

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Bis(5-carboxy-2-methyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4) copper(II)

Xin Guo, Yi Liang Li, Ju Xian Wang and Yu Cheng Wang*

Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100050, People's Republic of China Correspondence e-mail: hongzhaoupr@yahoo.com

Received 25 April 2009; accepted 5 May 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.084; data-to-parameter ratio = 13.9.

In the title compound, $[Cu(C_6H_5N_2O_4)_2]$, the copper(II) atom lies on an inversion centre and is in an N₂O₂ four-coordinate environment with a nearly regular square-planar geometry. An extended network of intramolecular O-H···O and intermolecular N-H···O and C-H···O hydrogen bonds stabilizes the crystal structure.

Related literature

For the synthesis and crystal structure of metal complexes with *N*-heterocyclic carboxylic acids, see: Nie *et al.* (2007); Liang *et al.* (2002); Net *et al.* (1989); Zeng *et al.* (2008).

Experimental

Crystal data	
$[Cu(C_6H_5N_2O_4)_2]$	b = 7.575 (2) Å
$M_r = 401.78$ Monoclinic, $P2_1/n$	c = 12.865 (3) A $\beta = 101.287 (13)^{\circ}$
a = 7.3780 (17) Å	V = 705.0 (3) Å ³

metal-organic compounds

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

T = 292 K

Z = 2Mo $K\alpha$ radiation $\mu = 1.61 \text{ mm}^{-1}$

Data collection

Rigaku SCXmini diffractometer	5198 measured reflections
Absorption correction: multi-scan	1609 independent reflections
(CrystalClear; Rigaku, 2005)	1472 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.638, T_{\max} = 0.727$	$R_{\rm int} = 0.019$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ 116 parameters $wR(F^2) = 0.084$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$ 1609 reflections $\Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O2^{i}$	0.86	2.01	2.822 (2)	157
$C1-H1A\cdots O4^{ii}$	0.96	2.49	3.217 (2)	132
$C1 - H1B \cdots O3^{iii}$	0.96	2.58	3.285 (3)	130
$C1 - H1C \cdots O1^{iv}$	0.96	2.43	3.258 (3)	144
$O3-H3A\cdots O2$	0.91	1.67	2.576 (2)	171
Symmetry codes: $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2};$ (iv	(i) $x + \frac{1}{2}, -\frac{1}{2}$ (i) $-x, -y + 1, -\frac{1}{2}$	$y + \frac{1}{2}, z + \frac{1}{2};$ (-z.	(ii) $-x + \frac{3}{2}, y + \frac{1}{2}$	$, -z + \frac{1}{2};$ (iii)

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL/PC*.

The work was supported by the National Basic Public Welfare Research Program of China (IMBF-20060403).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2318).

References

Liang, Y. C., Cao, R. & Hong, M. C. (2002). Inorg. Chem. Commun. 5, 366–368.Net, G., Bayon, J. C., Butler, W. M. & Rasmussen, P. (1989). J. Chem. Soc. Chem. Commun. pp. 1022–1023.

- Nie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. & Liu, C.-B. (2007). Acta Cryst. E63, m753–m755.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zeng, J.-Z., Yi, X.-G., Lin, J.-Y., Ying, S.-M. & Huang, G.-S. (2008). Acta Cryst. E64, m476.

supporting information

Acta Cryst. (2009). E65, m637 [doi:10.1107/S1600536809016791]

trans-Bis(5-carboxy-2-methyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4) copper(II)

Xin Guo, Yi Liang Li, Ju Xian Wang and Yu Cheng Wang

S1. Comment

The study of metal complexes with *N*-heterocyclic carboxylic acids has been given considerable attention ((Nie *et al.*, 2007; Liang *et al.*, 2002; Net *et al.*, 1989; Zeng *et al.*, 2008). In this paper, we report on the synthesis and structure of the title compound, which was obtained by the hydrothermal reaction of $CuCl_2$ with 2-methyl-1*H*-imidazole-4,5-dicarboxylic acid.

Figure 1 shows the monomeric complex molecule along with the atom-labelling scheme. The copper(II) metal lies on an inversion centre and is in an N_2O_2 four-coordinate environment with a regular square-planar geometry. The Cu—O distance is 1.9633 (15) Å and the Cu—N distance is 1.9830 (14) Å. The five-membered chelating ring assumes an approximately planar conformation (maximum deviation -0.033 (1) Å for atom N1). The crystal structure is stabilized by an intramolecular O—H…O hydrogen bond, and by intermolecular N—H…O and C—H…O hydrogen interactions (Table 1), forming an extended three-dimensional network (Fig. 2).

S2. Experimental

Blue single crystals of title compound were obtained by hydrothermal treatment of $CuCl_2$ (1 mmol), 2-methyl-1*H*-imidazole-4,5-dicarboxylic acid (1 mmol) and water (5 ml) over 2 days at 388 K. Yield: 61% (based on $CuCl_2$).

S3. Refinement

The hydroxyl H atom was located from a difference Fourier map but not refined $[U_{iso}(H)=1.5U_{eq}(O)]$. All other H atoms were placed at calculated positions and refined as riding, with C—H = 0.96 Å, N—H = 0.86 Å, and with $U_{iso}(H)=1.5U_{eq}(C)$ and $U_{iso}(H)=1.2U_{eq}(N)$

Figure 1

The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with suffix A are generated by the symmetry operation (-x, 1 - y,-z).

Figure 2

Packing diagram of the title compound viewed along the *a* axis. Intermolecular hydrogen bonds are shown as dashed lines.

trans-Bis(5-carboxy-2-methyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$,O⁴)copper(II)

Crystal data

[Cu(C₆H₅N₂O₄)₂] $M_r = 401.78$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.3780 (17) Å b = 7.575 (2) Å c = 12.863 (3) Å $\beta = 101.287 (13)^\circ$ $V = 705.0 (3) \text{ Å}^3$ Z = 2

Data collection

Rigaku SCXmini	5198 measured reflections			
diffractometer	1609 independent reflections			
Radiation source: fine-focus sealed tube	1472 reflections with $I > 2\sigma(I)$			
Graphite monochromator	$R_{\rm int} = 0.019$			
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$			
ω scans	$h = -9 \longrightarrow 9$			
Absorption correction: multi-scan	$k = -9 \longrightarrow 8$			
(CrystalClear; Rigaku, 2005)	$l = -16 \rightarrow 16$			
$T_{\min} = 0.638, \ T_{\max} = 0.727$				
Refinement				
Refinement on F^2	Secondary atom site location: difference Fourier			
Least-squares matrix: full	map			
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from			

F(000) = 406

 $\theta = 3.1 - 27.5^{\circ}$ $\mu = 1.61 \text{ mm}^{-1}$

T = 292 K

Prism. blue

 $D_{\rm x} = 1.893 {\rm Mg} {\rm m}^{-3}$

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2111 reflections

 $wR(F^2) = 0.084$ neighbouring sitesS = 1.07H-atom parameters constrained1609 reflections $w = 1/[\sigma^2(F_o^2) + (0.0506P)^2 + 0.3299P]$ 116 parameters $where P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} < 0.001$ Primary atom site location: structure-invariant
direct methods $\Delta \rho_{min} = -0.66 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.0000	0.5000	0.0000	0.02591 (14)	
C1	0.3363 (3)	0.5580 (3)	0.26068 (15)	0.0322 (4)	
H1A	0.4201	0.6562	0.2725	0.048*	
H1B	0.3575	0.4828	0.3219	0.048*	

H1C	0.2114	0.6005	0.2482	0.048*	
C2	0.3672 (2)	0.4571 (3)	0.16737 (14)	0.0222 (4)	
C3	0.3316 (2)	0.3269 (2)	0.01393 (13)	0.0211 (3)	
C4	0.5089 (2)	0.2949 (2)	0.06414 (13)	0.0221 (4)	
C5	0.6677 (3)	0.2144 (3)	0.02784 (15)	0.0267 (4)	
C6	0.2221 (2)	0.2795 (3)	-0.09127 (14)	0.0241 (4)	
N1	0.24525 (19)	0.4288 (2)	0.07763 (11)	0.0216 (3)	
N2	0.5278 (2)	0.3781 (2)	0.16036 (11)	0.0226 (3)	
H2A	0.6266	0.3796	0.2086	0.027*	
01	0.06229 (18)	0.3460 (2)	-0.11265 (10)	0.0328 (3)	
O2	0.29058 (19)	0.1816 (2)	-0.15194 (10)	0.0325 (3)	
03	0.6306 (2)	0.1289 (2)	-0.06309 (11)	0.0362 (4)	
H3A	0.5102	0.1358	-0.0972	0.054*	
O4	0.8232 (2)	0.2331 (2)	0.07777 (12)	0.0396 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01512 (18)	0.0374 (2)	0.02196 (19)	0.00490 (12)	-0.00433 (12)	-0.00595 (12)
C1	0.0263 (10)	0.0449 (12)	0.0231 (9)	0.0015 (9)	-0.0008 (7)	-0.0072 (8)
C2	0.0190 (8)	0.0268 (9)	0.0190 (8)	-0.0015 (7)	-0.0004 (6)	0.0029 (7)
C3	0.0172 (8)	0.0242 (9)	0.0205 (8)	-0.0010 (6)	0.0000 (6)	0.0001 (6)
C4	0.0189 (8)	0.0240 (9)	0.0217 (8)	0.0008 (7)	-0.0001 (6)	0.0029 (7)
C5	0.0210 (8)	0.0291 (10)	0.0294 (9)	0.0036 (7)	0.0034 (7)	0.0054 (7)
C6	0.0201 (8)	0.0304 (10)	0.0196 (8)	-0.0010 (7)	-0.0013 (6)	-0.0023 (7)
N1	0.0165 (7)	0.0275 (8)	0.0190 (7)	0.0003 (6)	-0.0013 (5)	-0.0017 (6)
N2	0.0172 (7)	0.0294 (8)	0.0184 (7)	0.0003 (6)	-0.0038 (5)	0.0025 (6)
01	0.0206 (7)	0.0470 (9)	0.0263 (7)	0.0062 (6)	-0.0065 (5)	-0.0103 (6)
O2	0.0252 (7)	0.0441 (8)	0.0256 (7)	0.0036 (6)	-0.0010 (5)	-0.0113 (6)
O3	0.0273 (7)	0.0465 (9)	0.0342 (8)	0.0079 (6)	0.0047 (6)	-0.0077 (6)
O4	0.0196 (7)	0.0569 (10)	0.0390 (8)	0.0073 (7)	-0.0025 (6)	0.0007 (7)

Geometric parameters (Å, °)

Cu1—N1	1.9633 (15)	C3—N1	1.370 (2)
Cu1—N1 ⁱ	1.9633 (15)	C3—C6	1.478 (2)
Cu1-01	1.9830 (14)	C4—N2	1.372 (2)
Cu1—O1 ⁱ	1.9830 (14)	C4—C5	1.475 (3)
C1—C2	1.478 (3)	С5—О4	1.208 (2)
C1—H1A	0.9600	С5—О3	1.318 (2)
C1—H1B	0.9600	C6—O2	1.252 (2)
C1—H1C	0.9600	C6—O1	1.262 (2)
C2—N1	1.335 (2)	N2—H2A	0.8600
C2—N2	1.346 (2)	O3—H3A	0.9117
C3—C4	1.363 (2)		
N1—Cu1—N1 ⁱ	180.0	C3—C4—N2	105.31 (15)
N1—Cu1—O1	83.56 (6)	C3—C4—C5	132.21 (17)

N1 ⁱ —Cu1—O1	96.44 (6)	N2—C4—C5	121.95 (16)
N1—Cu1—O1 ⁱ	96.44 (6)	O4—C5—O3	122.69 (18)
N1 ⁱ —Cu1—O1 ⁱ	83.56 (6)	O4—C5—C4	120.88 (18)
O1—Cu1—O1 ⁱ	180.00 (5)	O3—C5—C4	116.37 (16)
C2—C1—H1A	109.5	O2—C6—O1	125.06 (16)
C2—C1—H1B	109.5	O2—C6—C3	119.96 (16)
H1A—C1—H1B	109.5	O1—C6—C3	114.98 (16)
C2C1H1C	109.5	C2—N1—C3	107.11 (14)
H1A—C1—H1C	109.5	C2—N1—Cu1	142.56 (13)
H1B—C1—H1C	109.5	C3—N1—Cu1	109.91 (11)
N1-C2-N2	108.89 (16)	C2—N2—C4	109.26 (14)
N1-C2-C1	126.93 (17)	C2—N2—H2A	125.4
N2-C2-C1	124.18 (16)	C4—N2—H2A	125.4
C4—C3—N1	109.42 (15)	C6—O1—Cu1	114.58 (11)
C4—C3—C6	133.84 (17)	С5—О3—НЗА	114.3
N1—C3—C6	116.72 (15)		
N1—C3—C4—N2	0.6 (2)	C4—C3—N1—C2	-1.1 (2)
C6—C3—C4—N2	178.80 (19)	C6—C3—N1—C2	-179.58 (16)
N1—C3—C4—C5	-170.85 (19)	C4—C3—N1—Cu1	173.21 (12)
C6—C3—C4—C5	7.3 (4)	C6—C3—N1—Cu1	-5.3 (2)
C3—C4—C5—O4	163.5 (2)	O1—Cu1—N1—C2	175.3 (2)
N2-C4-C5-O4	-6.8 (3)	O1 ⁱ —Cu1—N1—C2	-4.7 (2)
C3—C4—C5—O3	-13.6 (3)	O1—Cu1—N1—C3	4.36 (12)
N2—C4—C5—O3	176.04 (17)	O1 ⁱ —Cu1—N1—C3	-175.64 (12)
C4—C3—C6—O2	4.4 (3)	N1-C2-N2-C4	-0.7 (2)
N1—C3—C6—O2	-177.58 (17)	C1-C2-N2-C4	179.41 (18)
C4—C3—C6—O1	-174.8 (2)	C3—C4—N2—C2	0.0 (2)
N1-C3-C6-O1	3.2 (3)	C5-C4-N2-C2	172.59 (17)
N2-C2-N1-C3	1.1 (2)	O2—C6—O1—Cu1	-178.45 (16)
C1—C2—N1—C3	-179.04 (19)	C3—C6—O1—Cu1	0.7 (2)
N2—C2—N1—Cu1	-170.06 (15)	N1—Cu1—O1—C6	-2.89 (14)
C1-C2-N1-Cu1	9.8 (4)	N1 ⁱ —Cu1—O1—C6	177.11 (14)

Symmetry code: (i) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
N2—H2A····O2 ⁱⁱ	0.86	2.01	2.822 (2)	157
C1—H1A····O4 ⁱⁱⁱ	0.96	2.49	3.217 (2)	132
C1—H1 <i>B</i> ···O3 ^{iv}	0.96	2.58	3.285 (3)	130
C1—H1C···O1 ⁱ	0.96	2.43	3.258 (3)	144
O3—H3 <i>A</i> ···O2	0.91	1.67	2.576 (2)	171

Symmetry codes: (i) -x, -y+1, -z; (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+3/2, y+1/2, -z+1/2; (iv) x-1/2, -y+1/2, z+1/2.