

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-[1,1'-(Heptane-1,7-dividioxydinitrilo)diethylidyne]di-1-naphthol

Wen-Kui Dong,* Jian-Chao Wu, Yin-Xia Sun, Jun-Feng Tong and Shang-Sheng Gong

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China Correspondence e-mail: dongwk@mail.lzjtu.cn

Received 11 June 2009; accepted 13 June 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.044; wR factor = 0.120; data-to-parameter ratio = 7.0.

The molecule of the title compound, $C_{31}H_{34}N_2O_4$, adopts an L-shaped configuration, in which the naphthalene units are approximately perpendicular, making a dihedral angle of $87.89 (3)^{\circ}$. Intramolecular H-bonds are formed between the OH substituents and the N atoms at each end of the molecule. In the crystal structure, each molecule links six other molecules into an infinite three-dimensional network supramolecular structure, which is built from one-dimensional zigzag chains via weak $C-H \cdots \pi$ stacking and intermolecular $C-H \cdots O$ hydrogen bonds.

Related literature

For the potential medical applications of Schiff base compounds, see: Huang et al. (2002). For the properties of Salen-type bisoxime compounds, see: Darensbourg et al. (2004); Dong et al. (2008a,b); Karthikeyan et al. (2006); Zhang et al. (2007).

Experimental

Crystal data

$C_{31}H_{34}N_2O_4$	b = 30.992 (3) Å
$M_r = 498.60$	c = 8.0562 (10) Å
Monoclinic, Cc	$\beta = 106.999 \ (2)^{\circ}$
a = 11.1670 (12) Å	V = 2666.4 (5) Å ²

Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.966, T_{\max} = 0.987$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.120$ S = 1.042351 reflections 334 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3···N1	0.82	1.81	2.530 (5)	146
$O4 - H4 \cdots N2$	0.82	1.80	2.514 (7)	145
C30−H30···O3 ⁱ	0.93	2.69	3.598 (8)	165
$C20-H20A\cdotsO1^{ii}$	0.96	2.66	3.572 (7)	159
$C29-H29\cdots Cg1^{iii}$	0.93	3.40	4.161 (1)	141
$C20-H20B\cdots Cg2^{iv}$	0.96	3.54	4.203 (1)	128

Symmetry codes: (i) $x + \frac{1}{2}, y + \frac{1}{2}, z - 1$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) x + 1, y, z; (iv) x - 1, y, z. Cg1 and Cg2 are centroids of the C10–C15 and C14–C19 rings.

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the 'Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2813).

References

- Bruker (1996). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Darensbourg, D. J., Mackiewicz, R. M., Rodgers, J. L. & Phelps, A. L. (2004). Inorg. Chem. 43, 1831-1833.
- Dong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008a). Acta Cryst. E64, 01405
- Dong, W.-K., Zhao, C.-Y., Zhong, J.-K., Tang, X.-L. & Yu, T.-Z. (2008b). Acta Cryst. E64, 01323
- Huang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64-66.
- Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m535-m536.

organic compounds

6926 measured reflections

 $R_{\rm int} = 0.055$

2 restraints

 $\Delta \rho_{\text{max}} = 0.13 \text{ e} \text{ Å}$

 $\Delta \rho_{\rm min}$ = -0.15 e Å⁻³

2351 independent reflections

1294 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

supporting information

Acta Cryst. (2009). E65, o1627 [doi:10.1107/S1600536809022727]

2,2'-[1,1'-(Heptane-1,7-diyldioxydinitrilo)diethylidyne]di-1-naphthol

Wen-Kui Dong, Jian-Chao Wu, Yin-Xia Sun, Jun-Feng Tong and Shang-Sheng Gong

S1. Comment

The design of Schiff-base compound and its analogues has received long-lasting research interest not only because of their appealing structural and topological novelty but also due to their potential medical value derived from their antiviral and the inhibition of angiogenesis (Huang *et al.*, 2002). Salen-type bisoxime compound and its derivatives are among the design production of Schiff-base compounds, which show remarkable stability and especial electronic, bioactive and chemical properties useful for asymmetric catalysis (Darensbourg *et al.*, 2004), for biological chemistry (Karthikeyan *et al.*, 2006) and also for optical materials (Zhang *et al.*, 2007). As an extension of our work (Dong *et al.*, 2008*a*; Dong *et al.*, 2008*b*) on the structural characterization of salen-type bisoxime compounds, here report the synthesis and structure of the title compound (Fig. 1).

The molecule of the title compound adopts an *L*-shaped configuration, in which the dihedral angle between the plane of oxime functional groups and naphthalene ring is about 8.01° for C22—C33 ring and O2—N2—C21, 1.15° for C10—C19 ring and O1—N1—C9, respectively. And the naphthalene units are approximately vertical with the dihedral angle of 87.89°. The two intramolecular hydrogen bonds, O3—H3…N1 and O4—H4…N2, generate S(6) ring motifs helping to the stabilization of the title molecule (Fig. 2).

This structure can be recognized as a three-dimensional network building from some different direction onedimensional zigzag chains (Fig. 3). The zigzag chain can be isolated from the three-dimensional network, which is linked *via* an intermolecular C29—H29… π interactions involving the aromatic ring C14—C19 (centroid, *Cg*1), and C30— H30…O3 hydrogen bonds between the phenolic-oxygen atom and the hydrogen atom of the naphthalene ring. The neighbouring opposite direction zigzag chains are linked by the other intermolecular hydrogen bonds C20—H20A…O1 between the oxime oxygen atom and the hydrogen atom of the methyl substitute of oxime group. But the adjacent parallel direction zigzag chains are holed by intermolecular C20—H20B… π interactions involving the naphthalene ring C22— C32 (centroid, *Cg*2). All in all, every *L*-shaped title compound molecule links six other molecules into an infinite threedimensional network supramolecular structure due to head-to-arm weak C—H… π stacking and intermolecular hydrogen bonds (Fig. 2, 3).

S2. Experimental

2,2'-[(Heptane-1,7-diyldioxy)bis(nitriloethylidyne)]dinaphthol was synthesized according to an analogous method reported earlier (Dong *et al.*, 2008*b*). To an ethanol solution (5 ml) of 2-acetyl-1-naphthol (360.7 mg, 1.94 mmol) was added dropwise an ethanol solution (3 ml) of 1,7-bis(aminooxy)heptane (155.5 mg, 0.96 mmol). The mixture solution was stirred at 328–333 K for 72 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried *in vacuo* and purified by recrystallization from ethanol to yield 369.0 mg (Yield, 77.1%) of powder; m.p. 388.5–390.5 K. Colourless block-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a mixed solution of dichloromethane/ethanol (1:1) of

2,2'-[(heptane-1,7-diyldioxy)bis(nitriloethylidyne)]dinaphthol at room temperature for about six weeks. Analysis calculated for C₃₁H₃₄N₂O₄: C 74.67, H 6.87, N 5.62%. Found: C 74.63, H 6.93, N 5.60%.

S3. Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH₂), C— H = 0.96 (CH₃), 0.93 Å (CH), 0.82 Å (OH), and U_{iso} (H) = 1.2 U_{eq} (C) and 1.5 U_{eq} (O). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figure 1

The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Figure 2

Part of the supramolecular structure of the title compound. Weak C—H $\cdots\pi$ interaction, intra- and intermolecular hydrogen bonds are shown as dashed lines.

Figure 3

A view of the three-dimensional network for the title compound. The hydrogen atoms are omitted for clarity.

2,2'-[1,1'-(Heptane-1,7-diyldioxydinitrilo)diethylidyne]di-1-naphthol

Crystal data

C₃₁H₃₄N₂O₄ $M_r = 498.60$ Monoclinic, Cc Hall symbol: C -2yc a = 11.1670 (12) Å b = 30.992 (3) Å c = 8.0562 (10) Å $\beta = 106.999 (2)^{\circ}$ $V = 2666.4 (5) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.966, T_{\max} = 0.987$ F(000) = 1064 $D_x = 1.242 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1335 reflections $\theta = 2.6-20.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 298 KNeedle-shaped, colourless $0.43 \times 0.18 \times 0.16 \text{ mm}$

6926 measured reflections 2351 independent reflections 1294 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -13 \rightarrow 12$ $k = -36 \rightarrow 26$ $l = -9 \rightarrow 9$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix. Tuli	шар
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.120$	neighbouring sites
S = 1.04	H-atom parameters constrained
2351 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0485P)^2]$
334 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.13 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.5072 (4)	-0.01344 (13)	0.4193 (6)	0.0563 (12)
N2	0.3241 (4)	0.34282 (14)	0.1038 (7)	0.0672 (14)
01	0.5541 (3)	0.02813 (10)	0.4627 (5)	0.0638 (11)
O2	0.2551 (4)	0.33008 (11)	0.2159 (6)	0.0829 (14)
O3	0.3391 (3)	-0.06591 (10)	0.2602 (5)	0.0653 (11)
Н3	0.3708	-0.0422	0.2893	0.098*
O4	0.4023 (4)	0.32932 (10)	-0.1543 (6)	0.0712 (12)
H4	0.3672	0.3234	-0.0809	0.107*
C1	0.4564 (5)	0.05779 (15)	0.3800 (8)	0.0613 (15)
H1A	0.3840	0.0529	0.4210	0.074*
H1B	0.4314	0.0533	0.2554	0.074*
C2	0.5032 (5)	0.10340 (15)	0.4216 (8)	0.0545 (14)
H2A	0.5781	0.1078	0.3858	0.065*
H2B	0.5245	0.1083	0.5458	0.065*
C3	0.4027 (5)	0.13488 (14)	0.3276 (8)	0.0603 (15)
H3A	0.3848	0.1300	0.2038	0.072*
H3B	0.3269	0.1285	0.3585	0.072*
C4	0.4333 (5)	0.18204 (15)	0.3637 (8)	0.0581 (15)
H4A	0.4531	0.1872	0.4875	0.070*
H4B	0.5068	0.1892	0.3283	0.070*
C5	0.3270 (5)	0.21085 (15)	0.2698 (7)	0.0617 (16)
H5A	0.2550	0.2040	0.3093	0.074*
H5B	0.3049	0.2041	0.1470	0.074*
C6	0.3514 (6)	0.25888 (16)	0.2920 (9)	0.0715 (17)
H6A	0.3762	0.2660	0.4145	0.086*

ILCD	0.4107	0.000	0.0460	0.00/*
H6B	0.4197	0.2666	0.2460	0.086*
C7	0.2364 (6)	0.28434 (16)	0.1993 (10)	0.079 (2)
H7A	0.2116	0.2768	0.0772	0.095*
H7B	0.1685	0.2764	0.2456	0.095*
C8	0.7100 (5)	-0.03440 (16)	0.6125 (9)	0.081 (2)
H8A	0.7385	-0.0071	0.5824	0.121*
H8B	0.7672	-0.0567	0.6022	0.121*
H8C	0.7061	-0.0333	0.7299	0.121*
C9	0.5832 (5)	-0.04386 (16)	0.4933 (7)	0.0504 (13)
C10	0.4203 (4)	-0.09722 (15)	0.3404 (7)	0.0473 (13)
C11	0.5372 (4)	-0.08821 (15)	0.4514 (7)	0.0477 (14)
C12	0.6146 (5)	-0.12319 (17)	0.5284 (8)	0.0590 (15)
H12	0.6940	-0.1178	0.6033	0.071*
C13	0.5745 (5)	-0.16512 (16)	0.4945 (8)	0.0606 (16)
H13	0.6272	-0.1876	0.5464	0.073*
C14	0.4557 (5)	-0.17435 (15)	0.3833 (7)	0.0503 (14)
C15	0.3764 (4)	-0.14046(15)	0.3028 (7)	0.0473 (13)
C16	0.2572 (5)	-0.14951 (17)	0.1906 (8)	0.0631 (15)
H16	0 2050	-0.1271	0.1360	0.076*
C17	0.2182 (6)	-0.1910(2)	0.1617 (9)	0.0742 (18)
H17	0.1383	-0.1969	0.0893	0.089*
C18	0.2957 (6)	-0.22464(19)	0.2384(9)	0.009
H18	0.2537 (0)	-0.2529	0.2364 ())	0.093*
C10	0.2072	-0.21730(15)	0.3449 (8)	0.055
U10	0.4118 (0)	-0.2405	0.3449 (8)	0.0043 (10)
C20	0.4032	0.2403 0.41267 (17)	0.3733	0.077°
	0.3147(3)	0.4150/(1/)	0.2550 (8)	0.0733 (18)
H20A	0.2008	0.4356	0.1003	0.110*
H20B	0.3881	0.4269	0.3090	0.110*
H20C	0.2710	0.3981	0.3005	0.110*
C21	0.3522 (4)	0.38312 (17)	0.1130 (8)	0.0563 (15)
C22	0.4417 (5)	0.37085 (14)	-0.1341 (8)	0.0536 (15)
C23	0.4214 (5)	0.39749 (16)	-0.0081 (8)	0.0568 (15)
C24	0.4688 (5)	0.44061 (15)	0.0014 (9)	0.0667 (17)
H24	0.4555	0.4592	0.0850	0.080*
C25	0.5314 (5)	0.45511 (19)	-0.1051 (9)	0.0721 (19)
H25	0.5620	0.4832	-0.0931	0.087*
C26	0.5518 (5)	0.4283 (2)	-0.2361 (9)	0.0665 (16)
C27	0.5071 (4)	0.38519 (17)	-0.2497 (8)	0.0561 (15)
C28	0.5259 (5)	0.35823 (19)	-0.3813 (9)	0.0729 (17)
H28	0.4946	0.3302	-0.3931	0.088*
C29	0.5895 (6)	0.3728 (2)	-0.4915 (10)	0.084 (2)
H29	0.6024	0.3548	-0.5769	0.101*
C30	0.6349 (5)	0.4149 (3)	-0.4751 (10)	0.086 (2)
H30	0.6787	0.4246	-0.5499	0.103*
C31	0.6171 (5)	0.4419 (2)	-0.3538 (10)	0.077 (2)
H31	0.6481	0.4699	-0.3469	0.093*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U ¹³	U ²³
N1	0.062 (3)	0.038 (3)	0.063 (3)	-0.003 (2)	0.008 (2)	0.002 (2)
N2	0.073 (3)	0.042 (3)	0.087 (4)	0.006 (2)	0.025 (3)	0.009 (3)
01	0.060 (2)	0.038 (2)	0.084 (3)	0.0017 (17)	0.007 (2)	0.0032 (19)
O2	0.101 (3)	0.043 (3)	0.120 (4)	0.012 (2)	0.056 (3)	0.015 (2)
03	0.059 (2)	0.045 (2)	0.080 (3)	0.0047 (18)	0.002 (2)	0.0083 (19)
04	0.083 (3)	0.040 (2)	0.087 (3)	-0.004 (2)	0.021 (2)	-0.004 (2)
C1	0.066 (3)	0.044 (3)	0.070 (4)	0.010 (3)	0.014 (3)	0.004 (3)
C2	0.062 (3)	0.039 (3)	0.059 (4)	0.000 (2)	0.012 (3)	-0.001 (3)
C3	0.071 (4)	0.039 (3)	0.066 (4)	-0.001 (3)	0.013 (3)	0.002 (3)
C4	0.068 (3)	0.042 (3)	0.065 (4)	-0.006 (3)	0.020 (3)	0.000 (3)
C5	0.069 (3)	0.047 (3)	0.069 (5)	0.003 (3)	0.018 (3)	0.002 (3)
C6	0.089 (4)	0.042 (3)	0.085 (5)	0.002 (3)	0.027 (4)	0.006 (3)
C7	0.085 (4)	0.042 (3)	0.119 (6)	0.007 (3)	0.043 (4)	0.012 (4)
C8	0.064 (4)	0.054 (4)	0.101 (6)	-0.001 (3)	-0.013 (4)	0.002 (3)
C9	0.050 (3)	0.044 (3)	0.054 (4)	0.000 (3)	0.011 (3)	0.004 (3)
C10	0.049 (3)	0.045 (3)	0.048 (4)	0.008 (2)	0.014 (3)	0.006 (3)
C11	0.044 (3)	0.037 (3)	0.061 (4)	0.004 (2)	0.014 (3)	0.003 (3)
C12	0.053 (3)	0.047 (3)	0.070 (4)	0.005 (3)	0.006 (3)	0.001 (3)
C13	0.064 (4)	0.047 (4)	0.069 (4)	0.018 (3)	0.016 (3)	0.004 (3)
C14	0.058 (3)	0.041 (3)	0.052 (4)	0.001 (3)	0.017 (3)	-0.001 (3)
C15	0.049 (3)	0.044 (3)	0.050 (4)	0.001 (3)	0.015 (3)	0.002 (3)
C16	0.058 (3)	0.052 (3)	0.075 (4)	-0.005 (3)	0.013 (3)	-0.003 (3)
C17	0.069 (4)	0.063 (4)	0.080 (5)	-0.018 (3)	0.005 (4)	-0.009 (4)
C18	0.097 (5)	0.048 (4)	0.089 (6)	-0.017 (3)	0.028 (5)	-0.013 (4)
C19	0.088 (4)	0.039 (3)	0.066 (5)	0.004 (3)	0.022 (4)	0.002 (3)
C20	0.079 (4)	0.055 (4)	0.082 (5)	0.017 (3)	0.015 (4)	-0.003 (3)
C21	0.054 (3)	0.040 (3)	0.066 (4)	0.012 (2)	0.002 (3)	0.007 (3)
C22	0.053 (3)	0.034 (3)	0.064 (4)	0.007 (2)	0.001 (3)	0.004 (3)
C23	0.055 (3)	0.037 (3)	0.069 (4)	0.005 (2)	0.004 (3)	0.002 (3)
C24	0.075 (4)	0.035 (3)	0.077 (5)	0.000 (3)	0.001 (4)	-0.007 (3)
C25	0.076 (4)	0.046 (4)	0.086 (6)	-0.013 (3)	0.010 (4)	0.004 (4)
C26	0.054 (3)	0.066 (4)	0.070 (5)	-0.001 (3)	0.002 (3)	0.020 (3)
C27	0.046 (3)	0.051 (4)	0.061 (4)	0.006 (3)	0.000 (3)	0.004 (3)
C28	0.066 (4)	0.072 (4)	0.073 (5)	0.013 (3)	0.009 (4)	0.002 (4)
C29	0.069 (4)	0.094 (6)	0.083 (6)	0.014 (4)	0.013 (4)	0.003 (4)
C30	0.060 (4)	0.105 (6)	0.090 (6)	0.016 (4)	0.018 (4)	0.031 (5)
C31	0.059 (4)	0.082 (5)	0.084 (6)	0.002 (3)	0.010 (4)	0.008 (4)

Geometric parameters (Å, °)

N1—C9	1.292 (6)	C11—C12	1.412 (7)	
N101	1.396 (5)	C12—C13	1.376 (7)	
N2-C21	1.285 (6)	C12—H12	0.9300	
N2—O2	1.404 (6)	C13—C14	1.396 (7)	
01—C1	1.433 (6)	C13—H13	0.9300	

O2—C7	1.433 (6)	C14—C15	1.405 (6)
O3—C10	1.356 (5)	C14—C19	1.424 (7)
O3—H3	0.8200	C15—C16	1.401 (7)
O4—C22	1.355 (5)	C16—C17	1.357 (7)
O4—H4	0.8200	C16—H16	0.9300
C1—C2	1.511 (6)	C17—C18	1.379 (8)
C1—H1A	0.9700	С17—Н17	0.9300
C1—H1B	0.9700	C18—C19	1.348 (9)
C2—C3	1.513 (7)	C18—H18	0.9300
C2—H2A	0.9700	C19—H19	0.9300
C2—H2B	0.9700	C20—C21	1.498 (7)
C3—C4	1 510 (6)	C20—H20A	0.9600
C3—H3A	0.9700	C20—H20B	0.9600
C3—H3B	0.9700	C20—H20C	0.9600
C4-C5	1 501 (7)	$C_{21} - C_{23}$	1479(7)
C4—H4A	0.9700	$C_{22} = C_{23}$	1.179(7) 1.378(7)
C4—H4B	0.9700	$C_{22} = C_{23}$	1.370(7) 1 412(7)
C5	1.515(7)	$C_{22} = C_{24}$	1.412(7) 1.431(6)
C5H5A	0.9700	$C_{23} = C_{24}$ $C_{24} = C_{25}$	1.431(0) 1.333(8)
C5H5B	0.9700	C24—C23 C24—H24	0.9300
C6—C7	1 506 (8)	$C_{24} = 1124$ $C_{25} = C_{26}$	1 414 (8)
С6—Н6А	0.9700	C25 C25	0.9300
C6—H6B	0.9700	C25 1125 C26_C27	1.418(7)
C7H7A	0.9700	$C_{26} = C_{21}$	1.410(7) 1.420(8)
C7—H7B	0.9700	$C_{20} = C_{31}$	1.420(8) 1 413(8)
C_{8}	1489(7)	C_{28} C_{28} C_{29}	1 366 (8)
	0.9600	C28—H28	0.9300
C8—H8B	0.9600	C_{20} C_{20} C_{30}	1 390 (8)
	0.9600	C29—H29	0.9300
C_{0}	1 472 (6)	C_{20} C_{31}	1 345 (9)
C10-C11	1.472(0) 1 377(6)	C30—H30	0.9300
C10-C15	1.377 (0)	C31_H31	0.9300
010-015	1.429 (0)	031-1131	0.9300
C9—N1—O1	114 2 (4)	C13—C12—C11	1211(5)
$C_{21} = N_{2} = O_{2}$	1140(4)	C13 - C12 - H12	119.5
N1	107.2 (4)	C11 - C12 - H12	119.5
$N_2 - O_2 - C_7$	108.1(4)	C12-C13-C14	120.9 (5)
C10-O3-H3	109 5	C12 - C13 - H13	119.5
$C^{22} - C^{4} - H^{4}$	109.5	C14-C13-H13	119.5
01	109.3 (4)	C13-C14-C15	119.7 (4)
01—C1—H1A	109.8	C13-C14-C19	122.3 (5)
C2-C1-H1A	109.8	C15-C14-C19	118.0(5)
01—C1—H1B	109.8	C16—C15—C14	120.0 (4)
C2—C1—H1B	109.8	C16—C15—C10	121.8 (4)
H1A—C1—H1B	108.3	C14—C15—C10	118.2 (4)
C1—C2—C3	109.5 (4)	C17—C16—C15	119.8 (5)
C1—C2—H2A	109.8	C17—C16—H16	120.1
С3—С2—Н2А	109.8	C15—C16—H16	120.1

C1—C2—H2B	109.8	C16—C17—C18	120.8 (6)
$C_3 - C_2 - H_2B$	109.8	C_{16} C_{17} H_{17}	119.6
$H_2A = C_2 = H_2B$	108.2	C18 - C17 - H17	119.6
C4-C3-C2	115.8 (4)	C19 - C18 - C17	121.3 (5)
$C_4 = C_3 = C_2$	108.3	$C_{10} = C_{10} = C_{17}$	121.3 (3)
C_{4} C_{2} C_{3} H_{2} Λ	108.3	$C_{17} = C_{18} = H_{18}$	119.5
$C_2 = C_3 = H_3 A$	108.3	C17 - C10 - C14	119.5
$C_4 = C_3 = H_3 D$	108.3	C18 - C19 - C14	120.1 (3)
	108.3	C18—C19—H19	120.0
$H_3A - C_3 - H_3B$	107.4	C14—C19—H19	120.0
C5—C4—C3	112.2 (4)	С21—С20—Н20А	109.5
C5—C4—H4A	109.2	C21—C20—H20B	109.5
C3—C4—H4A	109.2	H20A—C20—H20B	109.5
C5—C4—H4B	109.2	C21—C20—H20C	109.5
C3—C4—H4B	109.2	H20A—C20—H20C	109.5
H4A—C4—H4B	107.9	H20B—C20—H20C	109.5
C4—C5—C6	115.9 (5)	N2—C21—C23	114.9 (5)
C4—C5—H5A	108.3	N2-C21-C20	122.8 (5)
С6—С5—Н5А	108.3	C23—C21—C20	122.3 (5)
C4—C5—H5B	108.3	O4—C22—C23	122.7 (5)
С6—С5—Н5В	108.3	O4—C22—C27	115.6 (5)
H5A—C5—H5B	107.4	C23—C22—C27	121.7 (5)
C7—C6—C5	111.0 (5)	C22—C23—C24	117.4 (5)
С7—С6—Н6А	109.4	C22—C23—C21	122.4 (5)
C5—C6—H6A	109.4	C_{24} C_{23} C_{21}	120.2(5)
C7—C6—H6B	109.4	C_{25} C_{24} C_{23}	122.4 (6)
C5-C6-H6B	109.4	$C_{25} = C_{24} = H_{24}$	118.8
H6A—C6—H6B	108.0	C_{23} C_{24} H_{24}	118.8
$\Omega^2 - C^7 - C^6$	113.1.(5)	$C_{23}^{24} = C_{25}^{24} = C_{25}^{26}$	120.7 (6)
$O_2 = C_7 = C_0$	100.0	$C_{24} = C_{25} = C_{26}$	110.6
$C_{2} = C_{1} = H_{1} X$	109.0	$C_{24} = C_{25} = H_{25}$	119.0
$C_0 = C_7 = H_7 R$	109.0	$C_{20} = C_{23} = H_{23}$	119.0
02 - C / - H / B	109.0	$C_{23} = C_{20} = C_{21}$	110.0(0)
	109.0	$C_{23} = C_{20} = C_{31}$	123.3(0)
H/A - C / - H/B	107.8	$C_2/-C_26-C_31$	117.8(7)
C9—C8—H8A	109.5	$C_{22} = C_{27} = C_{28}$	121.8 (5)
C9—C8—H8B	109.5	C22—C27—C26	118.9 (6)
H8A—C8—H8B	109.5	C28—C27—C26	119.2 (6)
С9—С8—Н8С	109.5	C29—C28—C27	120.8 (6)
H8A—C8—H8C	109.5	С29—С28—Н28	119.6
H8B—C8—H8C	109.5	С27—С28—Н28	119.6
N1—C9—C11	115.9 (4)	C28—C29—C30	119.5 (7)
N1—C9—C8	121.8 (5)	С28—С29—Н29	120.2
С11—С9—С8	122.3 (4)	С30—С29—Н29	120.2
O3—C10—C11	122.6 (4)	C31—C30—C29	121.7 (7)
O3—C10—C15	115.4 (4)	С31—С30—Н30	119.1
C11—C10—C15	122.0 (4)	С29—С30—Н30	119.1
C10-C11-C12	118.1 (4)	C30—C31—C26	120.9 (7)
C10—C11—C9	122.6 (4)	C30—C31—H31	119.5
C12—C11—C9	119.2 (4)	C26—C31—H31	119.5

C9—N1—O1—C1	-176.2 (5)	C15—C16—C17—C18	-1.5 (10)
C21—N2—O2—C7	-176.8 (5)	C16-C17-C18-C19	0.4 (11)
N1-01-C1-C2	-179.4 (4)	C17—C18—C19—C14	1.4 (10)
O1—C1—C2—C3	177.3 (5)	C13—C14—C19—C18	179.1 (6)
C1—C2—C3—C4	177.0 (5)	C15-C14-C19-C18	-2.0 (8)
C2—C3—C4—C5	-178.1 (5)	O2—N2—C21—C23	-178.1 (4)
C3—C4—C5—C6	-177.4 (5)	O2—N2—C21—C20	0.0 (7)
C4—C5—C6—C7	-177.3 (5)	O4—C22—C23—C24	179.3 (4)
N2—O2—C7—C6	76.5 (7)	C27—C22—C23—C24	0.2 (7)
С5—С6—С7—О2	-179.8 (5)	O4—C22—C23—C21	-1.4 (8)
O1—N1—C9—C11	179.8 (4)	C27—C22—C23—C21	179.5 (4)
O1—N1—C9—C8	-0.7 (7)	N2-C21-C23-C22	6.9 (7)
O3—C10—C11—C12	180.0 (5)	C20-C21-C23-C22	-171.2 (5)
C15—C10—C11—C12	0.3 (8)	N2-C21-C23-C24	-173.8 (5)
O3—C10—C11—C9	0.5 (8)	C20-C21-C23-C24	8.0 (7)
C15—C10—C11—C9	-179.2 (5)	C22—C23—C24—C25	-0.5 (7)
N1-C9-C11-C10	-0.1 (8)	C21—C23—C24—C25	-179.8 (5)
C8—C9—C11—C10	-179.6 (6)	C23—C24—C25—C26	1.2 (9)
N1-C9-C11-C12	-179.5 (5)	C24—C25—C26—C27	-1.5 (8)
C8—C9—C11—C12	1.0 (8)	C24—C25—C26—C31	179.7 (5)
C10-C11-C12-C13	-0.3 (8)	O4—C22—C27—C28	2.2 (7)
C9—C11—C12—C13	179.2 (5)	C23—C22—C27—C28	-178.7 (5)
C11—C12—C13—C14	-0.2 (9)	O4—C22—C27—C26	-179.7 (4)
C12—C13—C14—C15	0.8 (8)	C23—C22—C27—C26	-0.6 (7)
C12—C13—C14—C19	179.7 (5)	C25—C26—C27—C22	1.2 (7)
C13—C14—C15—C16	179.8 (6)	C31—C26—C27—C22	-179.9 (5)
C19—C14—C15—C16	0.9 (7)	C25—C26—C27—C28	179.4 (5)
C13—C14—C15—C10	-0.8 (7)	C31—C26—C27—C28	-1.8 (7)
C19—C14—C15—C10	-179.8 (5)	C22—C27—C28—C29	-180.0 (5)
O3—C10—C15—C16	-0.1 (7)	C26—C27—C28—C29	1.9 (8)
C11—C10—C15—C16	179.7 (5)	C27—C28—C29—C30	-0.8 (9)
O3—C10—C15—C14	-179.4 (4)	C28—C29—C30—C31	-0.5 (10)
C11—C10—C15—C14	0.3 (7)	C29—C30—C31—C26	0.6 (9)
C14—C15—C16—C17	0.8 (8)	C25—C26—C31—C30	179.4 (6)
C10-C15-C16-C17	-178.5 (6)	C27—C26—C31—C30	0.6 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
O3—H3…N1	0.82	1.81	2.530 (5)	146
O4—H4…N2	0.82	1.80	2.514 (7)	145
C30—H30····O3 ⁱ	0.93	2.69	3.598 (8)	165
C20—H20A…O1 ⁱⁱ	0.96	2.66	3.572 (7)	159
C29—H29…Cg1 ⁱⁱⁱ	0.93	3.40	4.161 (1)	141
C20—H20 B ··· $Cg2^{iv}$	0.96	3.54	4.203 (1)	128

Symmetry codes: (i) *x*+1/2, *y*+1/2, *z*-1; (ii) *x*-1/2, -*y*+1/2, *z*-1/2; (iii) *x*+1, *y*, *z*; (iv) *x*-1, *y*, *z*.