

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Fluoro-*N*-[3-(2-fluorophenyl)-4methyl-2,3-dihydro-2-thienylidene]benzamide

Aamer Saeed,^a* Uzma Shaheen,^a Muhammad Latif^b and Michael Bolte^c

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, ^bHamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad Campus, Pakistan, and ^cInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: aamersaeed@yahoo.com

Received 13 May 2009; accepted 11 June 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.034; wR factor = 0.082; data-to-parameter ratio = 16.1.

In the title compound, $C_{17}H_{12}F_2N_2OS$, the planar thiazole ring (r.m.s. deviation = 0.012 Å) makes dihedral angles of 15.08 (9) and 81.81 (6)° with the 4-fluorophenyl and 2-fluorophenyl rings, respectively. The 2-fluorophenyl ring is disordered over two orientations with site-occupancy factors of 0.810 (3) and 0.190 (3). The structure contains intermolecular $C-H\cdots O$ hydrogen bonds.

Related literature

For the biological activity of imino-1,3-thiazoline derivatives, see: Kim *et al.* (2007); Vicini *et al.* (2006); Hosseinimehr *et al.* (2001); Zhang *et al.* (2000); Pietrancosta *et al.* (2006). For details of the synthesis, see: Saeed *et al.* (2008*a*). For a related structure, see: Saeed *et al.* (2008*b*).

Experimental

Crystal data

 $\begin{array}{ccc} C_{17}H_{12}F_2N_2OS & & & \\ M_r = 330.35 & & & \\ Orthorhombic, P2_12_12_1 & & \\ a = 7.0982 \ (14) \ \text{\AA} & & \\ b = 11.423 \ (2) \ \text{\AA} & & \\ c = 18.949 \ (4) \ \text{\AA} & & \\ \end{array}$

Data collection

Stoe IPDS-II two-circle	10484 measure
diffractometer	3531 independ
Absorption correction: multi-scan	3213 reflection
(MULABS; Spek, 2009; Blessing,	$R_{\rm int} = 0.046$
1995)	
$T_{\min} = 0.920, T_{\max} = 0.937$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	
$wR(F^2) = 0.082$	
S = 0.99	
3531 reflections	
219 parameters	
H-atom parameters constrained	

 $V = 1536.5 (5) \text{ Å}^3$ Z = 4Mo K\alpha radiation $\mu = 0.24 \text{ mm}^{-1}$ T = 173 K $0.36 \times 0.34 \times 0.28 \text{ mm}$

10484 measured reflections 3531 independent reflections 3213 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.046$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.15 \mbox{ e } \mbox{ \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.26 \mbox{ e } \mbox{ \AA}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1491 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } -0.15 \mbox{ (6)} \end{array}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots O1^{i}$	0.95	2.41	3.322 (2)	160
Symmetry code: (i)	$-x + 2, y + \frac{1}{2}, -$	$-z + \frac{3}{2}$		

Data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure:

SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2375).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hosseinimehr, S. J. A., Shafiee, A. H., Mozdarani, H. S. & Akhlagpour, S. (2001). J. Radiat. Res. (Tokyo), 42, 401–408.
- Kim, D.-S., Jeong, Y.-M., Park, I.-K., Hahn, H.-G. & Lee, H.-K. (2007). Biol. Pharm. Bull. 30, 180–184.
- Pietrancosta, N., Moumen, A., Dono, R., Lingor, P., Planchamp, V., Lamballe, F., Bähr, M., Kraus, J.-L. & Maina, F. (2006). J. Med. Chem. 49, 3645–3652.
- Saeed, A., Zaman, S. & Bolte, M. (2008a). Synth. Commun. 38, 2185-2199.
- Saeed, A., Zaman, S. & Bolte, M. (2008b). Acta Cryst. E64, 067.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Vicini, P., Geronikaki, A., Anastasia, K., Incerti, M. & Zani, F. (2006). Bioorg. Med. Chem. 14, 3859–3864.
- Zhang, A. G., Kayser, H., Maienfisch, P. & Casida, J. E. (2000). J. Neurochem. **75**, 1294–1303.

supporting information

Acta Cryst. (2009). E65, o1643 [doi:10.1107/S1600536809022314]

4-Fluoro-N-[3-(2-fluorophenyl)-4-methyl-2,3-dihydro-2-thienylidene]benzamide

Aamer Saeed, Uzma Shaheen, Muhammad Latif and Michael Bolte

S1. Comment

The imino-1,3-thiazoline group is found in a variety of biologically active natural products and finds extensive applications in medicinal chemistry. 2-Thiazolylimino-5-arylidene-4-thiazolidinones show noticeable antimicrobial activity against bacteria, yeasts and mould (Kim *et al.*, 2007). 3-Substituted 2-(cyanoimino)thiazolidines can be used in agriculture due to their neonicotinoid insecticidal activity (Vicini *et al.*, 2006). 3-Substituted thiazolidines show radioprotective properties against γ -radiation (Hosseinimehr *et al.*, 2001). KHG22394, a 2-imino-1,3-thiazoline derivative, significantly inhibits melanin production in a dose-dependent manner, thus acting as a skin whitening agent (Zhang *et al.*, 2000) and pifithrin-alpha, another iminothiazoline, is a reversible inhibitor of p53-mediated apoptosis and p53-dependent gene transcription (Pietrancosta *et al.*, 2006).

S2. Experimental

The title compound was prepared according to the procedure reported earlier (Saeed *et al.* (2008*a*). Crystallization of the residue in CHCl₃ afforded the title compound (81%) as white needles: Anal. calcd. for $C_{14}H_{12}Cl_{N0}1$: C 68.44, H 4.92, N 5.70%; found: C 68.39, H 4.90, N 5.67%

S3. Refinement

H atoms were geometrically positioned and refined using a riding model with fixed individual displacement parameters $[U_{iso}(H) = 1.2 \ U_{eq}(C) \text{ or } 1.5 \ U_{eq}(C_{methyl})]$ using a riding model with C—H(aromatic) = 0.95 Å or C—H(methyl) = 0.98 Å. The *ortho*-fluoro-phenyl ring is disordered over two positions with site occupation factors of 0.810 (3) and 0.190 (3).

Figure 1

Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii. The atoms of the minor occupied sites have been omitted for clarity.

 $l = -24 \rightarrow 23$

4-Fluoro-N-[3-(2-fluorophenyl)-4-methyl-2,3-dihydro-2- thienylidene]benzamide

Crystal data	
$C_{17}H_{12}F_2N_2OS$	F(000) = 680
$M_r = 330.35$	$D_{\rm x} = 1.428 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo Ka radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 9675 reflections
a = 7.0982 (14) Å	$\theta = 3.4 - 27.8^{\circ}$
b = 11.423 (2) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 18.949 (4) Å	T = 173 K
$V = 1536.5(5) Å^3$	Block, colourless
Z = 4	$0.36\times0.34\times0.28\ mm$
Data collection	
Stoe IPDS-II two-circle	10484 measured reflections
diffractometer	3531 independent reflections
Radiation source: fine-focus sealed tube	3213 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
ωscans	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 9$
(<i>MULABS</i> ; Spek, 2009; Blessing, 1995)	$k = -12 \rightarrow 14$

 $T_{\rm min} = 0.920, \ T_{\rm max} = 0.937$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.082$	$w = 1/[\sigma^2(F_o^2) + (0.052P)^2]$
S = 0.99	where $P = (F_o^2 + 2F_c^2)/3$
3531 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
219 parameters	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1491 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: $-0.15(6)$
man	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.86255 (5)	0.65177 (5)	0.73205 (2)	0.04103 (12)	
N1	0.56925 (19)	0.59033 (13)	0.64274 (7)	0.0316 (3)	
01	0.7594 (2)	0.44060 (14)	0.68401 (8)	0.0520 (4)	
F1	0.0840 (3)	0.15356 (14)	0.55262 (9)	0.0825 (5)	
F2	0.71228 (15)	0.86728 (14)	0.53579 (6)	0.0406 (4)	0.810 (3)
F2′	0.2818 (7)	0.7551 (6)	0.7021 (3)	0.048 (2)	0.190 (3)
C1	0.6168 (2)	0.47540 (16)	0.65201 (8)	0.0356 (4)	
C2	0.67222 (19)	0.66920 (16)	0.67514 (8)	0.0303 (3)	
N3	0.63342 (18)	0.78545 (13)	0.66789 (7)	0.0304 (3)	
C4	0.7456 (2)	0.86166 (18)	0.70871 (8)	0.0340 (4)	
C5	0.8742 (2)	0.80204 (19)	0.74587 (9)	0.0414 (4)	
Н5	0.9626	0.8381	0.7766	0.050*	
C6	0.7117 (3)	0.98996 (19)	0.70565 (10)	0.0436 (4)	
H6A	0.7834	1.0287	0.7432	0.065*	
H6B	0.5771	1.0056	0.7121	0.065*	
H6C	0.7523	1.0201	0.6597	0.065*	
C11	0.4788 (3)	0.39042 (17)	0.62212 (8)	0.0353 (4)	
C12	0.5145 (3)	0.27036 (19)	0.62624 (10)	0.0451 (4)	
H12	0.6301	0.2435	0.6457	0.054*	
C13	0.3827 (3)	0.19005 (18)	0.60216 (10)	0.0513 (5)	
H13	0.4062	0.1083	0.6052	0.062*	
C14	0.2173 (3)	0.2315 (2)	0.57387 (11)	0.0529 (5)	
C15	0.1774 (3)	0.3489 (2)	0.56784 (11)	0.0519 (5)	

H15	0.0622	0.3747	0.5476	0.062*	
C16	0.3098 (3)	0.42878 (17)	0.59203 (10)	0.0405 (4)	
H16	0.2854	0.5103	0.5881	0.049*	
C21	0.48714 (19)	0.82453 (15)	0.62105 (8)	0.0278 (3)	
C22	0.5303 (2)	0.86227 (15)	0.55392 (8)	0.0290 (3)	
H22	0.6587	0.8661	0.5400	0.035*	0.190 (3)
C23	0.3925 (2)	0.89464 (15)	0.50637 (8)	0.0325 (3)	
H23	0.4250	0.9201	0.4602	0.039*	
C24	0.2054 (2)	0.88918 (16)	0.52746 (9)	0.0348 (4)	
H24	0.1085	0.9107	0.4954	0.042*	
C25	0.1592 (2)	0.8527 (2)	0.59472 (9)	0.0439 (4)	
H25	0.0309	0.8499	0.6089	0.053*	
C26	0.2997 (2)	0.8203 (2)	0.64164 (9)	0.0403 (4)	
H26	0.2675	0.7945	0.6877	0.048*	0.810 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.02961 (17)	0.0565 (3)	0.0369 (2)	0.00724 (19)	-0.00870 (15)	0.0061 (2)
N1	0.0334 (6)	0.0324 (8)	0.0290 (6)	0.0029 (5)	-0.0029 (5)	0.0041 (6)
01	0.0474 (7)	0.0475 (9)	0.0610 (8)	0.0136 (6)	-0.0158 (6)	0.0073 (7)
F1	0.1076 (11)	0.0365 (7)	0.1034 (11)	-0.0068 (8)	-0.0504 (9)	-0.0073 (8)
F2	0.0270 (6)	0.0573 (10)	0.0374 (6)	-0.0039 (5)	0.0046 (4)	0.0079 (6)
F2′	0.032 (3)	0.074 (5)	0.038 (3)	0.005 (3)	0.006 (2)	0.014 (3)
C1	0.0391 (8)	0.0375 (9)	0.0302 (7)	0.0106 (8)	-0.0003 (6)	0.0046 (7)
C2	0.0263 (6)	0.0403 (10)	0.0242 (6)	0.0023 (6)	-0.0005 (5)	0.0036 (6)
N3	0.0260 (5)	0.0362 (7)	0.0290 (6)	-0.0027 (6)	-0.0054 (5)	0.0023 (5)
C4	0.0269 (6)	0.0454 (11)	0.0299 (7)	-0.0076 (7)	-0.0004 (5)	-0.0033 (7)
C5	0.0288 (7)	0.0603 (12)	0.0351 (8)	-0.0059 (7)	-0.0074 (6)	-0.0013 (7)
C6	0.0402 (8)	0.0462 (12)	0.0443 (9)	-0.0112 (8)	-0.0037 (7)	-0.0079 (8)
C11	0.0460 (9)	0.0325 (9)	0.0275 (7)	0.0087 (7)	-0.0001 (6)	0.0021 (6)
C12	0.0590 (11)	0.0372 (10)	0.0391 (9)	0.0129 (9)	-0.0036 (8)	-0.0004 (8)
C13	0.0751 (13)	0.0302 (10)	0.0485 (10)	0.0111 (9)	-0.0098 (10)	-0.0064 (8)
C14	0.0751 (13)	0.0332 (11)	0.0504 (11)	-0.0010 (10)	-0.0168 (10)	-0.0057 (9)
C15	0.0656 (11)	0.0348 (10)	0.0553 (11)	0.0055 (9)	-0.0237 (9)	-0.0007 (10)
C16	0.0525 (10)	0.0295 (9)	0.0395 (8)	0.0064 (7)	-0.0111 (7)	0.0015 (8)
C21	0.0262 (6)	0.0285 (8)	0.0288 (7)	-0.0004 (6)	-0.0037 (5)	0.0016 (6)
C22	0.0280 (6)	0.0278 (8)	0.0314 (7)	-0.0019 (6)	0.0010 (5)	0.0002 (6)
C23	0.0409 (8)	0.0299 (8)	0.0267 (7)	-0.0024 (7)	-0.0022 (6)	0.0021 (6)
C24	0.0335 (7)	0.0363 (9)	0.0346 (8)	0.0029 (7)	-0.0097 (6)	-0.0014 (7)
C25	0.0258 (6)	0.0679 (13)	0.0379 (8)	0.0020 (8)	-0.0020 (6)	0.0010 (9)
C26	0.0290 (7)	0.0615 (13)	0.0305 (7)	-0.0027 (8)	-0.0009 (6)	0.0070 (8)

Geometric parameters (Å, °)

S1—C5	1.738 (2)	C12—C13	1.388 (3)
S1—C2	1.7400 (15)	C12—H12	0.950
N1—C2	1.313 (2)	C13—C14	1.375 (3)

N1—C1	1.367 (2)	C13—H13	0.950
01—C1	1.245 (2)	C14—C15	1.376 (3)
F1—C14	1.360 (3)	C15—C16	1.387 (3)
F2—C22	1.3379 (18)	С15—Н15	0.950
F2′—C26	1.373 (6)	С16—Н16	0.950
C1—C11	1.491 (3)	C21—C22	1.378 (2)
C2—N3	1.363 (2)	C21—C26	1.387 (2)
N3—C4	1 411 (2)	C^{22} C^{23}	1.380(2)
N3—C21	1 4370 (18)	C22_H22	0.950
C4-C5	1 339 (2)	$C_{22} = 1122$	1.388(2)
C_{+} C_{-}	1.335 (2)	C23 H23	0.950
C5 H5	0.050	C24 C25	0.930
	0.950	$C_{24} = C_{23}$	1.360 (2)
	0.980	C24—H24	0.930
Со—нов	0.980	$C_{25} = C_{26}$	1.380 (2)
	0.980	C25—H25	0.950
C11—C12	1.397 (3)	C26—H26	0.950
C11—C16	1.399 (2)		
			110.0 (2)
C5—S1—C2	90.99 (8)	F1—C14—C13	119.0 (2)
C2—N1—C1	117.49 (14)	F1—C14—C15	118.1 (2)
01—C1—N1	124.75 (18)	C13—C14—C15	122.9 (2)
01—C1—C11	120.75 (17)	C14—C15—C16	118.31 (19)
N1—C1—C11	114.48 (14)	C14—C15—H15	120.8
N1—C2—N3	120.60 (13)	C16—C15—H15	120.8
N1—C2—S1	130.07 (14)	C15—C16—C11	120.64 (18)
N3—C2—S1	109.32 (12)	C15—C16—H16	119.7
C2—N3—C4	115.58 (14)	C11—C16—H16	119.7
C2—N3—C21	120.72 (13)	C22—C21—C26	118.93 (14)
C4—N3—C21	123.70 (15)	C22—C21—N3	120.45 (13)
C5—C4—N3	111.06 (17)	C26—C21—N3	120.56 (14)
C5—C4—C6	129.23 (16)	F2—C22—C21	117.72 (14)
N3—C4—C6	119.71 (15)	F2—C22—C23	120.34 (14)
C4—C5—S1	113.00 (13)	C21—C22—C23	121.94 (14)
C4—C5—H5	123.5	C21—C22—H22	118.9
\$1—C5—H5	123.5	C23—C22—H22	119.1
C4-C6-H6A	109 5	$C_{22} = C_{23} = C_{24}$	118.55 (15)
C4-C6-H6B	109.5	$C_{22} = C_{23} = C_{23}$	120.7
HeA C6 H6B	109.5	$C_{22} = C_{23} = H_{23}$	120.7
CA C = H C	109.5	$C_{24} = C_{23} = M_{23}$	120.7 120.43(14)
	109.5	$C_{25} = C_{24} = C_{25}$	120.43 (14)
	109.5	$C_{23} = C_{24} = H_{24}$	119.8
$\begin{array}{c} HODHOC \\ CIOC \\ COOC \\ COOOC \\ COOC \\ COOOC \\ COOOC \\ COOO \\ C \\ COOOC \\ COOO \\ C \\ COOO \\ C \\ COOO \\ C \\ COO \\ C \\ COO \\ C \\ C \\ COO \\ C \\ $	109.3	$C_{23} = C_{24} = H_{24}$	119.8
C12 - C11 - C10	119.08 (18)	$C_{24} = C_{25} = C_{26}$	120.12 (14)
	119.91 (10)	$C_{24} = C_{25} = H_{25}$	119.9
	120.90 (16)	L_{20} — L_{20} — H_{20}	119.9
C13—C12—C11	120.54 (18)	F2'-C26-C25	127.8 (3)
C13—C12—H12	119.7	F2'-C26-C21	110.0 (3)
C11—C12—H12	119.7	C25—C26—C21	120.02 (15)
C14—C13—C12	118.5 (2)	C25—C26—H26	119.9

C14—C13—H13	120.8	C21—C26—H26	120.0
C12—C13—H13	120.8		
C2-N1-C1-01	-6.3 (3)	C12-C13-C14-C15	0.6 (3)
C2-N1-C1-C11	171.87 (14)	F1-C14-C15-C16	177.5 (2)
C1—N1—C2—N3	179.61 (14)	C13—C14—C15—C16	-0.6 (4)
C1—N1—C2—S1	-2.0 (2)	C14—C15—C16—C11	-0.4 (3)
C5—S1—C2—N1	-176.30 (15)	C12-C11-C16-C15	1.3 (3)
C5—S1—C2—N3	2.19 (11)	C1—C11—C16—C15	-176.43 (18)
N1-C2-N3-C4	176.05 (13)	C2—N3—C21—C22	-97.29 (18)
S1—C2—N3—C4	-2.61 (15)	C4—N3—C21—C22	82.51 (19)
N1-C2-N3-C21	-4.1 (2)	C2—N3—C21—C26	80.0 (2)
S1-C2-N3-C21	177.21 (10)	C4—N3—C21—C26	-100.2 (2)
C2—N3—C4—C5	1.65 (19)	C26—C21—C22—F2	178.95 (18)
C21—N3—C4—C5	-178.16 (13)	N3—C21—C22—F2	-3.7 (2)
C2—N3—C4—C6	-178.75 (14)	C26—C21—C22—C23	-0.8 (3)
C21—N3—C4—C6	1.4 (2)	N3—C21—C22—C23	176.59 (16)
N3—C4—C5—S1	0.14 (17)	F2-C22-C23-C24	-179.43 (18)
C6-C4-C5-S1	-179.40 (14)	C21—C22—C23—C24	0.3 (3)
C2—S1—C5—C4	-1.36 (13)	C22—C23—C24—C25	0.4 (3)
O1—C1—C11—C12	-3.8 (3)	C23—C24—C25—C26	-0.5 (3)
N1-C1-C11-C12	177.96 (16)	C24—C25—C26—F2'	-161.8 (4)
O1—C1—C11—C16	173.91 (17)	C24—C25—C26—C21	0.0 (3)
N1-C1-C11-C16	-4.3 (2)	C22—C21—C26—F2'	165.4 (3)
C16—C11—C12—C13	-1.3 (3)	N3—C21—C26—F2′	-12.0 (4)
C1—C11—C12—C13	176.43 (16)	C22—C21—C26—C25	0.6 (3)
C11—C12—C13—C14	0.4 (3)	N3—C21—C26—C25	-176.76 (18)
C12—C13—C14—F1	-177.5 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5…O1 ⁱ	0.95	2.41	3.322 (2)	160

Symmetry code: (i) -x+2, y+1/2, -z+3/2.