Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ethyl (E)-2-(2-furylidene)hydrazinecarboxylate

Lu-Ping Lv, ${ }^{\text {a }}$ Wei-Wei Li, ${ }^{\text {a }}$ Tie-Ming Yu, ${ }^{\text {a }}$ Wen-Bo Yu ${ }^{\text {a }}$ and Xian-Chao Hu ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and ${ }^{\text {b }}$ Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
Correspondence e-mail: zgdhxc@126.com
Received 14 June 2009; accepted 19 June 2009
Key indicators: single-crystal X-ray study; $T=223 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.028 ; \omega R$ factor $=0.071$; data-to-parameter ratio $=6.9$.

In the title compound, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$, the hydrazinecarboxylate group is twisted from the furan ring by $6.98(17)^{\circ}$. In the crystal, the molecules are linked into one-dimensional chains running along the c axis by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999); Kahwa et al. (1986); Santos et al. (2001). For a related structure, see: Shang et al. (2007).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=182.18$
Monoclinic, $C c$.
$a=14.150$ (6) A
$b=9.285(5) \AA$
$c=8.108(4) \AA$
$\beta=118.540(16)^{\circ}$
$V=935.8(8) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

| μ | $=0.10 \mathrm{~mm}^{-1}$ | $0.24 \times 0.22 \times 0.17 \mathrm{~mm}$ |
| ---: | :--- | ---: | :--- |
| T | $=223 \mathrm{~K}$ | |

Data collection

Bruker SMART CCD area-detector	2344 measured reflections
diffractometer	816 independent reflections
Absorption correction: multi-scan	733 reflections with $I>2 \sigma(I)$
$(S A D A B S ;$ Bruker, 2002)	$R_{\text {int }}=0.024$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028 \quad 118$ parameters
$w R\left(F^{2}\right)=0.071$
$S=1.07$
H -atom parameters constrained
816 reflections
$\Delta \rho_{\max }=0.10 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}_{2}{ }^{\mathrm{i}}$	0.86	2.08	$2.916(3)$	164

Symmetry code: (i) $x,-y, z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful for financial suport from the Zhejiang University of Technology Foundation (grant No. 20080169) and the Analysis and Measurement Foundation of Zhejiang Province (grant No. 2008 F70003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2272).

References

Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. \& Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.

Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Hadjoudis, E., Vittorakis, M. \& Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.
Kahwa, I. A., Selbin, J., Hsieh, T. Y. \& Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201-208.
Parashar, R. K., Sharma, R. C., Kumar, A. \& Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.
Santos, M. L. P., Bagatin, I. A., Pereira, E. M. \& Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.
Shang, Z.-H., Zhang, H.-L. \& Ding, Y. (2007). Acta Cryst. E63, o3394.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1678 [doi:10.1107/S1600536809023654]

Ethyl (E)-2-(2-furylidene)hydrazinecarboxylate

Lu-Ping Lv, Wei-Wei Li, Tie-Ming Yu, Wen-Bo Yu and Xian-Chao Hu

S1. Comment

Benzaldehydehydrazone derivatives have attracted much attention due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermidiates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). We report here the crystal structure of the title compound (Fig. 1).
In the title compound, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{I})$, the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{O} 2 / \mathrm{O} 3 / \mathrm{C} 6 / \mathrm{C} 7$ planes form dihedral angles of $6.98(17)^{\circ}$ with the
$\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 4$ planes.The bond lengths and angles are comparable to those observed for methyl $N^{\prime}-[(E)-4$-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007).
In the crystal structure, the molecules are linked into one-dimentional chains running along the c axis by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds(Table 1,Fig.1).

S2. Experimental

Furfuraldehyde ($0.96 \mathrm{~g}, 0.01 \mathrm{~mol}$) and Ethyl hydrazinecarboxylate $(1.04 \mathrm{~g}, 0.01 \mathrm{~mol})$ were dissolved in stirred methanol $(20 \mathrm{ml})$ and left for 3 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 95% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 410-412 K).

S3. Refinement

H atoms were positioned geometrically $(\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$) and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, N)$ and $1.5 U_{\mathrm{eq}}\left(\mathrm{C}_{\text {methyl }}\right)$. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 40% probability level.

Figure 2

Crystal packing of (I), showing the formation of chains along c. Hydrogen bonds are shown as dashed lines.

Ethyl (E)-2-(2-furylidene)hydrazinecarboxylate

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=182.18$
Monoclinic, $C c$
Hall symbol: C-2yc
$a=14.150$ (6) \AA
$b=9.285$ (5) \AA
$c=8.108$ (4) \AA
$\beta=118.540(16)^{\circ}$
$V=935.8(8) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.975, T_{\text {max }}=0.985$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.071$
$S=1.07$
816 reflections
118 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
F(000)=384
$$

$$
D_{\mathrm{x}}=1.293 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1451 reflections
$\theta=2.7-25.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=223 \mathrm{~K}$
Block, colourless
$0.24 \times 0.22 \times 0.17 \mathrm{~mm}$

> 2344 measured reflections
> 816 independent reflections
> 733 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.024$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.7^{\circ}$
> $h=-16 \rightarrow 16$
> $k=-10 \rightarrow 10$
> $l=-8 \rightarrow 9$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0384 P)^{2}+0.0727 P\right]$
where $P=\left(F_{0}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.10 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) $e t c$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O3	$-0.05924(14)$	$-0.0975(2)$	$0.4141(2)$	$0.0686(5)$

N2	$0.10734(15)$	$-0.0174(2)$	$0.5472(3)$	$0.0561(5)$
H2	0.0934	0.0188	0.6309	0.067^{*}
O1	$0.41276(15)$	$0.0404(2)$	$0.6109(3)$	$0.0754(6)$
O2	$0.04565(14)$	$-0.1545(2)$	$0.2815(2)$	$0.0654(5)$
N1	$0.20660(15)$	$0.0030(2)$	$0.5573(3)$	$0.0527(5)$
C3	$0.4583(2)$	$0.1980(3)$	$0.8408(4)$	$0.0702(8)$
H3	0.4555	0.2580	0.9302	0.084^{*}
C5	$0.27221(19)$	$0.0837(3)$	$0.6911(3)$	$0.0541(6)$
H5	0.2503	0.1248	0.7719	0.065^{*}
C6	$0.03274(18)$	$-0.0952(3)$	$0.4038(3)$	$0.0531(6)$
C4	$0.37893(19)$	$0.1127(2)$	$0.7200(3)$	$0.0533(6)$
C7	$-0.1479(2)$	$-0.1819(4)$	$0.2726(4)$	$0.0785(8)$
H7A	-0.1895	-0.2234	0.3273	0.094^{*}
H7B	-0.1196	-0.2601	0.2299	0.094^{*}
C1	$0.5472(2)$	$0.1804(3)$	$0.8079(4)$	$0.0745(8)$
H1	0.6138	0.2259	0.8705	0.089^{*}
C2	$0.5161(2)$	$0.0859(4)$	$0.6694(5)$	$0.0822(9)$
H2A	0.5589	0.0544	0.6183	0.099^{*}
C8	$-0.2181(3)$	$-0.0897(5)$	$0.1115(5)$	$0.1058(12)$
H8A	-0.2758	-0.1465	0.0190	0.159^{*}
H8B	-0.1769	-0.0492	0.0571	0.159^{*}
H8C	-0.2473	-0.0135	0.1537	0.159^{*}

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O3	$0.0582(10)$	$0.0793(13)$	$0.0731(12)$	$-0.0042(9)$	$0.0354(9)$	$-0.0022(10)$
N2	$0.0546(12)$	$0.0655(13)$	$0.0533(11)$	$0.0001(10)$	$0.0299(9)$	$-0.0041(10)$
O1	$0.0585(10)$	$0.0904(12)$	$0.0779(12)$	$-0.0088(10)$	$0.0329(10)$	$-0.0277(11)$
O2	$0.0669(10)$	$0.0755(11)$	$0.0593(10)$	$-0.0093(9)$	$0.0347(9)$	$-0.0106(9)$
N1	$0.0517(11)$	$0.0574(11)$	$0.0510(11)$	$0.0013(9)$	$0.0261(9)$	$0.0025(9)$
C3	$0.081(2)$	$0.0659(17)$	$0.0638(16)$	$-0.0113(15)$	$0.0347(15)$	$-0.0160(13)$
C5	$0.0610(14)$	$0.0538(14)$	$0.0474(13)$	$0.0032(13)$	$0.0259(11)$	$0.0004(12)$
C6	$0.0517(13)$	$0.0586(15)$	$0.0521(14)$	$0.0045(11)$	$0.0273(11)$	$0.0110(12)$
C4	$0.0594(14)$	$0.0537(13)$	$0.0451(12)$	$0.0034(11)$	$0.0236(11)$	$-0.0002(11)$
C7	$0.0616(16)$	$0.082(2)$	$0.092(2)$	$-0.0168(16)$	$0.0366(16)$	$-0.0043(17)$
C1	$0.0593(14)$	$0.0745(19)$	$0.0787(19)$	$-0.0163(14)$	$0.0241(14)$	$-0.0068(15)$
C2	$0.0567(15)$	$0.099(2)$	$0.095(2)$	$-0.0099(15)$	$0.0392(15)$	$-0.0218(19)$
C8	$0.0683(19)$	$0.126(3)$	$0.103(3)$	$-0.012(2)$	$0.0241(19)$	$0.006(2)$

Geometric parameters (A, ${ }^{\circ}$)

O3-C6	$1.344(3)$	C5-C4	$1.438(4)$
O3-C7	$1.459(3)$	C5-H5	0.9300
N2-C6	$1.347(3)$	C7-C8	$1.479(5)$
N2-N1	$1.380(2)$	C7-H7A	0.9700
N2-H2	0.8600	C7-H7B	0.9700
O1-C2	$1.371(4)$	C1-C2	$1.324(4)$

$\mathrm{O} 1-\mathrm{C} 4$	$1.366(3)$
$\mathrm{O} 2-\mathrm{C} 6$	$1.221(3)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.279(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.341(4)$
$\mathrm{C} 3-\mathrm{C} 1$	$1.415(4)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 6-\mathrm{O} 3-\mathrm{C} 7$	$117.0(2)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{N} 1$	$118.71(18)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{H} 2$	120.6
$\mathrm{~N} 1-\mathrm{N} 2-\mathrm{H} 2$	120.6
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 4$	$105.7(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{N} 2$	$115.90(18)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 1$	$107.7(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	126.1
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 3$	126.1
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 4$	$121.9(2)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5$	119.1
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.1
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{O} 3$	$124.6(2)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{N} 2$	$125.6(2)$
$\mathrm{O} 3-\mathrm{C} 6-\mathrm{N} 2$	$109.7(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$109.4(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$132.7(2)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$117.9(2)$

$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9600
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9600
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	0.9600

$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	110.2 (3)
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.6

- 109.6
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \quad 109.6$
O3-C7-H7B 109.6
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \quad 109.6$
H7A-C7-H7B 108.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3 \quad 105.7$ (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \quad 127.1$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{H} 1 \quad 127.1$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1 \quad 111.5$ (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A} \quad 124.3$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A} \quad 124.3$
C7-C8—H8A 109.5
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B} \quad 109.5$
H8A-C8-H8B 109.5
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \quad 109.5$
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \quad 109.5$
$\mathrm{H} 8 \mathrm{~B}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \quad 109.5$

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	2.08	$2.916(3)$	164

Symmetry code: (i) $x,-y, z+1 / 2$.

