ol ⁱ —Nil—Nl	83.10 (6)	O2—C9—O1	125.80 (19)
O1—Ni1—N1	101.88 (5)	O2—C9—C9 ⁱ	118.43 (12)
N2—Ni1—N1 ⁱ	84.55 (6)	O1—C9—C9 ⁱ	115.74 (11)
N2 ⁱ —Ni1—N1 ⁱ	91.42 (7)	$N1-C1-C2^{i}$	110.65 (19)
O1 ⁱ —Ni1—N1 ⁱ	101.88 (5)	N1—C1—H1A	109.5
O1—Ni1—N1 ⁱ	83.10 (6)	C2 ⁱ —C1—H1A	109.5
N1—Ni1—N1 ⁱ	173.67 (9)	N1—C1—H1B	109.5
O4—C10—O3	126.15 (19)	$C2^{i}$ — $C1$ — $H1B$	109.5

O4C10C10 ⁱⁱ	120.8 (3)	H1A—C1—H1B	108.1
O3—C10—C10 ⁱⁱ	113.0 (3)	N1—C6—C8	110.86 (18)
C9—O1—Ni1	113.59 (12)	N1—C6—C7	107.34 (15)
C1—N1—C6	114.16 (15)	C8—C6—C7	107.94 (18)
C1—N1—Ni1	105.25 (12)	N1—C6—C5	109.95 (17)
C6—N1—Ni1	120.54 (13)	C8—C6—C5	109.69 (18)
C1—N1—H1C	105.2	C7—C6—C5	111.02 (19)
C6—N1—H1C	105.2	C3—C4—H4A	109.5
Ni1—N1—H1C	105.2	C3—C4—H4B	109.5
N2—C3—C5	112.0 (2)	H4A—C4—H4B	109.5
N2-C3-C4	111.46 (19)	C3—C4—H4C	109.5
C5-C3-C4	109.2 (2)	H4A—C4—H4C	109.5
N2-C3-H3	108.0	H4B—C4—H4C	109.5
C5-C3-H3	108.0	C6-C8-H8A	109.5
C4—C3—H3	108.0	C6-C8-H8B	109.5
C_{3} C_{5} C_{6}	119.2 (2)	H8A - C8 - H8B	109.5
$C_3 - C_5 - H_5 A$	107.5	C6-C8-H8C	109.5
C6-C5-H5A	107.5	H8A - C8 - H8C	109.5
C3-C5-H5B	107.5	H8B-C8-H8C	109.5
C6-C5-H5B	107.5	C6_C7_H7A	109.5
H5A_C5_H5B	107.0	C6-C7-H7B	109.5
$C_2 N_2 C_3$	112 13 (17)	H7A - C7 - H7B	109.5
$C_2 = N_2 = C_3$	103.84(12)	C6-C7-H7C	109.5
$C_2 = N_2 = N_1 I$	105.04(12) 117.82(13)	$H_{7A} = C_7 = H_7C$	109.5
$C_2 N_2 H_2 C$	107.5	H7B-C7-H7C	109.5
$C_2 = N_2 = H_2 C_1$	107.5	ш/в—с/—ш/с	109.5
05-1120	107.5		
N2—Ni1—O1—C9	-177.81(13)	O1—Ni1—N2—C2	-60.63(12)
$N2^{i}$ —Ni1—O1—C9	31.2 (3)	N1—Ni1—N2—C2	-162.53(13)
01^{i} Ni1 -01 $-C9$	-5.92(10)	$N1^{i}$ $Ni1$ $N2$ $C2$	22.36 (12)
N1—Ni1—O1—C9	-86.19(13)	$N2^{i}$ Ni1 N2 C3	-122.59(18)
$N1^{i}$ Ni1 - 01 - C9	97.78 (13)	$O1^{i}$ $Ni1$ $N2$ $C3$	27.8 (4)
N2—Ni1—N1—C1	-94.43 (13)	01—Ni1—N2—C3	64.03 (16)
$N2^{i}$ $Ni1$ $N1$ $C1$	6.46 (13)	N1—Ni1—N2—C3	-37.87(16)
$O1^{i}$ Ni1 N1 C1	97.97 (13)	$N1^{i}$ — $Ni1$ — $N2$ — $C3$	147.02 (16)
01—Ni1—N1—C1	174.42 (12)	$C3-N2-C2-C1^{i}$	-176.24(19)
$N1^{i}$ $Ni1$ $N1$ $C1$	-44.13 (12)	$Ni1-N2-C2-C1^{i}$	-48.0(2)
N_2 —Ni1—N1—C6	36.38 (14)	Ni1 $-01-C9-02$	-163.44(16)
$N2^{i}$ —Ni1—N1—C6	137.26 (14)	$Ni1 - O1 - C9 - C9^i$	14.9 (2)
$O1^{i}$ Ni1 N1 C6	-131.22(14)	$C6-N1-C1-C2^{i}$	-169.19(19)
01 - Ni1 - N1 - C6	-54.78 (14)	$Ni1-N1-C1-C2^{i}$	-34.8(2)
$N1^{i}$ $N1$ $N1$ $C6$	86 67 (13)	C1 - N1 - C6 - C8	-451(2)
N2—C3—C5—C6	-70.9 (3)	Ni1—N1—C6—C8	-171.97(14)
C4—C3—C5—C6	165.16 (19)	C1—N1—C6—C7	-162.80(18)
$C_{5}-C_{3}-N_{2}-C_{2}$	177.2 (2)	Ni1-N1-C6-C7	70.36 (19)
C4-C3-N2-C2	-60.2 (2)	C1 - N1 - C6 - C5	76.3 (2)
C5—C3—N2—Ni1	56.7 (2)	Ni1—N1—C6—C5	-50.5 (2)
		· · · · · · · · · · · · · · · · · · ·	(=)

N2 ⁱ —Ni1—N2—C2	112.75 (13)	C3—C5—C6—C8	-171.6 (2)
O1 ⁱ —Ni1—N2—C2	-96.8 (3)	C3—C5—C6—C7	-52.4 (3)

Symmetry codes: (i) -*x*+2, -*y*, *z*; (ii) -*x*+1, -*y*+2, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1C…O4 ⁱⁱⁱ	0.93	2.17	3.075 (2)	164
N2—H2 C ···O2 ^{iv}	0.93	2.13	2.987 (2)	152
$O3-H3A\cdots O2^{\vee}$	0.84	1.70	2.532 (2)	170

Symmetry codes: (iii) *x*, *y*–1, *z*; (iv) *x*, *y*, *z*+1; (v) –*x*+2, –*y*+1, *z*.