

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[tetraaquanickel(II)]- μ_3 benzene-1,3,5-tricarboxylato-3':1:2- $\kappa^4O^1:O^3,O^3':O^5$ -[tetraaquanickel(II)]- μ_2 -benzene-1,3,5-tricarboxylato-2:3 $\kappa^2O^1:O^3$ -[tetraaquanickel(II)]]

Shih-Chen Hsu, Pei-Hsuan Chiang, Chih-Hsien Chang and Chia-Her Lin*

Department of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan Correspondence e-mail: chiaher@cycu.edu.tw

Received 14 March 2009; accepted 4 May 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.028; wR factor = 0.068; data-to-parameter ratio = 15.9.

The microwave solvothermal reaction of nickel nitrate with trimesic acid provided the title compound, $[Ni_3(BTC)_2(H_2O)_{12}]_n$ (BTC = benzene-1,3,5-tricarboxylate anion, $C_9H_3O_6$), which is a metal coordination polymer composed of one-dimensional zigzag chains. The crystal under investigation was ramecically twinned with an approximate twin domain ratio of 1:1. In the asymmetric unit, there are two types of Ni atoms. One of the NiO₆ groups (2 symmetry) is coordinated to only one carboxylate group and thus terminal, the other is bridging, forming the coordination polymer. The extended chains are connected by the organic BTC anions via μ_2 -linkages. O-H···O hydrogen bonds and π - π interactions between the chains [centroid-centroid distance 3.58 (1) Å] induce the complex to mimic a three-dimensional structure.

Related literature

For background information on the solvothermal synthesis of coordination polymers with organic carboxylate ligands, see: Kitagawa *et al.* (2004).

Experimental

Crystal data

N

a

h

NE(CHO)(HO)
$N_{13}(C_9\Pi_3O_6)_2(\Pi_2O)_{12}$
$A_r = 806.49$
Aonoclinic, C2
= 17.3394 (10) Å
p = 12.8724 (7) Å
= 6.5462 (3) Å
$B = 111.609 \ (2)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\rm min} = 0.613, T_{\rm max} = 0.737$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	
$wR(F^2) = 0.068$	
S = 1.07	
3299 reflections	
208 parameters	
1 restraint	

 $V = 1358.42 (12) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 2.17 \text{ mm}^{-1}$ T = 295 K $0.25 \times 0.18 \times 0.15 \text{ mm}$

6798 measured reflections 3299 independent reflections 3156 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$

H-atom parameters constrained $\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1531 Friedel pairs Flack parameter: 0.549 (12)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O9-H9B\cdots O10^{i}$	0.87	1.90	2.767 (3)	172
$O9-H9A\cdots O12^{ii}$	0.81	2.33	3.102 (3)	160
$O6-H6B\cdots O1^{iii}$	0.97	1.98	2.942 (3)	173
$O6-H6A\cdots O11^{iv}$	0.85	1.83	2.683 (3)	173
$O5-H5B\cdots O12^{iv}$	0.92	1.95	2.825 (3)	158
$O5-H5A\cdots O11$	0.81	1.79	2.559 (3)	156
$O4-H4C\cdots O1^{i}$	0.92	1.97	2.870 (3)	167
$O4 - H4B \cdots O10$	0.91	1.77	2.617 (3)	154
$O3-H3B\cdots O12^{v}$	0.94	1.97	2.907 (3)	171
$O3-H3A\cdots O4^{vi}$	0.94	2.03	2.917 (3)	156
$O2-H2B\cdots O5^{vii}$	0.83	1.81	2.638 (3)	173
$O2-H2A\cdots O12^{viii}$	0.85	2.02	2.861 (4)	171

Symmetry codes: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + 1$; (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + 1$; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z$; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, -z$; (v) $x - \frac{1}{2}, y + \frac{3}{2}, z$; (vi) $x - \frac{1}{2}, y + \frac{1}{2}, z$; (vii) x, y + 1, z; (viii) $-x + \frac{3}{2}, y + \frac{3}{2}, -z + 1$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This research project was supported by the National Science Council of Taiwan (NSC97–2113-M-033–003-MY2) and by the project of the specific research fields of Chung Yuan Christian University, Taiwan, under grant No. CYCU-97-CR-CH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2190).

metal-organic compounds

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2009). E65, m625-m626 [doi:10.1107/S1600536809016729]

catena-Poly[[tetraaquanickel(II)]- μ_3 -benzene-1,3,5-tricarboxylato-3':1:2- $\kappa^4 O^1: O^3, O^{3'}: O^5$ -[tetraaquanickel(II)]- μ_2 -benzene-1,3,5-tricarboxylato-2:3 $\kappa^2 O^1: O^3$ -[tetraaquanickel(II)]]

Shih-Chen Hsu, Pei-Hsuan Chiang, Chih-Hsien Chang and Chia-Her Lin

S1. Comment

The synthesis of coordination polymers has been a subject of intense research owing to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, and luminescence. A large number of these materials have been synthesized by solvothermal reactions with organic carboxyl acids (Kitagawa *et al.* 2004). The coordination polymers commonly adopt three-dimensional, two-dimensional, and one-dimensional structures *via* employed metal ions as connectors and rigid or flexible organic ligands as linkers. As a further study of such a complex, we report here the structure of the title compound, a nickel coordination polymer with one dimensional zigzag chains.

The crystal structure analysis of the title compound reveals the structure to be composed of zigzag chains. The compound has a non-centrosymmetric C2 space group and the crystal under investigation was twinned with a Flack parameter of 0.549 (12). The asymmetric unit contains two types of NiO₆ groups (Fig. 1). The group of Ni1 is terminal and the metal atom is coordinated in a bidentate fashion to one carboxylate ligand and to four water oxygen atoms. The other nickel atom, Ni2, is coordinated in the axial positions by two monodenate carboxylate groups, and by four water molecules in the equatorial positions. All Ni–O bond lengths range from 2.021 (3) to 2.102 (3) Å. The BTC anions also have two types of coordination modes towards the NiO₆ groups. One of the BTC bridges between two Ni2 atoms via two of its carboxylate groups. The third carboxylate is protonated and not metal coordinated. The other BTC ligand bridges via two of its carboxylates between two Ni2 atoms. Its third carboxylate group coordinates to a Ni1 atom. The onedimensional chains thus formed are further linked with each other by hydrogen bonds and π - π interactions to form a layered structure. Hydrogen bonding interactions between coordination waters are O2-H2B···O5^{ix}, O3-H3A···O4^{viii}, O4-H4B···O10, O4–H4C···O1ⁱⁱⁱ, O5–H5A···O11, O6–H6A···O11^{vi}, O6–H6B···O1^v, and O9–H9B···O10ⁱⁱⁱ (Fig. 2). The uncoordinated carboxylate group is involved in hydrogen bonding via O2-H2A···O12^x, O3-H3B···O12^{vii}, O5-H5B···O12^{vi}, and O9–H9A···O12^{iv} between nearby layers (Fig. 3, see table 1 for numerical values and symmetry operators). π - π stacking interactions are found between aromatic rings made up of C1 to C5, C1ⁱⁱ and C5ⁱⁱ, and the ring defined by C2, C7, C9, C10, C10ⁱ and C9ⁱ (symmetry operators: (i) -x+1, y, -z; (ii) -x+2, y, -z+1). The centroid to centroid distance between Cg1 and Cg2^{ix} defined by the two rings is 3.58 (1) Å. The rings are slipped against each other, and the approximate interplanar distance is 3.27 Å (as defined by the distance of carbon atom C4 and Cg^{2ix} (symmetry operator: (ix) 1/2+x, -1/2+y, z). These π - π interactions connect nearby layers with each other (Fig. 4).

S2. Experimental

The title complex was obtained from the reaction of 1,3,5-benzenetricarboxylic acid ($C_9H_6O_6$, H_3BTC , 0.421 g, 2 mmol), Ni(NO₃)₂.6H₂O (0.8724 g, 3 mmol), ethanol (5.0 ml) and H₂O (5.0 ml) with pH value of 2.15. The reaction mixture was

heated to 453 K for 20 minutes using a microwave output power of 400 W. The title compound in the form of green crystals was collected in a yield of 0.0979 g (12.2%, based on carboxylic acid reagent).

S3. Refinement

The hydrogen atoms of benzene rings are placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$. The hydrogen atoms of water molecules were found in difference Fourier maps and were refined using distance constraints with O—H = 0.81 to 0.96 Å with $U_{iso}(H) = 1.2 U_{eq}(O)$. Friedel pairs were not merged prior to refinement. The value of the Flack parameter and its standard uncertainty were determined by full-matrix least-squares refinement using the TWIN/BASF commands in the *SHELXTL* program. It refined to 0.55 (1).

Figure 1

A view of the title compound, showing 50% probability displacement ellipsoids. [symmetry codes: (i) -x+1, y, -z; (ii) -x+2, y, -z+1].

Figure 2

The zigzag chains of the title compound with hydrogen bonding (blue dashed lines, H atoms are omitted).

Figure 3

The packing diagram of zigzag chains with hydrogen bonding (blue dashed lines, H atoms are omitted).

Figure 4

The side view of the layers with the pi-pi interactions (blue dashed lines, H atoms are omitted).

catena-Poly[[tetraaquanickel(II)]- μ_3 -benzene-1,3,5-tricarboxylato- 3':1:2- $\kappa^4O^1:O^3,O^3:O^5$ - [tetraaquanickel(II)]- m_2 -benzene-1,3,5-tricarboxylato- 2:3 $\kappa^2O^1:O^3$ -[tetraaquanickel(II)]]

Crystal data	
$[Ni_3(C_9H_3O_6)_2(H_2O)_{12}]$	$\beta = 111.609 \ (2)^{\circ}$
$M_r = 806.49$	$V = 1358.42 (12) Å^3$
Monoclinic, C2	Z = 2
Hall symbol: C 2y	F(000) = 828
a = 17.3394 (10) Å	$D_{\rm x} = 1.972 {\rm ~Mg} {\rm ~m}^{-3}$
b = 12.8724 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 6.5462 (3) Å	Cell parameters from 4802 reflections

 $\theta = 2.5 - 28.3^{\circ}$ $\mu = 2.17 \text{ mm}^{-1}$ T = 295 K

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\rm min} = 0.613, T_{\rm max} = 0.737$

Refinement

Hydrogen site location: inferred from Refinement on F^2 Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.028$ H-atom parameters constrained $wR(F^2) = 0.068$ $w = 1/[\sigma^2(F_0^2) + (0.0363P)^2]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ *S* = 1.07 3299 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$ 208 parameters $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$ 1 restraint Primary atom site location: structure-invariant Absolute structure: Flack (1983), 1531 Friedel direct methods pairs Secondary atom site location: difference Fourier Absolute structure parameter: 0.549 (12) map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Columnar, light-blue

 $0.25 \times 0.18 \times 0.15 \text{ mm}$

6798 measured reflections

 $\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$

 $R_{\rm int} = 0.046$

 $h = -23 \rightarrow 22$

 $k = -16 \rightarrow 17$ $l = -7 \rightarrow 8$

3299 independent reflections

3156 reflections with $I > 2\sigma(I)$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.5000	0.68238 (4)	0.0000	0.02554 (13)	
Ni2	0.757745 (18)	-0.02765 (2)	0.22999 (5)	0.01825 (9)	
01	0.56460 (12)	0.54287 (15)	0.1157 (3)	0.0269 (4)	
02	0.58008 (19)	0.7828 (2)	0.1959 (5)	0.0659 (10)	
H2A	0.5729	0.8177	0.2978	0.079*	
H2B	0.6113	0.8141	0.1460	0.079*	
03	0.44433 (15)	0.68727 (18)	0.2333 (4)	0.0396 (5)	
H3A	0.4101	0.6382	0.2657	0.047*	
H3B	0.4382	0.7546	0.2822	0.047*	
O4	0.83989 (12)	0.08047 (16)	0.4286 (3)	0.0259 (4)	
H4B	0.8029	0.1274	0.4439	0.031*	
H4C	0.8708	0.0577	0.5683	0.031*	

O5	0.67707 (12)	-0.13068 (15)	0.0142 (3)	0.0229 (4)
H5A	0.7035	-0.1838	0.0246	0.028*
H5B	0.6543	-0.1191	-0.1354	0.028*
O6	0.77890 (12)	0.03467 (16)	-0.0377 (3)	0.0316 (5)
H6A	0.7595	0.0949	-0.0829	0.038*
H6B	0.8290	0.0322	-0.0698	0.038*
O7	0.85264 (11)	-0.12996 (14)	0.3010 (3)	0.0223 (4)
08	0.65774 (12)	0.06587 (15)	0.1685 (3)	0.0237 (4)
O9	0.73419 (13)	-0.09194 (17)	0.4944 (3)	0.0299 (5)
H9A	0.6945	-0.0832	0.5292	0.036*
H9B	0.7453	-0.1563	0.5346	0.036*
O10	0.71601 (12)	0.21051 (15)	0.3445 (3)	0.0271 (4)
O11	0.78560 (12)	-0.27492 (14)	0.1508 (3)	0.0253 (4)
O12	0.93126 (13)	-0.61400 (16)	0.4291 (4)	0.0333 (5)
C1	0.92709 (16)	-0.3961 (2)	0.3927 (4)	0.0156 (5)
H1A	0.8781	-0.4324	0.3216	0.019*
C2	0.5000	0.1625 (3)	0.0000	0.0159 (7)
H2C	0.5000	0.0903	0.0000	0.019*
C3	1.0000	-0.4499 (3)	0.5000	0.0157 (7)
C4	1.0000	-0.2341 (3)	0.5000	0.0158 (6)
H4A	1.0000	-0.1618	0.5000	0.019*
C5	0.92667 (15)	-0.28782 (19)	0.3907 (4)	0.0149 (5)
C6	0.65536 (16)	0.1604 (2)	0.2156 (4)	0.0178 (5)
C7	0.5000	0.3778 (3)	0.0000	0.0163 (7)
C8	0.84852 (15)	-0.2270 (2)	0.2722 (4)	0.0159 (5)
C9	0.57403 (16)	0.2158 (2)	0.1077 (4)	0.0159 (5)
C10	0.57306 (15)	0.3237 (2)	0.1084 (4)	0.0167 (5)
H10A	0.6218	0.3601	0.1821	0.020*
C11	0.5000	0.4925 (3)	0.0000	0.0204 (8)
C12	1.0000	-0.5673 (3)	0.5000	0.0211 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0250 (3)	0.0154 (2)	0.0335 (3)	0.000	0.0076 (2)	0.000
Ni2	0.01496 (14)	0.01230 (14)	0.02472 (16)	0.00137 (13)	0.00407 (11)	0.00049 (13)
O1	0.0201 (10)	0.0127 (9)	0.0360 (11)	-0.0018 (8)	-0.0037 (9)	-0.0020 (8)
O2	0.081 (2)	0.065 (2)	0.0751 (18)	-0.0546 (18)	0.0557 (17)	-0.0443 (17)
O3	0.0483 (14)	0.0264 (11)	0.0539 (13)	-0.0045 (11)	0.0305 (11)	-0.0004 (11)
O4	0.0207 (10)	0.0182 (10)	0.0317 (11)	0.0019 (8)	0.0013 (9)	-0.0023 (9)
O5	0.0204 (9)	0.0168 (10)	0.0260 (9)	0.0023 (7)	0.0019 (8)	-0.0001 (8)
O6	0.0284 (11)	0.0259 (11)	0.0450 (12)	0.0085 (9)	0.0187 (10)	0.0130 (9)
O7	0.0154 (9)	0.0131 (9)	0.0353 (11)	0.0028 (7)	0.0057 (8)	0.0000 (8)
08	0.0203 (9)	0.0134 (9)	0.0345 (11)	0.0048 (7)	0.0068 (9)	-0.0024 (8)
09	0.0294 (11)	0.0268 (11)	0.0337 (10)	0.0060 (9)	0.0120 (9)	0.0091 (8)
O10	0.0203 (10)	0.0203 (10)	0.0335 (10)	0.0044 (8)	0.0013 (9)	-0.0056 (8)
011	0.0179 (9)	0.0163 (9)	0.0327 (10)	0.0029 (7)	-0.0014 (8)	-0.0047 (8)
012	0.0333 (12)	0.0145 (10)	0.0376 (12)	-0.0044 (9)	-0.0040 (10)	0.0022 (9)

C1	0.0168 (12)	0.0127 (12)	0.0161 (12)	-0.0027 (10)	0.0045 (10)	-0.0025 (9)
C2	0.0224 (17)	0.0081 (16)	0.0183 (16)	0.000	0.0089 (14)	0.000
C3	0.0200 (17)	0.0096 (16)	0.0155 (16)	0.000	0.0039 (14)	0.000
C4	0.0202 (16)	0.0100 (15)	0.0184 (15)	0.000	0.0085 (13)	0.000
C5	0.0142 (11)	0.0137 (11)	0.0157 (11)	0.0025 (8)	0.0042 (9)	0.0000 (8)
C6	0.0193 (12)	0.0174 (13)	0.0171 (11)	0.0021 (10)	0.0073 (10)	0.0016 (9)
C7	0.0194 (17)	0.0130 (16)	0.0167 (16)	0.000	0.0068 (14)	0.000
C8	0.0159 (11)	0.0145 (12)	0.0187 (11)	0.0010 (9)	0.0081 (9)	-0.0004 (9)
C9	0.0183 (12)	0.0134 (11)	0.0178 (12)	0.0025 (9)	0.0087 (10)	0.0006 (9)
C10	0.0144 (11)	0.0156 (12)	0.0194 (12)	-0.0013 (9)	0.0052 (10)	0.0002 (9)
C11	0.0188 (16)	0.016 (2)	0.0235 (17)	0.000	0.0036 (14)	0.000
C12	0.029 (2)	0.0099 (17)	0.0175 (17)	0.000	0.0009 (15)	0.000

Geometric parameters (Å, °)

1.983 (3)	09—Н9А	0.8087
1.983 (3)	O9—H9B	0.8686
2.087 (2)	O10—C6	1.257 (3)
2.087 (2)	O11—C8	1.250 (3)
2.1043 (19)	O12—C12	1.261 (3)
2.1043 (19)	C1—C3	1.385 (3)
2.445 (4)	C1—C5	1.393 (4)
2.0235 (18)	C1—H1A	0.9300
2.026 (2)	С2—С9	1.396 (3)
2.0630 (19)	C2—C9 ⁱ	1.396 (3)
2.0716 (19)	C2—H2C	0.9300
2.0787 (19)	C3—C1 ⁱⁱ	1.385 (3)
2.090 (2)	C3—C12	1.512 (5)
1.275 (3)	C4—C5	1.392 (3)
0.8508	C4—C5 ⁱⁱ	1.392 (3)
0.8329	C4—H4A	0.9300
0.9431	C5—C8	1.509 (3)
0.9439	C6—C9	1.504 (3)
0.9132	C7—C10	1.390 (3)
0.9216	$C7-C10^{i}$	1.390 (3)
0.8116	C7—C11	1.476 (5)
0.9233	C9—C10	1.390 (3)
0.8533	C10—H10A	0.9300
0.9664	C11—O1 ⁱ	1.275 (3)
1.261 (3)	C12—O12 ⁱⁱ	1.261 (3)
1.260 (3)		
98.7 (2)	H5A—O5—H5B	103.5
84.80 (10)	Ni2—O6—H6A	118.3
92.94 (10)	Ni2—O6—H6B	128.5
92.94 (10)	H6A—O6—H6B	103.1
84.80 (10)	C8—O7—Ni2	127.85 (17)
176.54 (13)	C6—O8—Ni2	128.92 (18)
	$\begin{array}{c} 1.983 (3) \\ 1.983 (3) \\ 2.087 (2) \\ 2.087 (2) \\ 2.1043 (19) \\ 2.1043 (19) \\ 2.445 (4) \\ 2.0235 (18) \\ 2.026 (2) \\ 2.0630 (19) \\ 2.0716 (19) \\ 2.0787 (19) \\ 2.090 (2) \\ 1.275 (3) \\ 0.8508 \\ 0.8329 \\ 0.9431 \\ 0.9439 \\ 0.9132 \\ 0.9216 \\ 0.8116 \\ 0.9233 \\ 0.8533 \\ 0.9664 \\ 1.261 (3) \\ 1.260 (3) \\ \end{array}$	$1.983 (3)$ $O9-H9A$ $1.983 (3)$ $O9-H9B$ $2.087 (2)$ $O10-C6$ $2.087 (2)$ $O11-C8$ $2.1043 (19)$ $O12-C12$ $2.0235 (18)$ $O1-H1A$ $2.026 (2)$ $C2-C9$ $2.0630 (19)$ $C2-C9$ $2.0630 (19)$ $C2-H2C$ $2.0787 (19)$ $C3-C1^{ii}$ $2.090 (2)$ $C3-C12$ $1.275 (3)$ $C4-C5$ 0.8508 $C4-C5^{ii}$ 0.8329 $C4-H4A$ 0.9431 $C5-C8$ 0.9439 $C6-C9$ 0.9132 $C7-C10$ 0.9216 $C7-C10^i$ 0.8533 $C10-H10A$ 0.9664 $C11-O$

	00.00.(10)		100 6
$O2^{1}-N11-O1^{1}$	99.80 (12)	N12—O9—H9A	128.6
$O2-Ni1-O1^{1}$	160.42 (11)	Ni2—O9—H9B	122.6
$O3^{1}$ $N1^{1}$ $O1^{1}$	95.20 (9)	H9A—O9—H9B	99.5
O3—Ni1—O1 ⁱ	87.75 (9)	C3—C1—C5	120.4 (2)
$O2^{i}$ —Ni1—O1	160.42 (11)	C3—C1—H1A	119.8
02—Ni1—O1	99.80 (12)	C5—C1—H1A	119.8
O3 ⁱ —Ni1—O1	87.75 (9)	$C9-C2-C9^{i}$	121.2 (3)
O3—Ni1—O1	95.20 (9)	С9—С2—Н2С	119.4
Ol ⁱ —Nil—Ol	62.84 (10)	$C9^{i}$ — $C2$ — $H2C$	119.4
O2 ⁱ —Ni1—C11	130.67 (11)	C1 ⁱⁱ —C3—C1	119.9 (3)
O2—Ni1—C11	130.67 (11)	C1 ⁱⁱ —C3—C12	120.03 (16)
O3 ⁱ —Ni1—C11	91.73 (7)	C1—C3—C12	120.03 (16)
O3—Ni1—C11	91.73 (7)	C5-C4-C5 ⁱⁱ	120.4 (3)
Ol ⁱ —Nil—Cl1	31.42 (5)	C5—C4—H4A	119.8
01—Ni1—C11	31.42 (5)	C5 ⁱⁱ —C4—H4A	119.8
07—Ni2—O8	175.21 (9)	C4—C5—C1	119.4 (2)
O7—Ni2—O5	91.60 (7)	C4—C5—C8	118.9 (2)
O8—Ni2—O5	86.05 (8)	C1—C5—C8	121.6 (2)
07—Ni2—O4	88.86 (8)	O10—C6—O8	124.4 (2)
08—Ni2—O4	93.77 (8)	O10—C6—C9	118.7 (2)
O5—Ni2—O4	176.11 (9)	O8—C6—C9	116.9 (2)
O7—Ni2—O6	93.66 (8)	C10-C7-C10 ⁱ	119.9 (3)
08—Ni2—06	90.41 (8)	C10—C7—C11	120.07 (17)
05—Ni2—06	87.51 (8)	$C10^{i}$ — $C7$ — $C11$	120.07 (17)
04—Ni2—06	88.61 (8)	011	124.9 (2)
07—Ni2—09	86.70 (8)	011	118.6 (2)
08—Ni2—09	89.18 (8)	07—C8—C5	116.5 (2)
05—Ni2—09	91.29 (8)	C10-C9-C2	118.9 (2)
04—Ni2—09	92.59 (8)	C10—C9—C6	118.9 (2)
06—Ni2—09	178.76 (9)	C2C9C6	122.2(2)
$C_{11} = O_{1} = N_{11}$	89.19 (17)	C9-C10-C7	120.6(3)
Ni1—O2—H2A	125.6	C9-C10-H10A	119.7
Ni1—O2—H2B	117.6	C7—C10—H10A	119.7
$H^2A = O^2 = H^2B$	110.8	$01-C11-01^{i}$	118 8 (3)
Ni1—O3—H3A	130.1	01 - C11 - C7	120.61 (16)
Ni1—O3—H3B	114.6	01^{i} - C11 - C7	120.61 (16)
H3A_O3_H3B	112.3	01-C11-Ni1	59 39 (16)
Ni2—O4—H4B	99.5	$O1^{i}$ $C11$ Ni1	59 39 (16)
Ni2 = 04 = H4C	115.0	C7 C11 Ni1	180.0
H4B - O4 - H4C	106.1	012^{ii} 012^{ii} 012^{ii}	123 1 (4)
$Ni2 = 05 = H5 \Delta$	105.1	012 - 012 - 012 $012^{ii} - 012 - 03$	118 45 (18)
Ni2 O5 H5B	103.4	012 - 012 - 03	110.45(10)
NI2—U3—П3D	122.1	012-012-03	110.45 (18)

Symmetry codes: (i) -*x*+1, *y*, -*z*; (ii) -*x*+2, *y*, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O9—H9 <i>B</i> ···O10 ⁱⁱⁱ	0.87	1.90	2.767 (3)	172

O9—H9A…O12 ^{iv}	0.81	2.33	3.102 (3)	160	
O6—H6 <i>B</i> ⋯O1 ^v	0.97	1.98	2.942 (3)	173	
O6—H6A···O11 ^{vi}	0.85	1.83	2.683 (3)	173	
O5—H5 <i>B</i> ···O12 ^{vi}	0.92	1.95	2.825 (3)	158	
O5—H5A…O11	0.81	1.79	2.559 (3)	156	
O4—H4C···O1 ⁱⁱⁱ	0.92	1.97	2.870 (3)	167	
O4—H4 <i>B</i> ⋯O10	0.91	1.77	2.617 (3)	154	
O3—H3 <i>B</i> ···O12 ^{vii}	0.94	1.97	2.907 (3)	171	
O3—H3A····O4 ^{viii}	0.94	2.03	2.917 (3)	156	
O2—H2 <i>B</i> ···O5 ^{ix}	0.83	1.81	2.638 (3)	173	
O2— $H2A$ ···O12 ^x	0.85	2.02	2.861 (4)	171	

Symmetry codes: (iii) -*x*+3/2, *y*-1/2, -*z*+1; (iv) -*x*+3/2, *y*+1/2, -*z*+1; (v) -*x*+3/2, *y*-1/2, -*z*; (vi) -*x*+3/2, *y*+1/2, -*z*; (vii) *x*-1/2, *y*+3/2, *z*; (viii) *x*-1/2, *y*+1/2, *z*; (ix) *x*, *y*+1, *z*; (x) -*x*+3/2, *y*+3/2, -*z*+1.