organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

rac-7-Oxabicyclo[2.2.1]heptane-2,3dicarboxylic acid-2-amino-1,3,4thiadiazole-water (1/1/1)

Na Wang, Qiu-Yue Lin* and Yan-Jun Wang

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China Correspondence e-mail: sky51@zjnu.cn

Received 27 May 2009; accepted 9 June 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.133; data-to-parameter ratio = 16.0.

The title compound, $C_8H_{10}O_5 \cdot C_2H_3N_3S \cdot H_2O$, was synthesized by the reaction of 2-amino-1,3,4-thiadiazole with norcantharidin. The crystal structure is stabilized by $N-H \cdot \cdot \cdot O$, $N-H \cdot \cdot \cdot N$, $O-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot N$ hydrogen bonds. In addition, weak $\pi - \pi$ interactions are observed between symmetry-related thiadiazole ring systems [centroid–centroid distance = 3.9110 (3) Å, interplanar spacing = 3.4845 Å].

Related literature

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) is a lower toxicity anticancer drug, see: Shimi & Zaki (1982).

Experimental

Crystal data $C_8H_{10}O_5 \cdot C_2H_3N_3S \cdot H_2O$ $M_r = 305.31$

Monoclinic, $P2_1/n$ a = 5.7678 (5) Å b = 18.4267 (15) Å c = 12.7546 (11) Å $\beta = 101.336 (6)^{\circ}$ $V = 1329.1 (2) \text{ Å}^{3}$ Z = 4

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.949, T_{\rm max} = 0.977$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.133$ S = 1.052995 reflections 187 parameters 3 restraints

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O4^{i}$	0.86	2.11	2.930 (3)	160
$N1 - H1C \cdot \cdot \cdot N3^{ii}$	0.86	2.15	2.994 (3)	166
$N1 - H1C \cdot \cdot \cdot N2^{ii}$	0.86	2.69	3.519 (3)	161
$O2-H2A\cdots O1W^{iii}$	0.82	1.81	2.626(2)	176
$O5 - H5B \cdot \cdot \cdot N2^{iv}$	0.82	1.85	2.664 (2)	172
$O1W - H1WA \cdots O3^{v}$	0.859 (17)	1.910 (17)	2.766 (2)	175 (3)
$O1W-H1WB\cdots O4^{vi}$	0.819 (17)	2.51 (3)	3.151 (3)	137 (3)
$O1W-H1WB\cdots O1^{vi}$	0.819 (17)	2.55 (3)	3.061 (3)	122 (3)

Mo $K\alpha$ radiation

 $0.30 \times 0.16 \times 0.09 \text{ mm}$

10820 measured reflections

2995 independent reflections

2026 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.27 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.040$

refinement

 $\Delta \rho_{\rm max} = 0.30$ e Å⁻³

 $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Symmetry codes: (i) $x + \frac{1}{2}, -y - \frac{1}{2}, z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$; (v) $-x - \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) -x, -y, -z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2800).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

Shimi, I. R. & Zaki, Z. (1982). Eur. J. Cancer Clin. Oncol. 18, 785–793.

supporting information

Acta Cryst. (2009). E65, o1590 [doi:10.1107/S1600536809021825]

rac-7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid–2-amino-1,3,4-thia-diazole–water (1/1/1)

Na Wang, Qiu-Yue Lin and Yan-Jun Wang

S1. Comment

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi & Zaki, 1982). The title compound was synthesized by the reaction of 2-amino-1,3,4-thiadiazole with 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin). In this paper, we reports its structure.

X-ray crystallography measurement confirmed the molecular structure and the atom connectivity for the title compound (Fig. 1). The crystal structure is stabilized by N—H···O, N—H···N, O—H···O and O—H···N hydrogen bonds (Table 1). Further, weak π - π interactions are observed between symmetry related thiadiazole ring systems [centroid-centroid distance of 3.9110 (3)Å and interplanar spacing of 3.4845 Å].

S2. Experimental

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride and 2-amino-1,3,4-thiadiazole were dissolved in tetrahydrofuran and the mixture was stirred for 6 h at room temperature. The clear solution was left undisturbed for days to give colourless crystals of the compound.

S3. Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using ariding model [C—H =0.93-0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C,N,O)$]. The H atoms of the water molecule were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.

rac-7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid-2-amino-1,3,4-thiadiazole-water (1/1/1)

$C_8H_{10}O_5 \cdot C_2H_3N_3S \cdot H_2O$	F(000) = 640
$M_r = 305.31$	$D_{\rm x} = 1.526 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1905 reflections
a = 5.7678 (5) Å	$\theta = 2.0 - 27.6^{\circ}$
b = 18.4267 (15) Å	$\mu = 0.27 \text{ mm}^{-1}$
c = 12.7546 (11) Å	T = 296 K
$\beta = 101.336 (6)^{\circ}$	Block, colourless
V = 1329.1 (2) Å ³	$0.30 \times 0.16 \times 0.09 \text{ mm}$
Z = 4	
Data collection	
Bruker APEXII area-detector	10820 measured reflections
diffractometer	2995 independent reflections
Radiation source: fine-focus sealed tube	2026 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.040$
ω scans	$\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -6 \rightarrow 7$
(SADABS; Sheldrick, 1996)	$k = -24 \rightarrow 23$
$T_{\min} = 0.949, \ T_{\max} = 0.977$	$l = -16 \rightarrow 15$

Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.133$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
2995 reflections	and constrained refinement
187 parameters	$w = 1/[\sigma^2(F_o^2) + (0.062P)^2 + 0.3174P]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	-0.2976 (5)	0.05357 (14)	0.3265 (2)	0.0537 (7)
H1B	-0.3880	0.0947	0.3053	0.064*
C2	-0.0094 (4)	-0.03835 (13)	0.37115 (19)	0.0401 (6)
C3	-0.7049 (4)	-0.14263 (12)	-0.02775 (19)	0.0371 (5)
H3A	-0.7478	-0.1570	-0.1031	0.044*
C4	-0.4729 (4)	-0.10527 (12)	0.11367 (19)	0.0378 (5)
H4A	-0.3228	-0.0881	0.1563	0.045*
C5	-0.5597 (4)	-0.17663 (11)	0.15371 (18)	0.0308 (5)
H5A	-0.6555	-0.1649	0.2069	0.037*
C6	-0.7289 (4)	-0.20482 (11)	0.05131 (18)	0.0320 (5)
H6A	-0.8916	-0.2080	0.0630	0.038*
C7	-0.8388 (4)	-0.07593 (13)	-0.0002 (2)	0.0436 (6)
H7A	-0.9932	-0.0888	0.0135	0.052*
H7B	-0.8573	-0.0399	-0.0566	0.052*
C8	-0.6732 (4)	-0.04919 (12)	0.1016 (2)	0.0451 (6)
H8A	-0.7506	-0.0499	0.1626	0.054*
H8B	-0.6158	-0.0006	0.0925	0.054*
C9	-0.3734 (4)	-0.23059 (12)	0.20304 (18)	0.0339 (5)
C10	-0.6556 (4)	-0.27519 (12)	0.00717 (19)	0.0357 (5)
S 1	-0.00230 (12)	0.04890 (3)	0.32282 (6)	0.0514 (2)
N1	0.1766 (3)	-0.08184 (12)	0.39063 (18)	0.0534 (6)
H1A	0.1631	-0.1250	0.4145	0.064*
H1C	0.3110	-0.0670	0.3794	0.064*
N2	-0.2197 (3)	-0.05840 (10)	0.38689 (17)	0.0431 (5)

N3	-0.3854 (4)	-0.00394 (11)	0.36078 (19)	0.0511 (6)
01	-0.4621 (3)	-0.12182 (8)	0.00484 (13)	0.0399 (4)
O1W	0.3491 (3)	0.19399 (12)	0.19534 (16)	0.0573 (5)
O2	-0.1540 (3)	-0.20904 (9)	0.21051 (15)	0.0470 (5)
H2A	-0.0641	-0.2405	0.2405	0.071*
03	-0.4251 (3)	-0.28854 (9)	0.23715 (14)	0.0453 (4)
04	-0.4568 (3)	-0.28772 (9)	-0.00388 (16)	0.0527 (5)
05	-0.8343 (3)	-0.31955 (9)	-0.02355 (17)	0.0575 (5)
H5B	-0.7870	-0.3568	-0.0474	0.086*
H1WA	0.213 (4)	0.1986 (18)	0.212 (2)	0.086*
H1WB	0.317 (5)	0.2024 (19)	0.1311 (15)	0.086*

Atomic displacement parameters $(Å^2)$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.0577 (16)	0.0398 (14)	0.064 (2)	0.0017 (11)	0.0119 (14)	0.0069 (13)
C3 $0.0419(13)$ $0.0369(12)$ $0.0311(13)$ $0.0077(9)$ $0.0038(10)$ $-0.0009(10)$ C4 $0.0383(12)$ $0.0342(12)$ $0.0394(14)$ $-0.0035(9)$ $0.0041(10)$ $0.0000(10)$ C5 $0.0310(11)$ $0.0334(11)$ $0.0289(12)$ $0.0019(8)$ $0.0081(9)$ $0.0004(9)$ C6 $0.0280(11)$ $0.0316(11)$ $0.0371(14)$ $0.0013(8)$ $0.0081(9)$ $-0.0036(9)$ C7 $0.0443(13)$ $0.0368(12)$ $0.0486(16)$ $0.0118(10)$ $0.0062(11)$ $0.0015(11)$ C8 $0.0606(16)$ $0.0306(12)$ $0.0448(16)$ $0.0032(10)$ $0.0119(12)$ $-0.0033(1)$ C9 $0.0339(12)$ $0.0390(12)$ $0.0300(13)$ $0.0015(9)$ $0.0094(9)$ $-0.0027(9)$ C10 $0.0366(13)$ $0.0334(12)$ $0.0365(14)$ $0.0016(9)$ $0.0058(10)$ $-0.0027(9)$ S1 $0.0575(4)$ $0.0399(4)$ $0.0583(5)$ $-0.0095(3)$ $0.0150(3)$ $0.0073(3)$ N1 $0.0475(12)$ $0.0419(12)$ $0.0697(17)$ $-0.0044(8)$ $0.0085(9)$ $0.0048(9)$ N3 $0.0462(12)$ $0.0434(12)$ $0.0625(15)$ $0.0023(9)$ $0.0083(11)$ $0.072(11)$ O1 $0.0417(9)$ $0.0391(9)$ $0.0425(10)$ $0.0032(7)$ $0.0170(7)$ $0.0082(7)$ O1W $0.0381(10)$ $0.0437(14)$ $0.0524(12)$ $-0.0079(9)$ $0.0140(9)$ $-0.0121(10)$ O2 $0.0315(9)$ $0.0499(10)$ $0.0589(12)$ $0.0049(7)$ $0.0168(8)$ $0.0171(8)$ O4 <t< td=""><td>C2</td><td>0.0431 (13)</td><td>0.0412 (13)</td><td>0.0358 (14)</td><td>-0.0098 (10)</td><td>0.0075 (10)</td><td>-0.0022 (10)</td></t<>	C2	0.0431 (13)	0.0412 (13)	0.0358 (14)	-0.0098 (10)	0.0075 (10)	-0.0022 (10)
C4 $0.0383(12)$ $0.0342(12)$ $0.0394(14)$ $-0.0035(9)$ $0.0041(10)$ $0.0000(10)$ C5 $0.0310(11)$ $0.0334(11)$ $0.0289(12)$ $0.0019(8)$ $0.0081(9)$ $0.0004(9)$ C6 $0.0280(11)$ $0.0316(11)$ $0.0371(14)$ $0.0013(8)$ $0.0081(9)$ $-0.0036(9)$ C7 $0.0443(13)$ $0.0368(12)$ $0.0486(16)$ $0.0118(10)$ $0.0062(11)$ $0.0015(11)$ C8 $0.0606(16)$ $0.0306(12)$ $0.0448(16)$ $0.0032(10)$ $0.0119(12)$ $-0.0033(12)$ C9 $0.0339(12)$ $0.0390(12)$ $0.0300(13)$ $0.0015(9)$ $0.0094(9)$ $-0.0027(9)$ C10 $0.0366(13)$ $0.0334(12)$ $0.0365(14)$ $0.0016(9)$ $0.0058(10)$ $-0.0027(9)$ S1 $0.0575(4)$ $0.0399(4)$ $0.0583(5)$ $-0.0095(3)$ $0.0150(3)$ $0.0073(3)$ N1 $0.0475(12)$ $0.0419(12)$ $0.0697(17)$ $-0.0015(9)$ $0.0089(11)$ $0.017(11)$ N2 $0.0455(11)$ $0.0354(10)$ $0.0480(13)$ $-0.0044(8)$ $0.0085(9)$ $0.0048(9)$ N3 $0.0462(12)$ $0.0434(12)$ $0.0625(15)$ $0.0023(9)$ $0.0083(11)$ $0.0072(11)$ O1 $0.0417(9)$ $0.0391(9)$ $0.0425(10)$ $0.0032(7)$ $0.0140(9)$ $-0.0121(10)$ O2 $0.0315(9)$ $0.0499(10)$ $0.0589(12)$ $0.0049(7)$ $0.0168(8)$ $0.0171(8)$ O4 $0.0406(10)$ $0.0447(10)$ $0.0747(14)$ $0.0032(7)$ $0.0163(9)$ $-0.0214(9)$ O5 <t< td=""><td>C3</td><td>0.0419 (13)</td><td>0.0369 (12)</td><td>0.0311 (13)</td><td>0.0077 (9)</td><td>0.0038 (10)</td><td>-0.0009 (10)</td></t<>	C3	0.0419 (13)	0.0369 (12)	0.0311 (13)	0.0077 (9)	0.0038 (10)	-0.0009 (10)
C5 $0.310(11)$ $0.0334(11)$ $0.0289(12)$ $0.0019(8)$ $0.0081(9)$ $0.0004(9)$ C6 $0.0280(11)$ $0.0316(11)$ $0.0371(14)$ $0.0013(8)$ $0.0081(9)$ $-0.0036(9)$ C7 $0.0443(13)$ $0.0368(12)$ $0.0486(16)$ $0.0118(10)$ $0.0062(11)$ $0.0015(11)$ C8 $0.0606(16)$ $0.0306(12)$ $0.0448(16)$ $0.0032(10)$ $0.0119(12)$ $-0.0033(12)$ C9 $0.0339(12)$ $0.0390(12)$ $0.0300(13)$ $0.0015(9)$ $0.0094(9)$ $-0.0027(9)$ C10 $0.0366(13)$ $0.0334(12)$ $0.0365(14)$ $0.0016(9)$ $0.0058(10)$ $-0.0027(9)$ S1 $0.0575(4)$ $0.0399(4)$ $0.0583(5)$ $-0.0095(3)$ $0.0150(3)$ $0.0073(3)$ N1 $0.0475(12)$ $0.0419(12)$ $0.0697(17)$ $-0.0015(9)$ $0.0089(11)$ $0.0107(11)$ N2 $0.0455(11)$ $0.0354(10)$ $0.0480(13)$ $-0.0044(8)$ $0.0085(9)$ $0.0048(9)$ N3 $0.0462(12)$ $0.0434(12)$ $0.0625(15)$ $0.0023(9)$ $0.0130(17)(7)$ $0.0082(7)$ O1W $0.0381(10)$ $0.0837(14)$ $0.0524(12)$ $-0.0079(9)$ $0.0140(9)$ $-0.0121(10)$ O2 $0.0315(9)$ $0.0435(9)$ $0.0589(12)$ $0.0004(7)$ $0.0068(8)$ $0.0103(8)$ O3 $0.0374(9)$ $0.0435(9)$ $0.0558(12)$ $0.0049(7)$ $0.0163(9)$ $-0.0214(9)$ O4 $0.0406(10)$ $0.0447(10)$ $0.0747(14)$ $0.0032(7)$ $0.0163(9)$ $-0.0214(9)$ O5<	C4	0.0383 (12)	0.0342 (12)	0.0394 (14)	-0.0035 (9)	0.0041 (10)	0.0000 (10)
C6 $0.0280 (11)$ $0.0316 (11)$ $0.0371 (14)$ $0.0013 (8)$ $0.0081 (9)$ $-0.0036 (9)$ C7 $0.0443 (13)$ $0.0368 (12)$ $0.0486 (16)$ $0.0118 (10)$ $0.0062 (11)$ $0.0015 (11)$ C8 $0.0606 (16)$ $0.0306 (12)$ $0.0448 (16)$ $0.0032 (10)$ $0.0119 (12)$ $-0.0033 (12)$ C9 $0.0339 (12)$ $0.0390 (12)$ $0.0300 (13)$ $0.0015 (9)$ $0.0094 (9)$ $-0.0002 (12)$ C10 $0.0366 (13)$ $0.0334 (12)$ $0.0365 (14)$ $0.0016 (9)$ $0.0058 (10)$ $-0.0027 (15)$ S1 $0.0575 (4)$ $0.0399 (4)$ $0.0583 (5)$ $-0.0095 (3)$ $0.0150 (3)$ $0.0073 (3)$ N1 $0.0475 (12)$ $0.0419 (12)$ $0.0697 (17)$ $-0.0015 (9)$ $0.0089 (11)$ $0.0107 (11)$ N2 $0.0455 (11)$ $0.0354 (10)$ $0.0425 (15)$ $0.0023 (9)$ $0.0083 (11)$ $0.0072 (11)$ N3 $0.0462 (12)$ $0.0434 (12)$ $0.0625 (15)$ $0.0023 (9)$ $0.0140 (9)$ $-0.0121 (10)$ O1 $0.0417 (9)$ $0.0391 (9)$ $0.0425 (10)$ $0.0032 (7)$ $0.0140 (9)$ $-0.0121 (10)$ O2 $0.0315 (9)$ $0.0499 (10)$ $0.0589 (12)$ $0.0004 (7)$ $0.0068 (8)$ $0.0103 (8)$ O3 $0.0374 (9)$ $0.0447 (10)$ $0.0747 (14)$ $0.0032 (7)$ $0.0163 (9)$ $-0.0214 (6)$ O4 $0.0406 (10)$ $0.0447 (10)$ $0.0747 (14)$ $0.0032 (7)$ $0.0136 (9)$ $-0.0214 (6)$ O5 $0.0411 (10)$ $0.0362 (9)$ $0.0954 (16)$ <	C5	0.0310 (11)	0.0334 (11)	0.0289 (12)	0.0019 (8)	0.0081 (9)	0.0004 (9)
C7 $0.0443(13)$ $0.0368(12)$ $0.0486(16)$ $0.0118(10)$ $0.0062(11)$ $0.0015(11)$ C8 $0.0606(16)$ $0.0306(12)$ $0.0448(16)$ $0.0032(10)$ $0.0119(12)$ $-0.0033(10)$ C9 $0.0339(12)$ $0.0390(12)$ $0.0300(13)$ $0.0015(9)$ $0.0094(9)$ $-0.0002(10)$ C10 $0.0366(13)$ $0.0334(12)$ $0.0365(14)$ $0.0016(9)$ $0.0058(10)$ $-0.0027(9)$ S1 $0.0575(4)$ $0.0399(4)$ $0.0583(5)$ $-0.0095(3)$ $0.0150(3)$ $0.0073(3)$ N1 $0.0475(12)$ $0.0419(12)$ $0.0697(17)$ $-0.0015(9)$ $0.0089(11)$ $0.0107(11)$ N2 $0.0455(11)$ $0.0354(10)$ $0.0480(13)$ $-0.0044(8)$ $0.0085(9)$ $0.0048(9)$ N3 $0.0462(12)$ $0.0434(12)$ $0.0625(15)$ $0.0023(9)$ $0.0170(7)$ $0.0082(7)$ O1 $0.0417(9)$ $0.0391(9)$ $0.0425(10)$ $0.0032(7)$ $0.0140(9)$ $-0.0121(10)$ O2 $0.0315(9)$ $0.0499(10)$ $0.0589(12)$ $0.0004(7)$ $0.0068(8)$ $0.0103(8)$ O3 $0.0374(9)$ $0.0435(9)$ $0.0558(12)$ $0.0049(7)$ $0.0163(9)$ $-0.0214(9)$ O4 $0.0406(10)$ $0.0447(10)$ $0.0747(14)$ $0.0032(7)$ $0.0163(9)$ $-0.0214(9)$ O5 $0.0411(10)$ $0.0362(9)$ $0.0954(16)$ $-0.0057(7)$ $0.0137(9)$ $-0.0213(10)$	C6	0.0280 (11)	0.0316 (11)	0.0371 (14)	0.0013 (8)	0.0081 (9)	-0.0036 (9)
C8 $0.0606(16)$ $0.0306(12)$ $0.0448(16)$ $0.0032(10)$ $0.0119(12)$ $-0.0033(12)$ C9 $0.0339(12)$ $0.0390(12)$ $0.0300(13)$ $0.0015(9)$ $0.0094(9)$ $-0.0002(10)$ C10 $0.0366(13)$ $0.0334(12)$ $0.0365(14)$ $0.0016(9)$ $0.0058(10)$ $-0.0027(9)$ S1 $0.0575(4)$ $0.0399(4)$ $0.0583(5)$ $-0.0095(3)$ $0.0150(3)$ $0.0073(3)$ N1 $0.0475(12)$ $0.0419(12)$ $0.0697(17)$ $-0.0015(9)$ $0.0089(11)$ $0.0107(11)$ N2 $0.0455(11)$ $0.0354(10)$ $0.0480(13)$ $-0.0044(8)$ $0.0085(9)$ $0.0048(9)$ N3 $0.0462(12)$ $0.0434(12)$ $0.0625(15)$ $0.0023(9)$ $0.0170(7)$ $0.0082(7)$ O1 $0.0417(9)$ $0.0391(9)$ $0.0425(10)$ $0.0032(7)$ $0.0140(9)$ $-0.0121(10)$ O2 $0.0315(9)$ $0.0499(10)$ $0.0589(12)$ $0.0044(7)$ $0.0068(8)$ $0.0103(8)$ O3 $0.0374(9)$ $0.0435(9)$ $0.0558(12)$ $0.0049(7)$ $0.0163(9)$ $-0.0214(9)$ O4 $0.0406(10)$ $0.0447(10)$ $0.0747(14)$ $0.0032(7)$ $0.0163(9)$ $-0.0214(9)$ O4 $0.0406(10)$ $0.0447(10)$ $0.0747(14)$ $0.0032(7)$ $0.0163(9)$ $-0.0214(9)$ O5 $0.0411(10)$ $0.0362(9)$ $0.0954(16)$ $-0.0057(7)$ $0.0137(9)$ $-0.0213(10)$	C7	0.0443 (13)	0.0368 (12)	0.0486 (16)	0.0118 (10)	0.0062 (11)	0.0015 (11)
C9 $0.0339(12)$ $0.0390(12)$ $0.0300(13)$ $0.0015(9)$ $0.0094(9)$ $-0.0002(1)$ C10 $0.0366(13)$ $0.0334(12)$ $0.0365(14)$ $0.0016(9)$ $0.0058(10)$ $-0.0027(9)$ S1 $0.0575(4)$ $0.0399(4)$ $0.0583(5)$ $-0.0095(3)$ $0.0150(3)$ $0.0073(3)$ N1 $0.0475(12)$ $0.0419(12)$ $0.0697(17)$ $-0.0015(9)$ $0.0089(11)$ $0.0107(11)$ N2 $0.0455(11)$ $0.0354(10)$ $0.0480(13)$ $-0.0044(8)$ $0.0085(9)$ $0.0048(9)$ N3 $0.0462(12)$ $0.0434(12)$ $0.0625(15)$ $0.0023(9)$ $0.0170(7)$ $0.0082(7)$ O1 $0.0417(9)$ $0.0391(9)$ $0.0425(10)$ $0.0032(7)$ $0.0170(7)$ $0.0082(7)$ O1W $0.0315(9)$ $0.0499(10)$ $0.0589(12)$ $0.0004(7)$ $0.0068(8)$ $0.0103(8)$ O3 $0.0374(9)$ $0.0435(9)$ $0.0558(12)$ $0.0049(7)$ $0.0108(8)$ $0.0171(8)$ O4 $0.0406(10)$ $0.0447(10)$ $0.0747(14)$ $0.0032(7)$ $0.0137(9)$ $-0.0214(9)$ O5 $0.0411(10)$ $0.0362(9)$ $0.0954(16)$ $-0.0057(7)$ $0.0137(9)$ $-0.0214(9)$	C8	0.0606 (16)	0.0306 (12)	0.0448 (16)	0.0032 (10)	0.0119 (12)	-0.0033 (11)
C10 $0.0366(13)$ $0.0334(12)$ $0.0365(14)$ $0.0016(9)$ $0.0058(10)$ $-0.0027(9)$ S1 $0.0575(4)$ $0.0399(4)$ $0.0583(5)$ $-0.0095(3)$ $0.0150(3)$ $0.0073(3)$ N1 $0.0475(12)$ $0.0419(12)$ $0.0697(17)$ $-0.0015(9)$ $0.0089(11)$ $0.0107(11)$ N2 $0.0455(11)$ $0.0354(10)$ $0.0480(13)$ $-0.0044(8)$ $0.0085(9)$ $0.0048(9)$ N3 $0.0462(12)$ $0.0434(12)$ $0.0625(15)$ $0.0023(9)$ $0.0083(11)$ $0.0072(11)$ O1 $0.0417(9)$ $0.0391(9)$ $0.0425(10)$ $0.0032(7)$ $0.0170(7)$ $0.0082(7)$ O1W $0.0381(10)$ $0.0837(14)$ $0.0524(12)$ $-0.0079(9)$ $0.0140(9)$ $-0.0121(10)$ O2 $0.0315(9)$ $0.0435(9)$ $0.0558(12)$ $0.0049(7)$ $0.0068(8)$ $0.0171(8)$ O4 $0.0406(10)$ $0.0447(10)$ $0.0747(14)$ $0.0032(7)$ $0.0163(9)$ $-0.0214(9)$ O5 $0.0411(10)$ $0.0362(9)$ $0.0954(16)$ $-0.0057(7)$ $0.0137(9)$ $-0.0214(9)$	C9	0.0339 (12)	0.0390 (12)	0.0300 (13)	0.0015 (9)	0.0094 (9)	-0.0002 (10)
S1 $0.0575(4)$ $0.0399(4)$ $0.0583(5)$ $-0.0095(3)$ $0.0150(3)$ $0.0073(3)$ N1 $0.0475(12)$ $0.0419(12)$ $0.0697(17)$ $-0.0015(9)$ $0.0089(11)$ $0.0107(11)$ N2 $0.0455(11)$ $0.0354(10)$ $0.0480(13)$ $-0.0044(8)$ $0.0085(9)$ $0.0048(9)$ N3 $0.0462(12)$ $0.0434(12)$ $0.0625(15)$ $0.0023(9)$ $0.0083(11)$ $0.0072(11)$ O1 $0.0417(9)$ $0.0391(9)$ $0.0425(10)$ $0.0032(7)$ $0.0170(7)$ $0.0082(7)$ O1W $0.0381(10)$ $0.0837(14)$ $0.0524(12)$ $-0.0079(9)$ $0.0140(9)$ $-0.0121(10)$ O2 $0.0315(9)$ $0.0435(9)$ $0.0558(12)$ $0.0044(7)$ $0.0068(8)$ $0.0173(8)$ O3 $0.0374(9)$ $0.0435(9)$ $0.0558(12)$ $0.0049(7)$ $0.0108(8)$ $0.0171(8)$ O4 $0.0406(10)$ $0.0447(10)$ $0.0747(14)$ $0.0032(7)$ $0.0137(9)$ $-0.0214(9)$ O5 $0.0411(10)$ $0.0362(9)$ $0.0954(16)$ $-0.0057(7)$ $0.0137(9)$ $-0.0213(10)$	C10	0.0366 (13)	0.0334 (12)	0.0365 (14)	0.0016 (9)	0.0058 (10)	-0.0027 (9)
N1 $0.0475(12)$ $0.0419(12)$ $0.0697(17)$ $-0.0015(9)$ $0.0089(11)$ $0.0107(11)$ N2 $0.0455(11)$ $0.0354(10)$ $0.0480(13)$ $-0.0044(8)$ $0.0085(9)$ $0.0048(9)$ N3 $0.0462(12)$ $0.0434(12)$ $0.0625(15)$ $0.0023(9)$ $0.0083(11)$ $0.0072(11)$ O1 $0.0417(9)$ $0.0391(9)$ $0.0425(10)$ $0.0032(7)$ $0.0170(7)$ $0.0082(7)$ O1W $0.0381(10)$ $0.0837(14)$ $0.0524(12)$ $-0.0079(9)$ $0.0140(9)$ $-0.0121(10)$ O2 $0.0315(9)$ $0.0499(10)$ $0.0589(12)$ $0.0004(7)$ $0.0068(8)$ $0.0103(8)$ O3 $0.0374(9)$ $0.0435(9)$ $0.0558(12)$ $0.0049(7)$ $0.0108(8)$ $0.0171(8)$ O4 $0.0406(10)$ $0.0447(10)$ $0.0747(14)$ $0.0032(7)$ $0.0137(9)$ $-0.0214(9)$ O5 $0.0411(10)$ $0.0362(9)$ $0.0954(16)$ $-0.0057(7)$ $0.0137(9)$ $-0.0213(10)$	S1	0.0575 (4)	0.0399 (4)	0.0583 (5)	-0.0095 (3)	0.0150 (3)	0.0073 (3)
N2 $0.0455(11)$ $0.0354(10)$ $0.0480(13)$ $-0.0044(8)$ $0.0085(9)$ $0.0048(9)$ N3 $0.0462(12)$ $0.0434(12)$ $0.0625(15)$ $0.0023(9)$ $0.0083(11)$ $0.0072(11)$ O1 $0.0417(9)$ $0.0391(9)$ $0.0425(10)$ $0.0032(7)$ $0.0170(7)$ $0.0082(7)$ O1W $0.0381(10)$ $0.0837(14)$ $0.0524(12)$ $-0.0079(9)$ $0.0140(9)$ $-0.0121(10)$ O2 $0.0315(9)$ $0.0499(10)$ $0.0589(12)$ $0.0004(7)$ $0.0068(8)$ $0.0103(8)$ O3 $0.0374(9)$ $0.0435(9)$ $0.0558(12)$ $0.0049(7)$ $0.0108(8)$ $0.0171(8)$ O4 $0.0406(10)$ $0.0447(10)$ $0.0747(14)$ $0.0032(7)$ $0.0137(9)$ $-0.0214(9)$ O5 $0.0411(10)$ $0.0362(9)$ $0.0954(16)$ $-0.0057(7)$ $0.0137(9)$ $-0.0213(10)$	N1	0.0475 (12)	0.0419 (12)	0.0697 (17)	-0.0015 (9)	0.0089 (11)	0.0107 (11)
N3 $0.0462 (12)$ $0.0434 (12)$ $0.0625 (15)$ $0.0023 (9)$ $0.0083 (11)$ $0.0072 (11)$ O1 $0.0417 (9)$ $0.0391 (9)$ $0.0425 (10)$ $0.0032 (7)$ $0.0170 (7)$ $0.0082 (7)$ O1W $0.0381 (10)$ $0.0837 (14)$ $0.0524 (12)$ $-0.0079 (9)$ $0.0140 (9)$ $-0.0121 (12)$ O2 $0.0315 (9)$ $0.0499 (10)$ $0.0589 (12)$ $0.0004 (7)$ $0.0068 (8)$ $0.0103 (8)$ O3 $0.0374 (9)$ $0.0435 (9)$ $0.0558 (12)$ $0.0049 (7)$ $0.0108 (8)$ $0.0171 (8)$ O4 $0.0406 (10)$ $0.0447 (10)$ $0.0747 (14)$ $0.0032 (7)$ $0.0163 (9)$ $-0.0214 (9)$ O5 $0.0411 (10)$ $0.0362 (9)$ $0.0954 (16)$ $-0.0057 (7)$ $0.0137 (9)$ $-0.0213 (10)$	N2	0.0455 (11)	0.0354 (10)	0.0480 (13)	-0.0044 (8)	0.0085 (9)	0.0048 (9)
O1 $0.0417 (9)$ $0.0391 (9)$ $0.0425 (10)$ $0.0032 (7)$ $0.0170 (7)$ $0.0082 (7)$ O1W $0.0381 (10)$ $0.0837 (14)$ $0.0524 (12)$ $-0.0079 (9)$ $0.0140 (9)$ $-0.0121 (7)$ O2 $0.0315 (9)$ $0.0499 (10)$ $0.0589 (12)$ $0.0004 (7)$ $0.0068 (8)$ $0.0103 (8)$ O3 $0.0374 (9)$ $0.0435 (9)$ $0.0558 (12)$ $0.0049 (7)$ $0.0108 (8)$ $0.0171 (8)$ O4 $0.0406 (10)$ $0.0447 (10)$ $0.0747 (14)$ $0.0032 (7)$ $0.0163 (9)$ $-0.0214 (9)$ O5 $0.0411 (10)$ $0.0362 (9)$ $0.0954 (16)$ $-0.0057 (7)$ $0.0137 (9)$ $-0.0213 (16)$	N3	0.0462 (12)	0.0434 (12)	0.0625 (15)	0.0023 (9)	0.0083 (11)	0.0072 (11)
O1W $0.0381 (10)$ $0.0837 (14)$ $0.0524 (12)$ $-0.0079 (9)$ $0.0140 (9)$ $-0.0121 (10)$ $O2$ $0.0315 (9)$ $0.0499 (10)$ $0.0589 (12)$ $0.0004 (7)$ $0.0068 (8)$ $0.0103 (8)$ $O3$ $0.0374 (9)$ $0.0435 (9)$ $0.0558 (12)$ $0.0049 (7)$ $0.0108 (8)$ $0.0171 (8)$ $O4$ $0.0406 (10)$ $0.0447 (10)$ $0.0747 (14)$ $0.0032 (7)$ $0.0163 (9)$ $-0.0214 (9)$ $O5$ $0.0411 (10)$ $0.0362 (9)$ $0.0954 (16)$ $-0.0057 (7)$ $0.0137 (9)$ $-0.0213 (16)$	01	0.0417 (9)	0.0391 (9)	0.0425 (10)	0.0032 (7)	0.0170 (7)	0.0082 (7)
O2 0.0315 (9) 0.0499 (10) 0.0589 (12) 0.0004 (7) 0.0068 (8) 0.0103 (8) O3 0.0374 (9) 0.0435 (9) 0.0558 (12) 0.0049 (7) 0.0108 (8) 0.0171 (8) O4 0.0406 (10) 0.0447 (10) 0.0747 (14) 0.0032 (7) 0.0163 (9) -0.0214 (9) O5 0.0411 (10) 0.0362 (9) 0.0954 (16) -0.0057 (7) 0.0137 (9) -0.0213 (10)	O1W	0.0381 (10)	0.0837 (14)	0.0524 (12)	-0.0079 (9)	0.0140 (9)	-0.0121 (11)
O3 0.0374 (9) 0.0435 (9) 0.0558 (12) 0.0049 (7) 0.0108 (8) 0.0171 (8) O4 0.0406 (10) 0.0447 (10) 0.0747 (14) 0.0032 (7) 0.0163 (9) -0.0214 (9) O5 0.0411 (10) 0.0362 (9) 0.0954 (16) -0.0057 (7) 0.0137 (9) -0.0213 (10)	O2	0.0315 (9)	0.0499 (10)	0.0589 (12)	0.0004 (7)	0.0068 (8)	0.0103 (8)
O4 $0.0406(10)$ $0.0447(10)$ $0.0747(14)$ $0.0032(7)$ $0.0163(9)$ $-0.0214(9)$ $O5$ $0.0411(10)$ $0.0362(9)$ $0.0954(16)$ $-0.0057(7)$ $0.0137(9)$ $-0.0213(10)$	O3	0.0374 (9)	0.0435 (9)	0.0558 (12)	0.0049 (7)	0.0108 (8)	0.0171 (8)
0.5 0.0411(10) 0.0362(9) 0.0954(16) -0.0057(7) 0.0137(9) -0.0213(1)	O4	0.0406 (10)	0.0447 (10)	0.0747 (14)	0.0032 (7)	0.0163 (9)	-0.0214 (9)
	05	0.0411 (10)	0.0362 (9)	0.0954 (16)	-0.0057 (7)	0.0137 (9)	-0.0213 (10)

Geometric parameters (Å, °)

C1—N3	1.287 (3)	С6—Н6А	0.9800
C1—S1	1.715 (3)	C7—C8	1.534 (3)
C1—H1B	0.9300	C7—H7A	0.9700
C2—N2	1.320 (3)	C7—H7B	0.9700
C2—N1	1.323 (3)	C8—H8A	0.9700
C2—S1	1.725 (2)	C8—H8B	0.9700
C3—01	1.433 (3)	C9—O3	1.212 (3)
С3—С7	1.529 (3)	C9—O2	1.311 (3)
C3—C6	1.550 (3)	C10—O4	1.205 (3)
С3—НЗА	0.9800	C10—O5	1.313 (3)

C4—O1 C4—C5	1.434 (3) 1.530 (3)	N1—H1A N1—H1C	0.8600 0.8600
C4—C8	1.535 (3)	N2—N3	1.381 (3)
C4—H4A	0.9800	O1W—H1WA	0.859 (17)
С5—С9	1.508 (3)	O1W—H1WB	0.819 (17)
C5—C6	1.558 (3)	O2—H2A	0.8200
C5—H5A	0.9800	O5—H5B	0.8200
C6—C10	1.507 (3)		
N3—C1—S1	115.3 (2)	С5—С6—Н6А	110.7
N3—C1—H1B	122.4	C3—C7—C8	101.18 (17)
S1—C1—H1B	122.4	С3—С7—Н7А	111.5
N2—C2—N1	122.5 (2)	С8—С7—Н7А	111.5
N2—C2—S1	113.71 (18)	С3—С7—Н7В	111.5
N1—C2—S1	123.80 (18)	C8—C7—H7B	111.5
O1—C3—C7	103.14 (18)	H7A—C7—H7B	109.4
O1—C3—C6	102.49 (17)	C7—C8—C4	101.53 (18)
C7—C3—C6	109.34 (19)	С7—С8—Н8А	111.5
O1—C3—H3A	113.6	C4—C8—H8A	111.5
С7—С3—НЗА	113.6	C7—C8—H8B	111.5
С6—С3—НЗА	113.6	C4—C8—H8B	111.5
O1—C4—C5	102.67 (17)	H8A—C8—H8B	109.3
O1—C4—C8	102.77 (18)	O3—C9—O2	122.9 (2)
C5—C4—C8	108.84 (18)	O3—C9—C5	121.68 (19)
O1—C4—H4A	113.8	O2—C9—C5	115.39 (19)
C5—C4—H4A	113.8	O4—C10—O5	123.7 (2)
C8—C4—H4A	113.8	O4—C10—C6	123.5 (2)
C9—C5—C4	116.94 (17)	O5—C10—C6	112.67 (18)
C9—C5—C6	114.05 (17)	C1—S1—C2	86.76 (12)
C4—C5—C6	101.48 (17)	C2—N1—H1A	120.0
С9—С5—Н5А	108.0	C2—N1—H1C	120.0
C4—C5—H5A	108.0	H1A—N1—H1C	120.0
С6—С5—Н5А	108.0	C2—N2—N3	111.89 (19)
C10—C6—C3	108.99 (18)	C1—N3—N2	112.4 (2)
C10—C6—C5	115.12 (17)	C3-01-C4	96.42 (15)
C3—C6—C5	100.22(17)	H1WA—O1W—H1WB	101 (2)
C10—C6—H6A	110.7	C9—O2—H2A	109.5
C3—C6—H6A	110.7	C10-05-H5B	109.5
	110.7		107.0
O1—C4—C5—C9	90.1 (2)	C6—C5—C9—O3	-62.0 (3)
C8—C4—C5—C9	-161.49 (19)	C4—C5—C9—O2	2.8 (3)
O1—C4—C5—C6	-34.65 (19)	C6—C5—C9—O2	120.9 (2)
C8—C4—C5—C6	73.8 (2)	C3—C6—C10—O4	65.8 (3)
O1—C3—C6—C10	-86.2 (2)	C5-C6-C10-O4	-45.8 (3)
C7—C3—C6—C10	164.91 (18)	C3—C6—C10—O5	-110.5 (2)
O1—C3—C6—C5	35.06 (19)	C5-C6-C10-O5	137.9 (2)
C7—C3—C6—C5	-73.9 (2)	N3—C1—S1—C2	0.4 (2)
C9—C5—C6—C10	-10.1 (3)	N2-C2-S1-C1	-0.1 (2)

supporting information

C4—C5—C6—C10	116.51 (19)	N1-C2-S1-C1	179.7 (2)
C9—C5—C6—C3	-126.86 (18)	N1—C2—N2—N3	-179.9 (2)
C4—C5—C6—C3	-0.22 (19)	S1—C2—N2—N3	-0.1 (3)
O1—C3—C7—C8	-34.6 (2)	S1—C1—N3—N2	-0.5 (3)
C6—C3—C7—C8	73.9 (2)	C2—N2—N3—C1	0.4 (3)
C3—C7—C8—C4	0.3 (2)	C7—C3—O1—C4	56.17 (19)
O1—C4—C8—C7	33.9 (2)	C6—C3—O1—C4	-57.40 (18)
C5—C4—C8—C7	-74.5 (2)	C5-C4-O1-C3	57.35 (18)
C4—C5—C9—O3	179.9 (2)	C8—C4—O1—C3	-55.63 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
N1—H1A····O4 ⁱ	0.86	2.11	2.930 (3)	160
N1—H1C···N3 ⁱⁱ	0.86	2.15	2.994 (3)	166
N1—H1C···N2 ⁱⁱ	0.86	2.69	3.519 (3)	161
O2— $H2A$ ···O1 W ⁱⁱⁱ	0.82	1.81	2.626 (2)	176
O5— $H5B$ ···N2 ^{iv}	0.82	1.85	2.664 (2)	172
O1W—H1 WA ···O3 ^v	0.86(2)	1.91 (2)	2.766 (2)	175 (3)
O1W—H1 WB ····O4 ^{vi}	0.82 (2)	2.51 (3)	3.151 (3)	137 (3)
O1 <i>W</i> —H1 <i>WB</i> ···O1 ^{vi}	0.82 (2)	2.55 (3)	3.061 (3)	122 (3)

Symmetry codes: (i) x+1/2, -y-1/2, z+1/2; (ii) x+1, y, z; (iii) -x+1/2, y-1/2, -z+1/2; (iv) x-1/2, -y-1/2, z-1/2; (v) -x-1/2, y+1/2, -z+1/2; (vi) -x, -y, -z.