metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{2,2'-[1,1'-(Ethylenedioxydinitrilo)diethylidyne]di-1-naphtholato}copper(II)

Wen-Kui Dong,* Jian-Chao Wu, Jian Yao, Shang-Sheng Gong and Jun-Feng Tong

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China Correspondence e-mail: dongwk@mail.lzjtu.cn

Received 12 June 2009; accepted 15 June 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.043; wR factor = 0.108; data-to-parameter ratio = 12.6.

The title complex, $[Cu(C_{26}H_{22}N_2O_4)]$, is isostructural with its Ni analogue. All intramolecular distances and angles are very similar for the two structures, whereas the packing of the molecules, including C-H···O and C-H··· π interactions, are slightly different.

Related literature

For transition metal complexes with multidentate salen-type ligands, see: Akine *et al.* (2005); Dong *et al.* (2009*a*,*b*); Katsuki (1995); Ray *et al.* (2003); Sun *et al.* (2008). For the isostructural Ni complex, see: Dong *et al.* (2009*c*).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_{26}H_{22}N_2O_4) \end{bmatrix} \\ M_r = 490.00 \\ Monoclinic, P2_1/n \\ a = 13.0288 (17) \text{ Å} \\ b = 7.8934 (12) \text{ Å} \end{bmatrix}$

c = 21.292 (2) Å
$\beta = 103.217 \ (2)^{\circ}$
V = 2131.7 (5) Å
Z = 4
Mo $K\alpha$ radiation

 $0.41 \times 0.17 \times 0.07 \; \rm mm$

 $\mu = 1.06 \text{ mm}^{-1}$ T = 298 K

Data collection

Bruker SMART 1000 CCD	10698 measured reflections
diffractometer	3753 independent reflections
Absorption correction: multi-scan	2278 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.051$
$T_{\min} = 0.670, \ T_{\max} = 0.929$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 298 parameters $wR(F^2) = 0.108$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.29$ e Å $^{-3}$ 3753 reflections $\Delta \rho_{min} = -0.41$ e Å $^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

Symmetry codes: (1) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$, (1) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$. Cg8 is the centroid of the C21–C26 ring.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the 'Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2815).

References

- Akine, S., Takanori, T., Taniguchi, T. & Nabeshima, T. (2005). *Inorg. Chem.* 44, 3270–3274.
- Dong, W. K., Duan, J. G., Guan, Y. H., Shi, J. Y. & Zhao, C. Y. (2009a). Inorg. Chim. Acta, 362, 1129–1134.
- Dong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009b). *Inorg. Chim. Acta*, **362**, 117–124.
- Dong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009c). Acta Cryst. E65, m803.
- Katsuki, T. (1995). Coord. Chem. Rev. 140, 189-214.
- Ray, M. S., Mukhopadhyay, G. M., Drew, M. G. B., Lu, T. H., Chaudhuri, S. & Ghosh, A. (2003). *Inorg. Chem. Commun.* 6, 961–965.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sun, Y.-X., Gao, S.-X., Shi, J.-Y. & Dong, W.-K. (2008). Acta Cryst. E64, m226.

supporting information

Acta Cryst. (2009). E65, m802 [doi:10.1107/S1600536809023010]

{2,2'-[1,1'-(Ethylenedioxydinitrilo)diethylidyne]di-1-naphtholato}copper(II)

Wen-Kui Dong, Jian-Chao Wu, Jian Yao, Shang-Sheng Gong and Jun-Feng Tong

S1. Comment

Transition metal complexes with multidentate salen-type ligands are very interesting in modern coordination chemistry because they have mono-, di- or tri-nuclear metal complexes with important stereochemistry (Katsuki *et al.*, 1995; Akine *et al.*, 2005; Dong *et al.*, 2009*b*). Metal derivatives of salen-type compounds have been investigated extensively, and copper(II) complexes play a major role in both synthetic and structural research (Ray *et al.*, 2003; Dong *et al.*, 2009*a*).

In this paper, a new mononuclear copper(II) complex with salen-type bisoxime chelating ligand, 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol, has been synthesized (Sun *et al.*, 2008). The X-ray crystallography of the title complex (Fig. 1) reveals the complex crystallizes in the monoclinic system, with P2₁/c space group. There is a crystallographic twofold screw axis (symmetry code: 1/2 - x, 1/2 + y, 1/2 - z). The dihedral angle between the coordination plane of O3—Cu1—N1 and that of O4—Cu1—N2 is 26.53°, indicating slight distortion toward tetrahedral geometry from the square planar structure [Cu1—O3: 1.876 (3) Å; Cu1—O4: 1.895 (3) Å; Cu1—N1: 1.976 (3) Å; Cu1— N2: 1.947 (3) Å]), with a mean deviation of 0.016 Å from the N₂O₂ plane. The crystal structure is further stabilized by intermolecular C16—H16A···O3, C23—H23···O2 hydrogen bonds and C4—H4C···*π* interactions (Table 1), which link neighbouring molecules into extended chains along the *c* axis.

S2. Experimental

A solution of Cu(II) acetate monohydrate (1.7 mg, 0.0085 mmol) in ethanol (5 ml) was added dropwise to a solution of 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol (3.4 mg, 0.0079 mmol) in dichloromethane (5 ml). The colour of the mixing solution turns to brown, immediately, and was allowed to stand at room temperature for about one week, the solvent was partially evaporated and obtained dark-brown needle-like single crystals suitable for X-ray crystallographic analysis.

S3. Refinement

H atoms were treated as riding atoms with distances C—H = 0.96 (CH₃), C—H = 0.97 (CH₂), or 0.93 Å (CH), and U_{iso} (H) = 1.2 U_{eq} (C) and 1.5 U_{eq} (C_{methyl}).

Figure 1

The molecule structure of the title complex possessing a crystallographic twofold screw axis passing through the middle point of $(-O)-H_2C$ — $CH_2-(O-)$ unit (symmetry code: 1/2 - x, 1/2 + y, 1/2 - z). Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

{2,2'-[1,1'-(Ethylenedioxydinitrilo)diethylidyne]di-1-naphtholato}copper(II)

Crystal data	
$[Cu(C_{26}H_{22}N_{2}O_{4})]$	F(000) = 1012
$M_r = 490.00$	$D_{\rm x} = 1.527 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2535 reflections
a = 13.0288 (17) Å	$\theta = 3.0 - 25.3^{\circ}$
b = 7.8934 (12) Å	$\mu = 1.06 \text{ mm}^{-1}$
c = 21.292 (2) Å	T = 298 K
$\beta = 103.217(2)^{\circ}$	Needle, dark-brown
V = 2131.7 (5) Å ³	$0.41 \times 0.17 \times 0.07 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART 1000 CCD area-detector	Absorption correction: multi-scan
diffractometer	(SADABS; Sheldrick, 1996)
Radiation source: fine-focus sealed tube	$T_{\rm min} = 0.670, \ T_{\rm max} = 0.929$
Graphite monochromator	10698 measured reflections
φ and ω scans	3753 independent reflections
	2278 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.051$	$k = -9 \rightarrow 9$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.7^{\circ}$	$l = -25 \rightarrow 23$
$h = -15 \rightarrow 13$	

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.108$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
3753 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0328P)^2 + 2.0905P]$
298 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.73155 (4)	0.18038 (7)	0.77719 (2)	0.04608 (19)
N1	0.7004 (3)	0.1798 (4)	0.86373 (14)	0.0465 (9)
N2	0.8811 (2)	0.2362 (4)	0.79867 (15)	0.0452 (9)
01	0.7720 (2)	0.1113 (4)	0.91807 (14)	0.0680 (9)
O2	0.9266 (2)	0.2769 (4)	0.86424 (13)	0.0512 (8)
03	0.5864 (2)	0.1927 (4)	0.74053 (12)	0.0555 (8)
O4	0.7494 (2)	0.0995 (4)	0.69654 (13)	0.0562 (8)
C1	0.8537 (4)	0.0179 (6)	0.9005 (2)	0.0689 (14)
H1A	0.8289	-0.0266	0.8572	0.083*
H1B	0.8730	-0.0772	0.9297	0.083*
C2	0.9486 (3)	0.1269 (6)	0.9028 (2)	0.0637 (13)
H2A	0.9779	0.1594	0.9472	0.076*
H2B	1.0015	0.0610	0.8882	0.076*
C3	0.6172 (3)	0.2413 (5)	0.87978 (19)	0.0465 (11)
C4	0.6114 (4)	0.2381 (7)	0.94956 (19)	0.0661 (14)
H4A	0.6453	0.1376	0.9697	0.099*
H4B	0.5389	0.2384	0.9523	0.099*
H4C	0.6463	0.3362	0.9711	0.099*
C5	0.5175 (3)	0.2722 (5)	0.76545 (19)	0.0435 (10)
C6	0.5294 (3)	0.3069 (5)	0.83128 (19)	0.0447 (10)
C7	0.4498 (4)	0.4048 (6)	0.8504 (2)	0.0572 (12)
H7	0.4581	0.4316	0.8938	0.069*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

G 0				0.0(00.(10)
C8	0.3623 (4)	0.4603 (6)	0.8078 (2)	0.0622 (13)
H8	0.3129	0.5248	0.8225	0.075*
C9	0.3450 (3)	0.4223 (6)	0.7418 (2)	0.0532 (12)
C10	0.4212 (3)	0.3260 (5)	0.7203 (2)	0.0466 (10)
C11	0.4048 (3)	0.2850 (6)	0.6547 (2)	0.0553 (12)
H11	0.4546	0.2203	0.6404	0.066*
C12	0.3158 (4)	0.3395 (7)	0.6113 (2)	0.0737 (15)
H12	0.3054	0.3109	0.5679	0.088*
C13	0.2418 (4)	0.4369 (7)	0.6322 (3)	0.0781 (16)
H13	0.1819	0.4739	0.6027	0.094*
C14	0.2557 (4)	0.4787 (6)	0.6952 (3)	0.0694 (14)
H14	0.2057	0.5458	0.7082	0.083*
C15	0.9430 (3)	0.2702 (5)	0.7603 (2)	0.0441 (10)
C16	1.0539 (3)	0.3300 (6)	0.7877 (2)	0.0596 (12)
H16A	1.0532	0.4490	0.7969	0.089*
H16B	1.0961	0.3103	0.7569	0.089*
H16C	1.0831	0.2690	0.8266	0.089*
C17	0.8113 (3)	0.1659 (5)	0.66393 (18)	0.0388 (10)
C18	0.9056 (3)	0.2506 (5)	0.69117 (19)	0.0418 (10)
C19	0.9665 (3)	0.3161 (6)	0.6492 (2)	0.0530 (11)
H19	1.0285	0.3736	0.6672	0.064*
C20	0.9390 (3)	0.2994 (6)	0.5845 (2)	0.0564 (12)
H20	0.9819	0.3440	0.5592	0.068*
C21	0.8443 (3)	0.2135 (5)	0.5550(2)	0.0485 (11)
C22	0.7806 (3)	0.1459 (5)	0.59432 (19)	0.0427 (10)
C23	0.6864 (3)	0.0651 (5)	0.5649 (2)	0.0502 (11)
H23	0.6435	0.0213	0.5904	0.060*
C24	0.6560 (4)	0.0493 (6)	0.4991 (2)	0.0613 (13)
H24	0.5929	-0.0043	0.4802	0.074*
C25	0.7202 (4)	0.1138 (7)	0.4606 (2)	0.0712 (15)
H25	0.7005	0.1010	0.4160	0.085*
C26	0.8112 (4)	0.1952 (7)	0.4879 (2)	0.0641 (13)
H26	0.8524	0.2398	0.4615	0.077*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0401 (3)	0.0603 (4)	0.0372 (3)	-0.0043 (3)	0.0077 (2)	-0.0032 (3)
N1	0.046 (2)	0.056 (2)	0.0345 (19)	-0.0113 (19)	0.0022 (16)	0.0057 (18)
N2	0.043 (2)	0.050(2)	0.039 (2)	-0.0019 (17)	0.0021 (16)	-0.0126 (17)
O1	0.060(2)	0.093 (3)	0.0447 (19)	-0.0031 (19)	-0.0005 (16)	0.0194 (18)
O2	0.0535 (18)	0.051 (2)	0.0445 (17)	-0.0028 (15)	0.0010 (13)	-0.0102 (15)
O3	0.0415 (16)	0.087 (2)	0.0368 (16)	-0.0011 (17)	0.0062 (13)	-0.0113 (16)
O4	0.0506 (18)	0.077 (2)	0.0449 (17)	-0.0232 (16)	0.0196 (14)	-0.0171 (16)
C1	0.068 (3)	0.055 (3)	0.070 (3)	0.002 (3)	-0.012 (3)	0.018 (3)
C2	0.056 (3)	0.064 (3)	0.062 (3)	0.013 (3)	-0.005 (2)	0.002 (3)
C3	0.052 (3)	0.051 (3)	0.037 (2)	-0.019 (2)	0.011 (2)	0.000 (2)
C4	0.068 (3)	0.093 (4)	0.039 (3)	-0.018 (3)	0.015 (2)	0.002 (3)

C5	0.041 (2)	0.046 (3)	0.044 (2)	-0.015 (2)	0.011 (2)	-0.001 (2)
C6	0.047 (2)	0.048 (3)	0.041 (2)	-0.010 (2)	0.015 (2)	-0.005 (2)
C7	0.066 (3)	0.060 (3)	0.051 (3)	-0.016 (3)	0.025 (3)	-0.005 (2)
C8	0.058 (3)	0.051 (3)	0.085 (4)	-0.007 (3)	0.032 (3)	-0.006 (3)
C9	0.045 (3)	0.043 (3)	0.073 (3)	-0.011 (2)	0.017 (2)	0.007 (3)
C10	0.041 (2)	0.047 (3)	0.051 (3)	-0.013 (2)	0.008 (2)	0.004 (2)
C11	0.044 (3)	0.060 (3)	0.059 (3)	-0.012 (2)	0.005 (2)	0.006 (2)
C12	0.058 (3)	0.090 (4)	0.063 (3)	-0.021 (3)	-0.008 (3)	0.018 (3)
C13	0.048 (3)	0.075 (4)	0.100 (5)	-0.006 (3)	-0.006 (3)	0.028 (4)
C14	0.045 (3)	0.057 (3)	0.106 (4)	-0.003 (2)	0.016 (3)	0.011 (3)
C15	0.039 (2)	0.037 (3)	0.056 (3)	0.0032 (19)	0.008 (2)	-0.009 (2)
C16	0.043 (3)	0.062 (3)	0.070 (3)	-0.004 (2)	0.006 (2)	-0.008 (3)
C17	0.033 (2)	0.040 (3)	0.045 (2)	0.0005 (19)	0.0113 (18)	-0.006 (2)
C18	0.039 (2)	0.042 (3)	0.045 (2)	0.002 (2)	0.0125 (19)	-0.003 (2)
C19	0.043 (2)	0.052 (3)	0.066 (3)	-0.004 (2)	0.017 (2)	-0.001 (3)
C20	0.057 (3)	0.062 (3)	0.057 (3)	-0.001 (3)	0.026 (2)	0.004 (3)
C21	0.051 (3)	0.051 (3)	0.046 (3)	0.009 (2)	0.013 (2)	0.006 (2)
C22	0.044 (2)	0.044 (3)	0.041 (2)	0.006 (2)	0.0108 (19)	-0.001 (2)
C23	0.049 (3)	0.050 (3)	0.050 (3)	0.001 (2)	0.010 (2)	-0.002 (2)
C24	0.055 (3)	0.077 (4)	0.045 (3)	0.004 (3)	-0.004 (2)	-0.008 (3)
C25	0.072 (4)	0.094 (4)	0.044 (3)	0.010 (3)	0.005 (3)	0.009 (3)
C26	0.066 (3)	0.078 (4)	0.051 (3)	0.008 (3)	0.019 (2)	0.016 (3)

Geometric parameters (Å, °)

Cu1—O3	1.876 (3)	C10-C11	1.402 (6)
Cu1—O4	1.895 (3)	C11—C12	1.376 (6)
Cu1—N2	1.947 (3)	C11—H11	0.9300
Cu1—N1	1.976 (3)	C12—C13	1.385 (7)
N1—C3	1.302 (5)	C12—H12	0.9300
N1-01	1.417 (4)	C13—C14	1.352 (7)
N2—C15	1.301 (5)	C13—H13	0.9300
N2	1.423 (4)	C14—H14	0.9300
01—C1	1.414 (5)	C15—C18	1.449 (5)
O2—C2	1.432 (5)	C15—C16	1.504 (5)
O3—C5	1.304 (5)	C16—H16A	0.9600
O4—C17	1.290 (4)	C16—H16B	0.9600
C1—C2	1.497 (6)	C16—H16C	0.9600
C1—H1A	0.9700	C17—C18	1.403 (5)
C1—H1B	0.9700	C17—C22	1.453 (5)
C2—H2A	0.9700	C18—C19	1.422 (5)
C2—H2B	0.9700	C19—C20	1.346 (6)
С3—С6	1.450 (6)	C19—H19	0.9300
C3—C4	1.505 (5)	C20—C21	1.421 (6)
C4—H4A	0.9600	C20—H20	0.9300
C4—H4B	0.9600	C21—C26	1.404 (6)
C4—H4C	0.9600	C21—C22	1.411 (5)
С5—С6	1.401 (5)	C22—C23	1.398 (5)

GE G10	1 450 (5)	G00 G04	1 252 (5)
C5-C10	1.458 (5)	C23—C24	1.372 (5)
C6—C7	1.426 (6)	C23—H23	0.9300
С7—С8	1.357 (6)	C24—C25	1.394 (6)
С7—Н7	0.9300	C24—H24	0.9300
C8—C9	1.402 (6)	C25—C26	1.357 (6)
C8—H8	0.9300	C25_H25	0.9300
$C_0 = C_{10}$	1.407 (6)	C26 H26	0.9300
C9—C10	1.407 (0)	С20—н20	0.9300
C9—C14	1.417 (6)		
03 - Cu1 - 04	87 76 (11)	$C_{11} - C_{10} - C_{5}$	120 1 (4)
$O_2^2 C_{11} N_2^2$	160.05 (14)	C_{10} C_{10} C_{5}	120.1(4)
$O_3 = Cu_1 = N_2$	100.93(14)	$C_{9} = C_{10} = C_{10}$	120.3(4)
04—Cui—N2	88.05 (12)		120.7 (5)
O3—Cul—NI	89.17 (12)	С12—С11—Н11	119.7
O4—Cu1—N1	159.73 (14)	C10—C11—H11	119.7
N2—Cu1—N1	100.93 (13)	C11—C12—C13	120.0 (5)
C3—N1—O1	111.1 (3)	C11—C12—H12	120.0
C3—N1—Cu1	127.2 (3)	C13—C12—H12	120.0
O1—N1—Cu1	121.7 (3)	C14—C13—C12	120.6 (5)
C15—N2—O2	113.0 (3)	C14—C13—H13	119.7
C15— $N2$ — $Cu1$	129 1 (3)	C12-C13-H13	119 7
Ω_{2}^{2} N2 Cul	129.1(3) 116.9(2)	$C_{12} = C_{13} = C_{14} = C_{9}$	121.4(5)
$C_1 = O_1 = N_1$	110.9(2)	C_{12} C_{14} U_{14}	121.4(3)
	112.2 (3)		119.3
N2	111.0 (3)	C9—C14—H14	119.3
C5—O3—Cu1	125.3 (2)	N2—C15—C18	120.2 (4)
C17—O4—Cu1	124.9 (3)	N2—C15—C16	120.0 (4)
O1—C1—C2	110.9 (4)	C18—C15—C16	119.8 (4)
O1—C1—H1A	109.5	C15—C16—H16A	109.5
C2—C1—H1A	109.5	C15—C16—H16B	109.5
O1—C1—H1B	109.5	H16A—C16—H16B	109.5
C2—C1—H1B	109.5	C15—C16—H16C	109.5
$H_1A - C_1 - H_1B$	108.0	H_{16A} $-C_{16}$ $-H_{16C}$	109.5
02-C2-C1	113 6 (3)	H_{16B} C_{16} H_{16C}	109.5
$O_2 C_2 U_2$	108.8	Ω_{4} Ω_{17} Ω_{18}	109.5 124.6(4)
$C_1 = C_2 = H_2 A$	100.0	04 - C17 - C18	124.0(4)
CI-C2-H2A	108.8	04-01/-022	110.4 (3)
02—C2—H2B	108.8	C18—C17—C22	118.9 (4)
C1—C2—H2B	108.8	C17—C18—C19	118.4 (4)
H2A—C2—H2B	107.7	C17—C18—C15	122.0 (4)
N1—C3—C6	121.0 (4)	C19—C18—C15	119.6 (4)
N1—C3—C4	119.0 (4)	C20—C19—C18	123.4 (4)
C6—C3—C4	120.0 (4)	С20—С19—Н19	118.3
C3—C4—H4A	109.5	C18—C19—H19	118.3
C3—C4—H4B	109.5	C19—C20—C21	120.0 (4)
H4A—C4—H4B	109.5	С19—С20—Н20	120.0
C3—C4—H4C	109.5	C21—C20—H20	120.0
$H_{4} - C_{4} - H_{4}C$	109.5	C_{26} C_{21} C_{22} C_{22} C_{23}	118.7(4)
	109.5	$C_{20} = C_{21} = C_{22}$	1222(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{20} = C_{21} = C_{20}$	122.2(4)
	124.9 (4)	(22 - (21 - (20 - (21 - (20 - (21 - (20 - (21 - (20 - (21 - (20	119.1 (4)
03-03-010	116.2 (4)	C23—C22—C21	118.8 (4)

C6—C5—C10	119.0 (4)	C23—C22—C17	121.0 (4)
C5—C6—C7	118.0 (4)	C21—C22—C17	120.1 (4)
C5—C6—C3	122.1 (4)	C24—C23—C22	121.2 (4)
C7—C6—C3	119.8 (4)	C24—C23—H23	119.4
C8—C7—C6	122.6 (4)	С22—С23—Н23	119.4
С8—С7—Н7	118.7	C23—C24—C25	119.7 (4)
С6—С7—Н7	118.7	C23—C24—H24	120.1
C7—C8—C9	121.2 (4)	C25—C24—H24	120.1
C7—C8—H8	119.4	C26—C25—C24	120.3 (4)
С9—С8—Н8	119.4	C26—C25—H25	119.9
C8—C9—C10	118.5 (4)	C24—C25—H25	119.9
C8-C9-C14	123 5 (5)	C_{25} C_{26} C_{21}	121 3 (4)
C10-C9-C14	125.5(5) 118.0(5)	$C_{25} = C_{26} = H_{26}$	119.3
$C_{11} - C_{10} - C_{9}$	110.0(3) 119.4(4)	$C_{23} = C_{26} = H_{26}$	119.3
	11).+ (+)	021 020 1120	117.5
Ω_{1}^{2}	-251(4)	C_{14} C_{9} C_{10} C_{5}	1767(4)
$O_4 C_{11} N_1 C_3$	-1063(5)	$C_{14} = C_{10} = C_{10} = C_{11}$	28(6)
$N_2 C_{11} N_1 C_3$	100.5(3) 1387(3)	$C_{5} = C_{10} = C_{11}$	-176.6(4)
$O_3 Cu1 N1 O1$	156.5 (3)	$C_0 = C_0 = C_{10} = C_{11}$	-175.8(4)
$04 C_{11} N_1 O_1$	150.5(5)	$C_{5} = C_{10} = C_{9}$	175.8(+)
$N_2 = C_{11} = N_1 = O_1$	-30.8(3)	$C_0 = C_1 = C_1 = C_2$	4.7(0)
$N_2 = C_{11} = N_1 = O_1$	-51.8 (6)	$C_{5} = C_{10} = C_{11} = C_{12}$	-1780(4)
O_{3} C_{11} N_{2} C_{15}	-51.8(0)	$C_{10} = C_{11} = C_{12} = C_{12}$	-1/8.0(4)
04— $Cu1$ — $N2$ — $C15$	25.0 (4)	C10-C11-C12-C13	0.5(7)
NI = CuI = N2 = CIS	-1/2.7(4)	C11 - C12 - C13 - C14	-0.3(8)
03—Cul—N2—O2	115.2 (4)	C12 - C13 - C14 - C9	-1.1 (8)
04—Cu1—N2—O2	-167.5 (3)	C8—C9—C14—C13	-179.1 (5)
N1—Cu1—N2—O2	-5.8 (3)	C10—C9—C14—C13	2.2 (7)
C3—N1—O1—C1	169.7 (4)	O2—N2—C15—C18	-174.5(3)
Cu1—N1—O1—C1	-11.6 (4)	Cu1—N2—C15—C18	-7.2 (6)
C15—N2—O2—C2	-111.8 (4)	O2—N2—C15—C16	5.5 (5)
Cu1—N2—O2—C2	79.2 (3)	Cu1—N2—C15—C16	172.9 (3)
O4—Cu1—O3—C5	-166.2 (3)	Cu1—O4—C17—C18	30.4 (5)
N2—Cu1—O3—C5	-88.8 (5)	Cu1—O4—C17—C22	-151.3 (3)
N1—Cu1—O3—C5	33.8 (3)	O4—C17—C18—C19	179.4 (4)
O3—Cu1—O4—C17	125.2 (3)	C22—C17—C18—C19	1.2 (6)
N2—Cu1—O4—C17	-36.2 (3)	O4—C17—C18—C15	0.4 (6)
N1—Cu1—O4—C17	-153.3 (4)	C22-C17-C18-C15	-177.8 (3)
N1-01-C1-C2	93.8 (4)	N2-C15-C18-C17	-12.2 (6)
N2-O2-C2-C1	-57.3 (5)	C16—C15—C18—C17	167.8 (4)
O1—C1—C2—O2	-55.4 (5)	N2-C15-C18-C19	168.8 (4)
O1—N1—C3—C6	-175.4 (3)	C16—C15—C18—C19	-11.2 (6)
Cu1—N1—C3—C6	6.0 (6)	C17—C18—C19—C20	-0.9 (6)
O1—N1—C3—C4	2.4 (5)	C15—C18—C19—C20	178.1 (4)
Cu1—N1—C3—C4	-176.1 (3)	C18—C19—C20—C21	0.5 (7)
Cu1—O3—C5—C6	-24.8 (6)	C19—C20—C21—C26	178.9 (4)
Cu1—O3—C5—C10	155.8 (3)	C19—C20—C21—C22	-0.4 (6)
O3—C5—C6—C7	176.0 (4)	C26—C21—C22—C23	-0.8 (6)
C10—C5—C6—C7	-4.6 (6)	C20—C21—C22—C23	178.5 (4)

O3—C5—C6—C3	-6.4 (6)	C26—C21—C22—C17	-178.6 (4)
C10-C5-C6-C3	173.0 (4)	C20—C21—C22—C17	0.7 (6)
N1-C3-C6-C5	15.5 (6)	O4—C17—C22—C23	2.8 (6)
C4—C3—C6—C5	-162.4 (4)	C18—C17—C22—C23	-178.9 (4)
N1—C3—C6—C7	-167.0 (4)	O4—C17—C22—C21	-179.5 (4)
C4—C3—C6—C7	15.2 (6)	C18—C17—C22—C21	-1.1 (6)
C5—C6—C7—C8	2.0 (6)	C21—C22—C23—C24	0.7 (6)
C3—C6—C7—C8	-175.6 (4)	C17—C22—C23—C24	178.5 (4)
C6—C7—C8—C9	0.6 (7)	C22—C23—C24—C25	0.3 (7)
C7—C8—C9—C10	-0.6 (6)	C23—C24—C25—C26	-1.4 (7)
C7—C8—C9—C14	-179.3 (4)	C24—C25—C26—C21	1.4 (8)
C8—C9—C10—C11	179.2 (4)	C22—C21—C26—C25	-0.3 (7)
C14—C9—C10—C11	-2.0 (6)	C20—C21—C26—C25	-179.5 (5)
C8—C9—C10—C5	-2.1 (6)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
C16—H16A···O3 ⁱ	0.96	2.64	3.375 (5)	134
C23—H23····O2 ⁱⁱ	0.93	2.43	3.261 (5)	149
C4—H4 C ··· $Cg8^{i}$	0.96	2.68	3.564 (6)	153

Symmetry codes: (i) -*x*+3/2, *y*+1/2, -*z*+3/2; (ii) -*x*+3/2, *y*-1/2, -*z*+3/2.