

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(4-Hydroxyphenyl)-2-(1,1,3-trioxo-2,3-dihydro-1,2-benzothiazol-2-yl)acetamide

Abha Verma and Edwin D. Stevens*

Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA Correspondence e-mail: estevens@uno.edu

Received 18 May 2009; accepted 15 June 2009

Key indicators: single-crystal X-ray study; T = 230 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.039; *wR* factor = 0.084; data-to-parameter ratio = 13.9.

In the title compound, $C_{15}H_{12}N_2O_5S$, the benzisothiazole group is approximately planar (r.m.s. deviation excluding H atoms and the two O atoms bonded to S = 0.023 Å). The dihedral angle between the benzisothiazole ring and the terminal phenol ring is 84.9 (1)°. In the crystal, molecules are joined by N-H···O and O-H···O hydrogen bonds, and π stacking interactions are observed between alternating phenol and benzisothiazole rings [centroid–centroid distances = 3.929 (3) and 3.943 (3) Å].

Related literature

For background literature related to analgesics, see: Slattery *et al.* (1996); McGoldrick & Bailie (1997); Watkins *et al.* (2006). For the synthesis and biological activity of the title compound, see: Vaccarino *et al.* (2007); González-Martin *et al.* (1998); Bazan & Alvarez-Builla (1996*a*,*b*). For related structures, see: Arshad *et al.* (2009*a*,*b*,*c*); Siddiqui *et al.* (2008*a*,*b*; 2007).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{12}N_2O_5S\\ M_r=332.33\\ Orthorhombic, Pna2_1\\ a=16.3588~(10)~\text{\AA}\\ b=9.6451~(6)~\text{\AA}\\ c=9.9603~(6)~\text{\AA} \end{array}$

Data collection

Bruker SMART 1K CCD diffractometer $V = 1571.56 (17) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.23 \text{ mm}^{-1}$ T = 230 K $0.60 \times 0.20 \times 0.20 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{min} = 0.832, T_{max} = 0.954$ 19429 measured reflections 3580 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$ $w R(F^2) = 0.084$	
S = 1.07	
3580 reflections 257 parameters	
1 restraint	

3283 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.033$

organic compounds

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1681 Friedel pairs Flack parameter: 0.02 (8)

Table 1 Hydrogen-bond geometry (Å, °).

, , ,		·		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N10-H10···O14 ⁱ	0.87 (3)	2.23 (3)	3.078 (3)	165 (3)
O14−H14…O9 ⁿ	0.82 (3)	1.91 (3)	2.725 (2)	173 (3)
Symmetry codes: (i) -	$x - \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$	$\frac{1}{2}$; (ii) $x - \frac{1}{2}, -y$	$-\frac{1}{2}, z.$	

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Helpful discussions with Professor M. L. Trudell, University of New Orleans, are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2377).

References

Arshad, M. N., Mubashar-ur-Rehman, H., Zia-ur-Rehman, M., Khan, I. U. & Shafiq, M. (2009a). Acta Cryst. E65, o1236.

- Arshad, M. N., Mubashar-ur-Rehman, H., Zia-ur-Rehman, M., Khan, I. U. & Shafique, M. (2009b). Acta Cryst. E65, 01011.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Bilal, M. H. & Mubashar-ur-Rehman, H. (2009c). Acta Cryst. E65, 0986.
- Bazan, N. G. & Alvarez-Builla, J. (1996a). U. S. Patent 5 554 636.
- Bazan, N. G. & Alvarez-Builla, J. (1996b). Chem. Abstr. 125, 266037k.
- Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- González-Martin, G., Lyndon, C. & Sunkel, C. (1998). Eur. J. Pharm. Biopharm. 46, 293-297.

McGoldrick, M. D. & Bailie, G. R. (1997). Ann. Pharmacother. 31, 221-227.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007).
- Acta Cryst. E63, 04116.
- Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Hussain, R. A. & Parvez, M. (2008a). Acta Cryst. E64, o1897.
- Siddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008b). Acta Cryst. E64, 0724.
- Slattery, J. T., Nelson, S. D. & Thummel, K. E. (1996). *Clin. Pharmacol. Ther.* **60**, 241–246.
- Vaccarino, A. L., Paul, D., Mukherjee, P. K., Rodriguez de Turco, E. B., Marcheselli, V. L., Xu, L., Trudell, M. L., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). *Bioorg. Med. Chem.* 15, 2206–2215.
- Watkins, P. B., Kaplowitz, N., Slattery, J. T., Colonese, C. R., Colucci, S. V., Stewart, P. W. & Harris, S. C. (2006). J. Am. Med. Assoc. 296, 87–90.

supporting information

Acta Cryst. (2009). E65, o1667 [doi:10.1107/S1600536809023022]

N-(4-Hydroxyphenyl)-2-(1,1,3-trioxo-2,3-dihydro-1,2-benzothiazol-2-yl)acetamide

Abha Verma and Edwin D. Stevens

S1. Comment

Analgesics currently in use have high incidence of adverse reactions and can cause potentially lethal effects like hepatotoxicity and nephrotoxicity (Slattery *et al.*, 1996; McGoldrick & Bailie, 1997; Watkins *et al.*, 2006). A series of compounds bearing the acetaminophen (Tylenol) fragment linked to different lipophilic heterocyclic moieties were synthesized with a view to modulate its pharmacokinetic profile (Bazan & Alvarez-Builla, 1996*a,b*6; Vaccarino *et al.*, 2007). Of these new derivatives, the title compound (commonly called SCP-1) has a similar profile to that of acetaminophen but with shorter elimination half-life and clearance.

S2. Experimental

The title compound was synthesized following the procedure described by Vaccarino *et al.* (2007) and colourless needles suitable for X-ray analysis were obtained by recrystallization from an ethanol-water (8:1) mixture.

S3. Refinement

All H atoms were located in a difference density map and their positional parameters and U_{iso} included in the full-matrix least-squares refinement. Observed C—H bond lengths are in the range 0.91 (3)–0.97 (3) Å.

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Perspective view of the contents of the unit cell showing the parallel stacking of the aromatic rings in layers perpendicular to the a axis.

N-(4-Hydroxyphenyl)-2-(1,1,3-trioxo-2,3-dihydro-1,2-benzothiazol- 2-yl)acetamide

Crystal data	
$C_{15}H_{12}N_2O_5S$	F(000) = 688
$M_r = 332.33$	$D_{\rm x} = 1.405 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $Pna2_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 17706 reflections
a = 16.3588 (10) Å	$\theta = 2.5 - 30.5^{\circ}$
b = 9.6451 (6) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 9.9603 (6) Å	T = 230 K
$V = 1571.56 (17) \text{ Å}^3$	Needle, colourless
Z = 4	$0.60 \times 0.20 \times 0.20$ mm

Data collection

Bruker SMART 1K CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007) $T_{\min} = 0.832, T_{\max} = 0.954$	19429 measured reflections 3580 independent reflections 3283 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -21 \rightarrow 21$ $k = -12 \rightarrow 12$ $l = -12 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.084$ S = 1.07 3580 reflections 257 parameters 1 restraint Primary atom site location: structure-invariant direct methods	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0183P)^2 + 1.0724P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e } \text{Å}^{-3}$ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0063 (8)
Secondary atom site location: difference Fourier	Absolute structure: Flack (1983), 1681 Friedel
Hydrogen site location: inferred from neighbouring sites	Absolute structure parameter: 0.02 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.11997 (4)	0.20573 (6)	0.93772 (6)	0.03830 (15)	
01	0.10058 (12)	0.3352 (2)	1.0007 (2)	0.0534 (5)	
N2	0.09100 (11)	0.0757 (2)	1.0375 (2)	0.0339 (4)	
O2	0.08966 (13)	0.1841 (2)	0.80485 (18)	0.0554 (5)	
C3	0.15368 (14)	0.0026 (2)	1.0986 (2)	0.0320 (5)	
03	0.14167 (11)	-0.0882(2)	1.17895 (19)	0.0451 (4)	
C4	0.31014 (15)	0.0065 (3)	1.0784 (3)	0.0467 (6)	
H4	0.3137 (16)	-0.067 (3)	1.135 (3)	0.034 (7)*	
C4A	0.23289 (14)	0.0552 (3)	1.0467 (2)	0.0353 (5)	
C5	0.37621 (17)	0.0677 (4)	1.0128 (4)	0.0608 (9)	
Н5	0.430 (2)	0.035 (4)	1.032 (4)	0.081 (11)*	
C6	0.36573 (17)	0.1721 (4)	0.9215 (4)	0.0640 (9)	
H6	0.4123 (19)	0.209 (3)	0.873 (4)	0.065 (9)*	

C7A	0.22384 (13)	0.1609 (3)	0.9562 (3)	0.0398 (5)
C7	0.2887 (2)	0.2225 (3)	0.8913 (3)	0.0561 (8)
H7	0.283 (2)	0.295 (3)	0.830 (3)	0.058 (9)*
C8	0.00639 (14)	0.0545 (3)	1.0733 (2)	0.0346 (5)
H8B	-0.0203 (16)	0.141 (3)	1.072 (3)	0.038 (7)*
H8A	0.0067 (16)	0.018 (3)	1.162 (3)	0.035 (7)*
С9	-0.03588 (12)	-0.0469 (2)	0.9791 (2)	0.0298 (4)
09	0.00080 (9)	-0.11209 (18)	0.89225 (16)	0.0379 (4)
N10	-0.11625 (11)	-0.0573 (2)	1.0033 (2)	0.0331 (4)
H10	-0.1339 (17)	-0.008 (3)	1.070 (3)	0.045 (8)*
C11	-0.17479 (12)	-0.1418 (2)	0.9368 (2)	0.0295 (4)
C12	-0.25630 (14)	-0.1228 (3)	0.9725 (3)	0.0391 (6)
H12	-0.2690 (17)	-0.049 (3)	1.033 (3)	0.047 (8)*
C13	-0.31719 (13)	-0.2010 (3)	0.9129 (3)	0.0407 (6)
H13	-0.3736 (19)	-0.187 (3)	0.933 (4)	0.066 (9)*
C14	-0.29711 (13)	-0.2994 (2)	0.8175 (2)	0.0320 (5)
014	-0.35473 (10)	-0.3808 (2)	0.75619 (19)	0.0442 (5)
H14	-0.397 (2)	-0.378 (3)	0.802 (4)	0.060 (10)*
C15	-0.21627 (14)	-0.3179 (3)	0.7811 (2)	0.0341 (5)
H15	-0.2007 (16)	-0.386 (3)	0.716 (3)	0.040 (7)*
C16	-0.15511 (13)	-0.2396 (3)	0.8404 (2)	0.0320 (5)
H16	-0.1000 (17)	-0.255 (3)	0.814 (3)	0.041 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0371 (3)	0.0407 (3)	0.0371 (3)	-0.0060 (2)	-0.0064 (3)	0.0063 (3)
01	0.0547 (11)	0.0422 (10)	0.0633 (12)	0.0011 (9)	-0.0100 (10)	0.0011 (9)
N2	0.0253 (9)	0.0422 (11)	0.0343 (10)	-0.0052 (8)	-0.0035 (7)	0.0048 (9)
02	0.0640 (12)	0.0651 (13)	0.0371 (10)	-0.0036 (11)	-0.0141 (9)	0.0105 (9)
C3	0.0288 (11)	0.0366 (12)	0.0306 (11)	-0.0023 (9)	-0.0040 (9)	-0.0026 (10)
03	0.0430 (10)	0.0481 (11)	0.0443 (10)	0.0011 (8)	-0.0010 (8)	0.0133 (9)
C4	0.0312 (12)	0.0594 (17)	0.0496 (15)	0.0012 (12)	-0.0040 (11)	-0.0117 (14)
C4A	0.0278 (11)	0.0438 (13)	0.0343 (11)	-0.0037 (10)	-0.0027 (10)	-0.0065 (10)
C5	0.0260 (13)	0.081 (2)	0.075 (2)	-0.0045 (14)	-0.0007 (13)	-0.0239 (19)
C6	0.0398 (14)	0.081 (2)	0.072 (2)	-0.0244 (15)	0.0125 (16)	-0.009 (2)
C7A	0.0312 (11)	0.0480 (13)	0.0401 (14)	-0.0085 (10)	0.0011 (10)	-0.0019 (11)
C7	0.0491 (16)	0.065 (2)	0.0547 (18)	-0.0222 (15)	0.0078 (13)	0.0049 (15)
C8	0.0256 (10)	0.0460 (14)	0.0323 (12)	-0.0015 (10)	-0.0004 (9)	-0.0030 (11)
C9	0.0246 (9)	0.0372 (11)	0.0275 (10)	-0.0002 (9)	-0.0012 (8)	0.0020 (9)
09	0.0238 (7)	0.0520 (10)	0.0379 (9)	-0.0013 (7)	0.0043 (6)	-0.0089 (8)
N10	0.0249 (9)	0.0425 (11)	0.0319 (10)	-0.0037 (8)	0.0045 (8)	-0.0087 (9)
C11	0.0240 (8)	0.0352 (10)	0.0293 (9)	-0.0040 (8)	0.0016 (9)	-0.0002 (10)
C12	0.0276 (10)	0.0465 (14)	0.0432 (14)	-0.0007 (10)	0.0078 (10)	-0.0145 (11)
C13	0.0219 (10)	0.0511 (13)	0.0492 (16)	-0.0017 (10)	0.0059 (10)	-0.0093 (12)
C14	0.0254 (10)	0.0402 (12)	0.0304 (11)	-0.0067 (9)	0.0012 (9)	0.0024 (9)
O14	0.0284 (9)	0.0613 (12)	0.0427 (10)	-0.0135 (9)	0.0038 (8)	-0.0150 (9)
C15	0.0296 (11)	0.0408 (13)	0.0319 (11)	-0.0023 (10)	0.0053 (9)	-0.0044 (10)

C16	0.0216 (10)	0.0401 (12)	0.0343 (12)	-0.0010 (9)	0.0055 (9)	-0.0010 (10)
Geome	tric parameters (Å	, °)				
<u></u>	2	1.4286 (19)	C8—H8B		0.94 (3)
S1-0	1	1.433 (2))	C8—H8A		0.95 (3)
S1—N2	2	1.668 (2)	С9—09		1.226 (3)
S1—C	7A	1.763 (2)	C9—N10		1.340 (3)
N2—C	3	1.386 (3)	N10-C11		1.421 (3)
N2—C	8	1.444 (3)	N10—H10		0.87 (3)
С3—О	3	1.203 (3))	C11—C16		1.384 (3)
С3—С	4A	1.484 (3))	C11—C12		1.392 (3)
C4—C	4A	1.385 (3))	C12—C13		1.383 (3)
C4—C	5	1.394 (4)	С12—Н12		0.95 (3)
С4—Н	4	0.91 (3)		C13—C14		1.383 (3)
C4A—	C7A	1.369 (4)	С13—Н13		0.95 (3)
С5—С	6	1.367 (5)	C14—O14		1.370 (3)
С5—Н	5	0.96 (4)		C14—C15		1.383 (3)
C6—C	7	1.384 (4))	O14—H14		0.82 (3)
С6—Н	6	0.97 (3)		C15—C16		1.385 (3)
C7A—	C7	1.377 (4))	C15—H15		0.96 (3)
С7—Н	7	0.93 (3)		C16—H16		0.95 (3)
C8—C	9	1.522 (3))			
O2—S	1—01	117.12 (13)	N2—C8—H8B		108.3 (16)
O2—S	1—N2	110.07 (11)	C9—C8—H8B		110.3 (16)
01—S	1—N2	109.35 (12)	N2—C8—H8A		106.1 (16)
O2—S	1—C7A	113.30 (13)	C9—C8—H8A		109.9 (16)
01—S	1—C7A	112.41 (12)	H8B—C8—H8A		110 (2)
N2—S	1—C7A	91.57 (1	l)	O9—C9—N10		124.6 (2)
C3—N	2—С8	121.9 (2))	09—C9—C8		122.84 (19)
C3—N	2—S1	115.73 (16)	N10—C9—C8		112.52 (19)
C8—N	2—S1	121.75 (17)	C9—N10—C11		128.3 (2)
O3—C	3—N2	122.8 (2))	C9—N10—H10		115.0 (19)
03—C	3—C4A	128.6 (2))	C11—N10—H10		116.6 (19)
N2—C	3—C4A	108.6 (2))	C16—C11—C12		119.3 (2)
C4A—	C4—C5	117.2 (3))	C16—C11—N10		123.88 (19)
C4A—	C4—H4	117.7 (17	7)	C12—C11—N10		116.8 (2)
C5—C	4—H4	125.0 (1	/)	C13—C12—C11		120.6 (2)
C/A—	C4A—C4	120.1 (2))	C13—C12—H12		121.3 (17)
C/A—	C4A—C3	112.9 (2)		CII—CI2—HI2		117.9 (17)
C4—C	4A—C3	127.0 (2))	C12-C13-C14		119.9 (2)
C6-C	5-04	121.8 (3))	C12—C13—H13		122(2)
C6-C	5—H5	120 (2)		C14—C13—H13		118 (2)
C4—C	5—H5	119 (2)		014 - C14 - C15		11/.9 (2)
C_{5}		121.2 (3))	014 - 014 - 013		122.4 (2)
C_{2}	0—H0	120.3 (1)	7)	C15-C14-C13		119.7 (2)
C/C	6—H6	118 (2)		C14—O14—H14		108 (2)

supporting information

C4A—C7A—C7	123.2 (2)	C14—C15—C16	120.6 (2)
C4A—C7A—S1	110.83 (17)	C14—C15—H15	121.2 (16)
C7—C7A—S1	126.0 (2)	C16—C15—H15	118.1 (16)
C7A—C7—C6	116.6 (3)	C11—C16—C15	119.9 (2)
С7А—С7—Н7	123 (2)	C11—C16—H16	121.3 (16)
С6—С7—Н7	120 (2)	C15—C16—H16	118.8 (16)
N2—C8—C9	111.95 (19)		
O2—S1—N2—C3	121.36 (18)	O2—S1—C7A—C7	63.0 (3)
O1—S1—N2—C3	-108.64 (18)	O1—S1—C7A—C7	-72.6 (3)
C7A—S1—N2—C3	5.82 (19)	N2—S1—C7A—C7	175.7 (3)
O2—S1—N2—C8	-67.6 (2)	C4A—C7A—C7—C6	0.1 (5)
O1—S1—N2—C8	62.4 (2)	S1—C7A—C7—C6	179.4 (2)
C7A—S1—N2—C8	176.87 (19)	C5—C6—C7—C7A	-0.9 (5)
C8—N2—C3—O3	4.5 (4)	C3—N2—C8—C9	-96.0 (3)
S1—N2—C3—O3	175.5 (2)	S1—N2—C8—C9	93.5 (2)
C8—N2—C3—C4A	-176.0 (2)	N2—C8—C9—O9	6.7 (3)
S1—N2—C3—C4A	-5.0 (2)	N2-C8-C9-N10	-174.0 (2)
C5—C4—C4A—C7A	-1.1 (4)	O9—C9—N10—C11	-0.2 (4)
C5—C4—C4A—C3	177.2 (3)	C8—C9—N10—C11	-179.5 (2)
O3—C3—C4A—C7A	-179.5 (3)	C9—N10—C11—C16	6.3 (4)
N2—C3—C4A—C7A	1.0 (3)	C9—N10—C11—C12	-173.7 (2)
O3—C3—C4A—C4	2.1 (4)	C16—C11—C12—C13	0.3 (4)
N2—C3—C4A—C4	-177.4 (2)	N10-C11-C12-C13	-179.8 (2)
C4A—C4—C5—C6	0.3 (4)	C11—C12—C13—C14	0.3 (4)
C4—C5—C6—C7	0.7 (5)	C12—C13—C14—O14	179.3 (2)
C4—C4A—C7A—C7	0.9 (4)	C12—C13—C14—C15	-0.7 (4)
C3—C4A—C7A—C7	-177.6 (3)	O14—C14—C15—C16	-179.4 (2)
C4—C4A—C7A—S1	-178.4 (2)	C13—C14—C15—C16	0.6 (4)
C3—C4A—C7A—S1	3.1 (3)	C12-C11-C16-C15	-0.4 (3)
O2—S1—C7A—C4A	-117.6 (2)	N10-C11-C16-C15	179.7 (2)
O1—S1—C7A—C4A	106.8 (2)	C14-C15-C16-C11	-0.1 (4)
N2—S1—C7A—C4A	-5.0 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H··· A
N10—H10…O14 ⁱ	0.87 (3)	2.23 (3)	3.078 (3)	165 (3)
O14—H14…O9 ⁱⁱ	0.82 (3)	1.91 (3)	2.725 (2)	173 (3)

Symmetry codes: (i) -x-1/2, y+1/2, z+1/2; (ii) x-1/2, -y-1/2, z.