metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(2-pyridylmethylamino)ethanesulfonato- $\kappa^3 N, N', O$]zinc(II)

Zhong-Xiang Du* and Gui-Ying Zhang

Department of Chemistry, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China Correspondence e-mail: dzx6281@126.com

Received 25 May 2009; accepted 26 May 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.023; wR factor = 0.062; data-to-parameter ratio = 17.7.

The title mononuclear complex, $[Zn(C_8H_{11}N_2O_3S)_2]$, is a zinc salt of 2-(2-pyridylmethylamino)ethanesulfonic acid (Hpmt). The Zn^{II} ion is located on an inversion centre and is octahedrally surrounded by four N and two O atoms. The deprotonated pmt⁻ anion coordinates in a facial arrangement through its two N atoms and one of the sulfonate O atoms. The crystal packing is determined by intermolecular N-H···O and C-H···O hydrogen bonds.

Related literature

For the structures of the Co(II) and Ni(II) analogues, see: Li *et al.* (2008); Liao *et al.* (2007). For the preparation of the Hpmt ligand, see: Li *et al.* (2006).

Experimental

Crystal data

$$\begin{split} & [\text{Zn}(\text{C}_8\text{H}_{11}\text{N}_2\text{O}_3\text{S})_2] \\ & M_r = 495.87 \\ & \text{Monoclinic, } P2_1/c \\ & a = 9.6288 \ (13) \text{ Å} \\ & b = 10.0047 \ (13) \text{ Å} \\ & c = 11.3624 \ (15) \text{ Å} \\ & \beta = 105.965 \ (1)^\circ \end{split}$$

 $V = 1052.4 (2) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.41 \text{ mm}^{-1}$ T = 291 K $0.50 \times 0.39 \times 0.29 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.540, \ T_{\max} = 0.689$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	H atoms treated by a mixture of
$wR(F^2) = 0.062$	independent and constrained
S = 1.07	refinement
2419 reflections	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
137 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

6318 measured reflections

 $R_{\rm int} = 0.012$

2419 independent reflections 2221 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Zn1-N2 Zn1-O1	2.1336 (12) 2.1465 (11)	Zn1-N1	2.2130 (13)
$N2-Zn1-O1$ $N2^{i}-Zn1-O1$ $N2-Zn1-N1^{i}$	92.40 (5) 87.60 (4) 101.93 (5)	$O1-Zn1-N1^{i}$ N2-Zn1-N1 O1-Zn1-N1	89.78 (5) 78.06 (5) 90.22 (5)

Symmetry code: (i) -x + 1, -y, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H1N \cdots O2^{ii} C1 - H1 \cdots O2^{iii} C4 - H4 \cdots O3^{iv} C6 - H6B \cdots O1^{i} C8 - H8B \cdots O2^{v}$	0.855 (18) 0.93 0.93 0.97 0.97	2.079 (18) 2.47 2.49 2.56 2.56	2.9259 (17) 3.388 (2) 3.324 (2) 3.056 (2) 3.265 (2)	170.6 (16) 169 150 112 130

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) x - 1, y, z; (v) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported financially by the National Natural Science Foundation of China (No. 20771054).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2794).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984–m2986. Li, J.-X., Jiang, Y.-M. & Lian, B.-R. (2008). J. Chem. Crystallogr. 38, 711–715. Liao, B.-L., Li, J.-X. & Jiang, Y.-M. (2007). Acta Cryst. E63, m1974. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2009). E65, m706 [doi:10.1107/S1600536809019990]

Bis[2-(2-pyridylmethylamino)ethanesulfonato- $\kappa^3 N, N', O$]zinc(II)

Zhong-Xiang Du and Gui-Ying Zhang

S1. Comment

The complex (I) is isostructural with its analogues $[Co(C_8H_{11}N_2O_3S)_2]$ (Li *et al.*, 2006), $[Ni(C_8H_{11}N_2O_3S)_2]$ (Liao *et al.*, 2007) and $[Cu(C_8H_{11}N_2O_3S)_2]$.2H₂O (Li *et al.*, 2008), whose structures have been described in detail. The six-coordinate Zn^{II} ion locates on a centre of symmetry with two deprotonated pmt⁻ anions coordinate in a tridentate facial arrangement with its three donor atoms (Fig.1). The bond lengths and angles of (I) are in good agreement with its Co(II) and Ni(II) analogues (Table 1).

The N—H donor and S=O acceptor groups of the pmt ions are involved in hydrogen bonding interactions and forms a two-dimensional network in the *bc* plane (Table 2 and Fig. 2).

S2. Experimental

The ligand Hpmt was prepared according to the method of Li *et al.*, 2006. To the solution of Hpmt (2.0 mmol, 0.43 g) in water (25 ml), solid ZnCl₂ (1 mmol, 0.14 g) was added. The resulting mixture was stirred at 333 K for 5 h, then cooled to room temperature. After filtration, the filtrate was left to stand at room temperature for slow evaporation. Colourless block-shaped crystals suitable for X-ray diffraction were obtained in a yield of 42%. Analysis, found: C 38.66, H 4.37, N 11.32, S 12.95%; C₁₆H₂₂N₄O₆S₂Zn requires: C 38.72, H 4.44, N 11.29, S 12.90%. IR (KBr, *v*, cm⁻¹): 771.3 [γ (C=C—H)], 746.5(γ CH₂); 1190.3, 1151.4, 1038.8(ν SO₃⁻); 1607.2, 1572.3(ν C=C + ν C=N); 3198.2(ν N—H).

S3. Refinement

H atoms bonded to C were positioned geometrically with C—H distance of 0.93–0.97 Å, and treated as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. The N—H hydrogen atom was located in a difference Fourier map and refined isotropically.

Figure 1

Molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Atoms with the suffix A are at the symmetry position (-x, -y, -z).

Figure 2

The hydrogen bonding interactions in (I) (dashed lines) projected in bc plane. H atoms on C atoms have been omitted.

Bis[2-(2-pyridylmethylamino)ethanesulfonato- $\kappa^3 N, N', O$]zinc(II

Crystal data [Zn(C₈H₁₁N₂O₃S)₂] $M_r = 495.87$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.6288 (13) Å b = 10.0047 (13) Å c = 11.3624 (15) Å $\beta = 105.965$ (1)° V = 1052.4 (2) Å³ Z = 2

Data collection

Bruker APEXII CCD area-detector66diffractometer24Radiation source: fine-focus sealed tube22Graphite monochromatorR φ and ω scans θ_{r} Absorption correction: multi-scanh(SADABS; Sheldrick, 1996)k $T_{min} = 0.540, T_{max} = 0.689$ l = 1

F(000) = 512 $D_x = 1.565 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4168 reflections $\theta = 2.8-28.2^{\circ}$ $\mu = 1.41 \text{ mm}^{-1}$ T = 291 KBlock, colourless $0.50 \times 0.39 \times 0.29 \text{ mm}$

6318 measured reflections 2419 independent reflections 2221 reflections with $I > 2\sigma(I)$ $R_{int} = 0.012$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -11 \rightarrow 12$ $k = -9 \rightarrow 12$ $l = -14 \rightarrow 14$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: inferred from
$wR(F^2) = 0.062$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
2419 reflections	and constrained refinement
137 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0322P)^2 + 0.3355P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement** Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and g

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn1	0.5000	0.0000	0.5000	0.02437 (8)
S1	0.63235 (4)	0.29294 (4)	0.45567 (3)	0.02858 (10)
01	0.57188 (13)	0.16226 (11)	0.40792 (10)	0.0375 (3)
O2	0.55332 (14)	0.40018 (12)	0.37950 (10)	0.0428 (3)
O3	0.78676 (14)	0.30037 (16)	0.47547 (13)	0.0573 (4)
N1	0.27433 (14)	0.03618 (13)	0.39160 (12)	0.0309 (3)
N2	0.42452 (13)	0.13247 (12)	0.61609 (11)	0.0274 (3)
C1	0.2143 (2)	0.02195 (18)	0.27020 (16)	0.0412 (4)
H1	0.2677	-0.0185	0.2232	0.049*
C2	0.0760 (2)	0.0655 (3)	0.2137 (2)	0.0633 (6)
H2	0.0370	0.0549	0.1297	0.076*
C3	-0.0031 (2)	0.1249 (3)	0.2834 (2)	0.0746 (7)
Н3	-0.0961	0.1558	0.2468	0.090*
C4	0.05670 (19)	0.1385 (2)	0.4085 (2)	0.0584 (5)
H4	0.0044	0.1775	0.4571	0.070*
C5	0.19633 (16)	0.09248 (16)	0.45981 (15)	0.0350 (3)
C6	0.26892 (17)	0.10136 (17)	0.59524 (15)	0.0360 (3)
H6A	0.2233	0.1707	0.6313	0.043*
H6B	0.2584	0.0171	0.6342	0.043*
C7	0.44409 (17)	0.27835 (15)	0.59923 (13)	0.0303 (3)
H7A	0.4184	0.3273	0.6639	0.036*
H7B	0.3796	0.3066	0.5217	0.036*

supporting information

C8	0.59850 (16)	0.31189 (15)	0.60131 (13)	0.0292 (3)
H8A	0.6637	0.2542	0.6599	0.035*
H8B	0.6190	0.4034	0.6287	0.035*
H1N	0.4634 (18)	0.1133 (17)	0.6913 (16)	0.032 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02484 (13)	0.02218 (13)	0.02641 (12)	0.00349 (8)	0.00760 (9)	-0.00102 (8)
S 1	0.03239 (19)	0.02599 (19)	0.02848 (17)	0.00050 (14)	0.01027 (14)	0.00143 (13)
01	0.0591 (7)	0.0267 (6)	0.0308 (5)	-0.0037 (5)	0.0194 (5)	-0.0023 (4)
O2	0.0672 (8)	0.0301 (6)	0.0319 (5)	0.0094 (5)	0.0148 (5)	0.0068 (5)
O3	0.0353 (7)	0.0786 (11)	0.0625 (8)	-0.0049 (6)	0.0208 (6)	-0.0068 (7)
N1	0.0272 (6)	0.0305 (6)	0.0330 (6)	0.0024 (5)	0.0051 (5)	0.0010 (5)
N2	0.0307 (6)	0.0268 (6)	0.0253 (6)	0.0022 (5)	0.0087 (5)	0.0003 (5)
C1	0.0404 (9)	0.0424 (10)	0.0366 (8)	-0.0027 (7)	0.0035 (7)	0.0020 (7)
C2	0.0453 (11)	0.0799 (16)	0.0501 (11)	-0.0037 (11)	-0.0114 (9)	0.0067 (11)
C3	0.0310 (10)	0.097 (2)	0.0817 (16)	0.0137 (11)	-0.0080 (10)	0.0102 (15)
C4	0.0270 (8)	0.0691 (14)	0.0786 (14)	0.0112 (9)	0.0137 (9)	0.0001 (11)
C5	0.0259 (7)	0.0329 (8)	0.0474 (9)	0.0013 (6)	0.0118 (6)	0.0005 (7)
C6	0.0327 (8)	0.0387 (9)	0.0430 (8)	0.0013 (7)	0.0210 (7)	-0.0030 (7)
C7	0.0367 (8)	0.0245 (7)	0.0313 (7)	0.0042 (6)	0.0120 (6)	-0.0028 (6)
C8	0.0348 (7)	0.0268 (7)	0.0241 (6)	-0.0009 (6)	0.0048 (5)	-0.0029 (5)

Geometric parameters (Å, °)

Zn1—N2	2.1336 (12)	C1—H1	0.9300
Zn1—N2 ⁱ	2.1336 (12)	C2—C3	1.376 (4)
Zn1—O1	2.1465 (11)	С2—Н2	0.9300
Zn1—O1 ⁱ	2.1465 (11)	C3—C4	1.386 (3)
Zn1—N1 ⁱ	2.2130 (13)	С3—Н3	0.9300
Zn1—N1	2.2130 (13)	C4—C5	1.388 (2)
S1—O3	1.4431 (13)	C4—H4	0.9300
S1—O2	1.4549 (12)	C5—C6	1.508 (2)
S101	1.4727 (11)	C6—H6A	0.9700
S1—C8	1.7825 (15)	C6—H6B	0.9700
N1—C5	1.342 (2)	C7—C8	1.518 (2)
N1—C1	1.349 (2)	С7—Н7А	0.9700
N2—C6	1.4841 (19)	С7—Н7В	0.9700
N2—C7	1.4908 (19)	C8—H8A	0.9700
N2—H1N	0.856 (17)	C8—H8B	0.9700
C1—C2	1.380 (3)		
N2—Zn1—N2 ⁱ	180.0	N1—C1—H1	119.0
N2—Zn1—O1	92.40 (5)	C2—C1—H1	119.0
N2 ⁱ —Zn1—O1	87.60 (4)	C3—C2—C1	118.96 (19)
N2—Zn1—O1 ⁱ	87.60 (5)	C3—C2—H2	120.5
$N2^{i}$ —Zn1—O1 ⁱ	92.40 (5)	C1—C2—H2	120.5

O1-Zn1-O1 ⁱ	180.0	C2—C3—C4	119.55 (18)
N2—Zn1—N1 ⁱ	101.93 (5)	С2—С3—Н3	120.2
$N2^{i}$ — $Zn1$ — $N1^{i}$	78.06 (5)	С4—С3—Н3	120.2
O1—Zn1—N1 ⁱ	89.78 (5)	C3—C4—C5	118.7 (2)
$O1^{i}$ —Zn1—N1 ⁱ	90.22 (5)	C3—C4—H4	120.7
N2—Zn1—N1	78.06 (5)	C5—C4—H4	120.7
$N2^{i}$ —Zn1—N1	101.94 (5)	N1—C5—C4	121.82 (16)
O1—Zn1—N1	90.22 (5)	N1—C5—C6	115.98 (13)
Ol ⁱ —Zn1—N1	89.78 (5)	C4—C5—C6	122.19 (16)
N1 ⁱ —Zn1—N1	180.0	N2—C6—C5	109.85 (12)
O3—S1—O2	113.74 (9)	N2—C6—H6A	109.7
O3—S1—O1	112.90 (8)	С5—С6—Н6А	109.7
O2—S1—O1	110.27 (7)	N2—C6—H6B	109.7
O3—S1—C8	107.06 (8)	С5—С6—Н6В	109.7
O2—S1—C8	105.93 (7)	H6A—C6—H6B	108.2
O1—S1—C8	106.36 (7)	N2—C7—C8	111.86 (12)
S1—O1—Zn1	129.76 (6)	N2—C7—H7A	109.2
C5—N1—C1	118.96 (14)	С8—С7—Н7А	109.2
C5—N1—Zn1	111.53 (10)	N2—C7—H7B	109.2
C1—N1—Zn1	129.14 (12)	С8—С7—Н7В	109.2
C6—N2—C7	110.03 (12)	H7A—C7—H7B	107.9
C6—N2—Zn1	105.77 (9)	C7—C8—S1	112.98 (10)
C7—N2—Zn1	116.88 (9)	С7—С8—Н8А	109.0
C6—N2—H1N	104.9 (12)	S1—C8—H8A	109.0
C7—N2—H1N	108.2 (12)	С7—С8—Н8В	109.0
Zn1—N2—H1N	110.4 (11)	S1—C8—H8B	109.0
N1—C1—C2	122.03 (19)	H8A—C8—H8B	107.8
O3—S1—O1—Zn1	103.94 (10)	N1—Zn1—N2—C7	-90.09 (10)
O2—S1—O1—Zn1	-127.61 (9)	C5—N1—C1—C2	1.1 (3)
C8—S1—O1—Zn1	-13.19 (11)	Zn1—N1—C1—C2	-171.19 (16)
N2—Zn1—O1—S1	33.74 (10)	N1—C1—C2—C3	-0.2 (3)
$N2^{i}$ —Zn1—O1—S1	-146.26 (10)	C1—C2—C3—C4	-0.7 (4)
$N1^{i}$ — $Zn1$ — $O1$ — $S1$	-68.19 (10)	C2—C3—C4—C5	0.7 (4)
N1—Zn1—O1—S1	111.81 (10)	C1—N1—C5—C4	-1.1 (3)
N2—Zn1—N1—C5	-14.41 (11)	Zn1—N1—C5—C4	172.45 (15)
$N2^{i}$ —Zn1—N1—C5	165.59 (11)	C1—N1—C5—C6	178.25 (15)
O1—Zn1—N1—C5	-106.82 (11)	Zn1—N1—C5—C6	-8.16 (17)
$O1^{i}$ —Zn1—N1—C5	73.18 (11)	C3—C4—C5—N1	0.3 (3)
N2—Zn1—N1—C1	158.35 (15)	C3—C4—C5—C6	-179.1 (2)
$N2^{i}$ —Zn1—N1—C1	-21.65 (15)	C7—N2—C6—C5	80.21 (15)
O1—Zn1—N1—C1	65.94 (14)	Zn1—N2—C6—C5	-46.87 (14)
$O1^{i}$ —Zn1—N1—C1	-114.06 (14)	N1—C5—C6—N2	37.7 (2)
O1—Zn1—N2—C6	122.46 (10)	C4—C5—C6—N2	-142.93 (17)
$O1^{i}$ —Zn1—N2—C6	-57.54 (10)	C6—N2—C7—C8	-171.67 (11)
$N1^{i}$ — $Zn1$ — $N2$ — $C6$	-147.26 (9)	Zn1—N2—C7—C8	-51.08 (14)
N1—Zn1—N2—C6	32.74 (9)	N2C7C8S1	85.42 (13)
O1—Zn1—N2—C7	-0.37 (10)	O3—S1—C8—C7	-168.32 (11)

supporting information

Ol ⁱ —Zn1—N2—C7	179.63 (10)	O2—S1—C8—C7	69.97 (12)
N1 ⁱ —Zn1—N2—C7	89.91 (10)	O1—S1—C8—C7	-47.37 (12)

Symmetry code: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N2—H1 <i>N</i> ···O2 ⁱⁱ	0.855 (18)	2.079 (18)	2.9259 (17)	170.6 (16)
C1—H1···O2 ⁱⁱⁱ	0.93	2.47	3.388 (2)	169
C4—H4···O3 ^{iv}	0.93	2.49	3.324 (2)	150
C6—H6B····O1 ⁱ	0.97	2.56	3.056 (2)	112
$C8$ — $H8B$ ···· $O2^{v}$	0.97	2.56	3.265 (2)	130

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, -y+1/2, z+1/2; (iii) -x+1, y-1/2, -z+1/2; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1.