Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,3'-Di-tert-butyl-5,5'-dimethoxy-biphenyl-2,2'-diol

Zhong-Xiang Du ${ }^{\text {a* }}$ and Ling-Zhi Wang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China, and ${ }^{\mathbf{b}}$ Equipment Department, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
Correspondence e-mail: dzx6281@126.com
Received 13 June 2009; accepted 16 June 2009
Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.041 ; w R$ factor $=0.112$; data-to-parameter ratio $=15.8$.

The title compound, $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}$, displays twofold rotational symmetry. The two benzene rings are almost perpendicular to each other, forming a dihedral angle of $89.8(6)^{\circ}$. In the crystal, molecules are linked into an extended one-dimensional chain structure via intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For the various methods of preparing di-BHA [a dimer of 3-tert-butyl-4-hydroxyanisole], see: Hewgill \& Hewitt (1967); Jarl et al. (2004); Masahiro et al. (2005); Seiichiro et al. (2004).

Experimental

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}$
Tetragonal, $I 4_{1} / a$
$M_{r}=358.46$

$c=23.127(3) \AA$	$\mu=0.08 \mathrm{~mm}^{-1}$
$V=4170.5(6) \AA^{3}$	$T=291 \mathrm{~K}$
$Z=8$	$0.49 \times 0.49 \times 0.38 \mathrm{~mm}$
Mo K α radiation	
Data collection	
Bruker APEXII CCD area-detector	13638 measured reflections
\quad diffractometer	1938 independent reflections
Absorption correction: multi-scan	1542 reflections with $I>2 \sigma(I)$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$R_{\text {int }}=0.025$
$\quad T_{\min }=0.963, T_{\max }=0.972$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$	123 parameters
$w R\left(F^{2}\right)=0.112$	H -atom parameters constrained
$S=1.04$	$\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$
1938 reflections	$\Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots 1^{\mathrm{i}}$	0.82	2.08	$2.7592(15)$	140

Symmetry code: (i) $x, y-\frac{1}{2},-z$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported financially by the National Natural Science Foundation of China (No. 20771054).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2819).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Hewgill, F. R. \& Hewitt, D. G. (1967). J. Chem. Soc. C, pp. 726-730.
Jarl, I. V., Alison, C. H., Samuel, N., Rafael, S., Allison, M. M., Martin, L., Anthony, L. S., Christian, M. \& Dieter, V. (2004). Adv. Synth. Catal. 346, 993-1003.
Masahiro, O., Kanae, T. S., Takao, K., Kentaro, O., Masako, S., Shiro, U., Keiichi, H. \& Toyoshige, E. (2005). Biol. Pharm. Bull. 28, 1120-1122.
Seiichiro, F., Mariko, I. \& Ichiro, Y. (2004). Internet J. Mol. Des. pp. 241-246.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1664 [doi:10.1107/S1600536809023071]

3,3'-Di-tert-butyl-5,5'-dimethoxybiphenyl-2,2'-diol

Zhong-Xiang Du and Ling-Zhi Wang

S1. Comment

In the previous literatures, several methods for preparing di-BHA [a dimer of 3-tert-butyl-4-hydroxyanisole (BHA)] have been reported (Hewgill \& Hewitt, 1967; Masahiro et al., 2005; Jarl et al., 2004; Seiichiro et al., 2004), but its singlecrystal and precise molecular structure has not been investigated so far. Here we describe the structure of the title compound, (I), (Fig. 1).
Di-BHA shows 2-fold rotational symmetry characters, where the 2-fold rotation axis is perpendicular to the C6-C6A bond. The oxygen atoms are almost coplanar with their own benzene ring-the largest deviation from the least-squares plane was found for O 1 (or O1A), with an atom-plane distance of $0.017 \AA$. The two benzene rings have a dihedral angle of 89.8°, indicating that they are almost perpendicular to each other. The phenolic hydroxyl donor and methoxyl acceptor are involved in intermolecular hydrogen bonds and they extend di-BHA molecules into a one-dimensional chain structure along the b axis (Table 1, Fig.2), thus stabilizing di-BHA in the solid state.

S2. Experimental

An easy preparation method improved by Jarl et al. (2004) was adopted in our experiment. A solution of $\left[\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\right]$ $(0.1 \mathrm{~mol}, 3.29 \mathrm{~g})$ and $\mathrm{KOH}(0.1 \mathrm{~mol}, 5.61 \mathrm{~g})$ in water $(100 \mathrm{ml})$ was prepared and was added dropwise to a solution of 3-tert-butyl-4-hydroxyanisole ($0.1 \mathrm{~mol}, 1.80 \mathrm{~g}$) in acetone $(10 \mathrm{ml})$ over 3 h at room temperature. After vigorous agitation, yellow rice-shaped precipitate was obtained and filtered. Then the solid product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$, and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under vacuum, a light brown solid was obtained. It turned into white crystal substance after washed with anhydrous ethanol $(3 \times 50 \mathrm{ml})$. Dissolve the white crystal substance in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filter the solution. About 4 days later, colourless block-shaped crystals suitable for X-ray diffraction analysis were appeared by slow evaporation in a yield of 63%. m. p. 510-511 K. Analysis, found: C 73.57, H $8.44 \% ; \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}$ requires: $\mathrm{C} 73.65, \mathrm{H} 8.37 \%$. IR $\left(\mathrm{KBr}, v, \mathrm{~cm}^{-1}\right): 3412.6(v \mathrm{O}-\mathrm{H}), 1594.2,1455.6\left(v\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right.$, skeleton $)$, 1396.2, 1365.4 $\left(v\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right.$, skeleton), 1215.3, 1138.8($\left.\nu \mathrm{C}-\mathrm{O}\right), 784.1(\gamma(\mathrm{C}=\mathrm{C}-\mathrm{H}))$.

S3. Refinement

H atoms bonded to C were positioned geometrically with $\mathrm{C}-\mathrm{H}$ distance of $0.93-0.96 \AA$, and treated as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$. The $\mathrm{O}-\mathrm{H}$ hydrogen atom was located in a difference Fourier map and the applied restraint of the $\mathrm{O}-\mathrm{H}$ distance was $0.820 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Figure 1
Molecular structure of (I), with displacement ellipsoids drawn at the 25% probability level. Atoms with suffix A are at the symmetry position $(-x,-y+3 / 2, z)$.

Figure 2
The crystal packing of (I), showing hydrogen bonds as dashed lines along b axis. H atoms on C atoms have been omitted.

3,3'-Di-tert-butyl-5,5'-dimethoxybiphenyl-2,2'-diol

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}$
$M_{r}=358.46$
Tetragonal, $I 4_{1} / a$
Hall symbol: -I 4ad

$$
\begin{aligned}
& a=13.4289(8) \AA \\
& c=23.127(3) \AA \\
& V=4170.5(6) \AA^{3} \\
& Z=8
\end{aligned}
$$

$F(000)=1552$
$D_{\mathrm{x}}=1.142 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3994 reflections
$\theta=3.0-25.5^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.963, T_{\text {max }}=0.972$

$$
\mu=0.08 \mathrm{~mm}^{-1}
$$

$T=291 \mathrm{~K}$
Block, colourless
$0.49 \times 0.49 \times 0.38 \mathrm{~mm}$

13638 measured reflections
1938 independent reflections
1542 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-16 \rightarrow 15$
$k=-15 \rightarrow 16$
$l=-28 \rightarrow 27$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.112$
$S=1.04$
1938 reflections
123 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0476 P)^{2}+2.3626 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.13$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.11953(11)$	$0.79586(10)$	$0.02439(6)$	$0.0416(4)$
C2	$0.18758(11)$	$0.87570(10)$	$0.02195(6)$	$0.0416(4)$
C3	$0.16557(11)$	$0.95179(11)$	$-0.01654(6)$	$0.0431(4)$
H3	0.2085	1.0060	-0.0188	0.052^{*}
C4	$0.08231(11)$	$0.95010(10)$	$-0.05172(6)$	$0.0408(3)$
C5	$0.01714(11)$	$0.87114(10)$	$-0.04926(6)$	$0.0417(4)$
H5	-0.0385	0.8696	-0.0732	0.050^{*}
C6	$0.03503(10)$	$0.79350(10)$	$-0.01059(6)$	$0.0387(3)$
C7	$0.28338(12)$	$0.87786(13)$	$0.05857(7)$	$0.0546(4)$
C8	$0.34307(17)$	$0.97382(18)$	$0.04844(11)$	$0.0950(8)$

H8A	0.3018	1.0305	0.0566	0.142^{*}
H8B	0.3647	0.9764	0.0089	0.142^{*}
H8C	0.4001	0.9746	0.0735	0.142^{*}
C9	$0.34957(16)$	$0.78944(19)$	$0.04258(11)$	$0.0878(7)$
H9A	0.4062	0.7876	0.0679	0.132^{*}
H9B	0.3718	0.7964	0.0033	0.132^{*}
H9C	0.3123	0.7288	0.0465	0.132^{*}
C10	$0.25901(15)$	$0.87337(17)$	$0.12326(8)$	$0.0725(6)$
H10A	0.2230	0.9322	0.1342	0.109^{*}
H10B	0.3197	0.8695	0.1451	0.109^{*}
H10C	0.2190	0.8157	0.1310	0.109^{*}
C11	$0.00097(17)$	$1.02543(14)$	$-0.13233(9)$	$0.0733(6)$
H11A	0.0167	0.9698	-0.1567	0.110^{*}
H11B	0.0028	1.0856	-0.1547	0.110^{*}
H11C	-0.0644	1.0168	-0.1163	0.110^{*}
O1	$0.07070(9)$	$1.03143(8)$	$-0.08749(5)$	$0.0586(3)$
O2	$0.13978(10)$	$0.72001(8)$	$0.06230(6)$	$0.0665(4)$
H2	0.0997	0.6747	0.0574	0.100^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0462(8)$	$0.0351(7)$	$0.0437(8)$	$-0.0028(6)$	$-0.0020(6)$	$0.0010(6)$
C2	$0.0421(8)$	$0.0389(8)$	$0.0438(8)$	$-0.0058(6)$	$-0.0027(6)$	$-0.0030(6)$
C3	$0.0453(8)$	$0.0369(8)$	$0.0470(8)$	$-0.0119(6)$	$0.0005(7)$	$-0.0021(6)$
C4	$0.0483(8)$	$0.0313(7)$	$0.0427(8)$	$-0.0033(6)$	$-0.0002(6)$	$0.0021(6)$
C5	$0.0409(8)$	$0.0403(8)$	$0.0440(8)$	$-0.0042(6)$	$-0.0047(6)$	$-0.0015(6)$
C6	$0.0393(8)$	$0.0338(7)$	$0.0428(8)$	$-0.0048(6)$	$0.0025(6)$	$-0.0024(6)$
C7	$0.0491(9)$	$0.0582(10)$	$0.0565(10)$	$-0.0083(8)$	$-0.0133(8)$	$-0.0002(8)$
C8	$0.0763(14)$	$0.1044(17)$	$0.1042(18)$	$-0.0472(13)$	$-0.0422(13)$	$0.0238(14)$
C9	$0.0574(12)$	$0.1129(18)$	$0.0930(16)$	$0.0194(12)$	$-0.0211(11)$	$-0.0159(14)$
C10	$0.0739(13)$	$0.0843(14)$	$0.0595(11)$	$-0.0043(10)$	$-0.0228(10)$	$-0.0031(10)$
C11	$0.0946(15)$	$0.0568(11)$	$0.0686(12)$	$-0.0020(10)$	$-0.0309(11)$	$0.0131(9)$
O1	$0.0791(8)$	$0.0406(6)$	$0.0562(7)$	$-0.0134(5)$	$-0.0178(6)$	$0.0115(5)$
O2	$0.0759(9)$	$0.0465(7)$	$0.0770(9)$	$-0.0174(6)$	$-0.0289(7)$	$0.0210(6)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 2$	$1.3711(18)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9600
$\mathrm{C} 1-\mathrm{C} 6$	$1.394(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	$1.410(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	0.9600
$\mathrm{C} 2-\mathrm{C} 3$	$1.387(2)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9600
$\mathrm{C} 2-\mathrm{C} 7$	$1.541(2)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9600
$\mathrm{C} 3-\mathrm{C} 4$	$1.383(2)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9600
$\mathrm{C} 4-\mathrm{C} 5$	$1.3761(19)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9600
$\mathrm{C} 4-\mathrm{O} 1$	$1.3788(17)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	0.9600
$\mathrm{C} 5-\mathrm{C} 6$	$1.395(2)$	$\mathrm{C} 11-\mathrm{O} 1$	$1.400(2)$

C5-H5	0.9300
C6-C6 ${ }^{\text {i }}$	1.500 (3)
C7-C9	1.529 (3)
C7-C10	1.533 (3)
C7-C8	1.535 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 6$	121.03 (13)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.52 (13)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	121.45 (13)
C3-C2-C1	116.61 (13)
C3-C2-C7	121.12 (13)
C1-C2-C7	122.25 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	122.53 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	118.7
C2-C3-H3	118.7
C5-C4-O1	124.28 (13)
C5-C4-C3	120.16 (13)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	115.55 (12)
C4-C5-C6	119.54 (13)
C4-C5-H5	120.2
C6-C5-H5	120.2
C1-C6-C5	119.70 (12)
C1-C6- $\mathrm{C}^{\text {i }}$	121.90 (13)
C5-C6- $\mathrm{C}^{\text {i }}$	118.31 (12)
C9-C7-C10	109.25 (17)
C9-C7-C8	108.15 (18)
C10-C7-C8	107.07 (16)
C9-C7-C2	109.75 (14)
C10-C7-C2	110.95 (14)
C8-C7-C2	111.58 (14)
C7-C8-H8A	109.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.81 (14)
C6-C1-C2-C3	0.6 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	1.9 (2)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-177.67 (14)
C1-C2-C3-C4	-1.0 (2)
C7-C2-C3-C4	177.31 (14)
C2-C3-C4-C5	0.3 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	179.81 (14)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	-178.71 (14)
C3-C4-C5-C6	0.7 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-179.17 (14)
C2-C1-C6-C5	0.4 (2)

C11-H11A	0.9600
C11-H11B	0.9600
C11-H11C	0.9600
O2-H2	0.8200

C7-C8—H8B 109.5
H8A-C8-H8B 109.5
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \quad 109.5$
H8A-C8-H8C 109.5
$\mathrm{H} 8 \mathrm{~B}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \quad 109.5$
C7-C9—H9A 109.5
C7-C9—H9B 109.5
H9A-C9—H9B 109.5
C7-C9—H9C 109.5
H9A-C9—H9C 109.5
H9B-C9—H9C 109.5
$\mathrm{C} 7-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A} \quad 109.5$
$\mathrm{C} 7-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 109.5$
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 109.5$
$\mathrm{C} 7-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \quad 109.5$
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \quad 109.5$
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \quad 109.5$
O1—C11—H11A 109.5
O1-C11-H11B 109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 109.5$
O1-C11-H11C 109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 11 \quad 118.33$ (12)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{H} 2 \quad 109.5$
$\begin{array}{ll}\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C}^{\mathrm{i}} & -2.8(2) \\ \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C}^{\mathrm{i}} & 176.75(13) \\ \mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1 & -1.1(2) \\ \mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C}^{\mathrm{i}} & -177.55(13 \\ \mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 9 & -117.04(18) \\ \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 9 & 61.1(2) \\ \mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 10 & 122.12(17) \\ \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 10 & -59.7(2) \\ \mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8 & 2.8(2) \\ \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8 & -179.02(17) \\ \mathrm{C} 5-\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 11 & -13.7(2) \\ \mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 11 & 166.78(16)\end{array}$

[^0]
supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$	0.82	2.08	$2.7592(15)$	140

Symmetry code: (ii) $x, y-1 / 2,-z$.

[^0]: Symmetry code: (i) $-x,-y+3 / 2, z$.

