Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[diaqua(1*H*-imidazo[4,5-*f*]-[1,10]phenanthroline)cobalt(II)]-μsulfato]

Jian Yu

Department of Chemistry, Lishui University, 323000 Lishui, Zhejiang, People's Republic of China

Correspondence e-mail: jianyu01@126.com

Received 28 April 2009; accepted 1 May 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; R factor = 0.063; wR factor = 0.100; data-to-parameter ratio = 10.9.

The Co^{II} ion in the title complex, $[Co(SO_4)(C_{13}H_8N_4)-(H_2O)_2]_n$, has a slightly distorted octahedral coordination environment formed by two O atoms from two symmetryrelated bridging sulfate ligands, two N atoms from a bischelating 1*H*-imidazo[4,5-*f*][1,10]phenanthroline (IPL) ligand and two O atoms from coordinated water molecules. The bridging sulfate ligands connect Co^{II} ions to form a onedimensional chain along the *b*-axis direction. In the crystal structure, intermolecular $O-H\cdots O$, $O-H\cdots N$ and N- $H\cdots O$ hydrogen bonds link the chains into a three-dimensional network.

Related literature

For general background on coordination polymers, see: Ghosh *et al.* (2004). For related IPL coordination complexes, see: Xiong *et al.* (1999). For related structures of coordination polymers, see: Liu *et al.* (2008).

Experimental

Crystal data

 $\begin{bmatrix} Co(SO_4)(C_{13}H_8N_4)(H_2O)_2 \end{bmatrix}$ $M_r = 411.26$ Monoclinic, $P2_1/c$ a = 10.916 (4) Å b = 7.017 (2) Å c = 19.690 (7) Å $\beta = 99.353$ (7)°

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) T_{min} = 0.714, T_{max} = 0.878

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.100$ S = 1.242639 reflections 242 parameters 16 restraints Z = 4Mo K α radiation $\mu = 1.34 \text{ mm}^{-1}$ T = 298 K $0.27 \times 0.15 \times 0.10 \text{ mm}$

V = 1488.2 (9) Å³

7263 measured reflections 2639 independent reflections 1216 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.108$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.53 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.80 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

n	D 11			
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O2 - H2C \cdots O5$	0.83 (5)	1.91 (3)	2.698 (7)	159 (7)
$O1 - H1C \cdots O5^{i}$	0.82 (5)	2.00 (4)	2.749 (6)	150 (7)
$O2 - H2B \cdots O6^{ii}$	0.82 (5)	2.18 (3)	2.957 (7)	158 (6)
$O1 - H1B \cdot \cdot \cdot N4^{iii}$	0.84 (5)	1.91 (5)	2.731 (7)	168 (7)
$N3-H3A\cdots O4^{iv}$	0.86	1.95	2.795 (6)	168

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) -x, -y + 2, -z; (iv) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

The author gratefully acknowledges financial support from the Youth Foundation of Lishui University, China (grant No. QN07014).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2814).

References

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghosh, A. K., Ghoshal, D., Lu, T. H., Mostafa, G. & Chaudhuri, N. R. (2004). Cryst. Growth Des. 4, 581–857.
- Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). *Inorg. Chim. Acta*, **361**, 2327–2334.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xiong, Y., He, X.-F., Zou, X.-H., Wu, J.-Z., Chen, X.-M., Ji, L.-N., Li, R.-H., Zhou, J.-Y. & Yu, K.-B. (1999). *J. Chem. Soc. Dalton Trans.* pp. 19–24.

supporting information

Acta Cryst. (2009). E65, m618 [doi:10.1107/S1600536809016419]

catena-Poly[[diaqua(1*H*-imidazo[4,5-*f*][1,10]phenanthroline)cobalt(II)]-*µ*-sulfato]

Jian Yu

S1. Comment

A wide range of extended one-dimensional, two-dimensional or three-dimensional frameworks with different interesting structural features, resulting from coordination bonding, hydrogen bonding, aromatic π ··· π stacking interactions play an important role in electron-transfer processes in some biological systems (Ghosh *et al.*, 2004). 1H-imidazo[4,5-f][1,10]-phenanthroline (IPL) is a rich conjugated molecular building block and has been employed to construct frameworks (Xiong *et al.*, 1999). Herein, we describe the preparation and crystal structure of the title complex (I).

The Co^{II} ion in the title complex, has a slightly distorted octahedral coordination formed by two O atoms from symmetry related bridging sulfate ligands, two N atoms from a bis-chelate IPL ligand and two O atoms from coordinated water molecules (Figure 1). The Co—N and Co—O bond lengths are not significantly different from the values observed in related complexes (Liu *et al.*, 2008). The bridging sulfate ligands connect Co^{II} ions into a 1-D zigzag chain parallel to [0 1 0]. In the crystal structure, intermolecular O-H···O, O-H···N and N-H···O hydrogen bonds link one dimensional chains into a three dimensional network (Fig. 2). In addition, significant π ··· π stacking interactions with centroid to centroid distances in the range 3.465 (4)-3.548 (4)Å help stabilize the crystal structure.

S2. Experimental

The title compound was prepared by hydrothermal conditions. IPL (22mg, 0.1 mmol) in an aqueous solution (10 mL) was mixed with an aqueous solution (5mL) of $Co(SO_4)_2$ (31mg, 0.12mmol). After stirring for 30 min in air, the mixture was placed into 25 mL Teflon-lined autoclave and heated at 383K for 96h. The autoclave was cooled at a rate 5° h⁻¹. The title complex as pink crystal was collected by filtration, washed with water, and dried in air.

S3. Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å; N-H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}$. H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H = 0.82 (1) Å).

Figure 1

¢

Molecular structure of the title compound showing the atom-labeling scheme [Symmetry codes: (i) -x+1,y+1/2,-z+1/2]. Displacement ellipsoids are shown at the 30% probability level.

Figure 2

Part of the crystal structure showing hydrogen bonds as dashed lines.

catena-Poly[[diaqua(1H-imidazo[4,5-f][1,10] phenanthroline)cobalt(II)]-µ-sulfato]

Crystal data	
$[Co(SO_4)(C_{13}H_8N_4)(H_2O)_2]$	<i>a</i> = 10.916 (4) Å
$M_r = 411.26$	<i>b</i> = 7.017 (2) Å
Monoclinic, $P2_1/c$	<i>c</i> = 19.690 (7) Å
Hall symbol: -P 2ybc	$\beta = 99.353 \ (7)^{\circ}$

 $V = 1488.2 (9) \text{ Å}^3$ Z = 4 F(000) = 836 $D_x = 1.835 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2639 reflections

Data collection

Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.714, T_{\max} = 0.878$

Primary atom site location: structure-invariant

Refinement

Refinement on F^2

 $wR(F^2) = 0.100$

2639 reflections

242 parameters

direct methods

16 restraints

S = 1.24

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.063$

 $\theta = 2.1-25.1^{\circ}$ $\mu = 1.34 \text{ mm}^{-1}$ T = 298 KBlock, pink $0.27 \times 0.15 \times 0.10 \text{ mm}$

7263 measured reflections 2639 independent reflections 1216 reflections with $I > 2\sigma(I)$ $R_{int} = 0.108$ $\theta_{max} = 25.1^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -13 \rightarrow 11$ $k = -7 \rightarrow 8$ $l = -22 \rightarrow 23$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + 0.5747P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.53$ e Å⁻³ $\Delta\rho_{min} = -0.80$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	<i>isotropic</i>	or	equivalent	isotropic	displacement	parameters	(Å	2
				1		1	1	1	1	1	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Co1	0.34886 (10)	0.82399 (16)	0.17466 (5)	0.0429 (4)	
S1	0.56896 (17)	0.4999 (3)	0.16741 (9)	0.0274 (5)	
N1	0.1702 (5)	0.6658 (8)	0.1762 (3)	0.0245 (14)	
N2	0.2484 (5)	0.8137 (8)	0.0647 (2)	0.0250 (14)	
N3	-0.2426 (5)	0.6042 (7)	0.0324 (3)	0.0267 (16)	
H3A	-0.2918	0.5566	0.0579	0.032*	
N4	-0.1771 (5)	0.7193 (8)	-0.0599 (2)	0.0291 (16)	
01	0.2408 (5)	1.0847 (8)	0.1803 (2)	0.0445 (15)	
O2	0.5124 (5)	0.9751 (8)	0.1509 (3)	0.0412 (14)	
O3	0.4411 (4)	0.5535 (6)	0.1725 (2)	0.0350 (14)	

O4	0.5748 (4)	0.4383 (7)	0.09768 (19)	0.0386 (14)
O5	0.6524 (4)	0.6627 (7)	0.18635 (19)	0.0323 (12)
O6	0.6059 (4)	0.3399 (6)	0.21441 (19)	0.0307 (12)
C1	0.1378 (7)	0.5856 (9)	0.2311 (3)	0.031 (2)
H1A	0.1966	0.5749	0.2708	0.037*
C2	0.0173 (7)	0.5157 (10)	0.2320 (3)	0.0332 (19)
H2A	-0.0017	0.4581	0.2715	0.040*
C3	-0.0704 (7)	0.5316 (10)	0.1759 (3)	0.034 (2)
H3	-0.1503	0.4864	0.1764	0.041*
C4	-0.0385 (6)	0.6200 (9)	0.1152 (3)	0.0238 (18)
C5	-0.1175 (6)	0.6462 (10)	0.0526 (3)	0.0265 (18)
C6	-0.2719 (6)	0.6509 (10)	-0.0334 (3)	0.0278 (18)
H6	-0.3512	0.6371	-0.0585	0.033*
C7	-0.0817 (6)	0.7170 (10)	-0.0066 (3)	0.0254 (18)
C8	0.0452 (6)	0.7759 (9)	-0.0039 (3)	0.0216 (18)
C9	0.0918 (7)	0.8457 (9)	-0.0621 (3)	0.0286 (18)
H9	0.0403	0.8592	-0.1043	0.034*
C10	0.2155 (7)	0.8930 (10)	-0.0542 (3)	0.036 (2)
H10	0.2491	0.9375	-0.0917	0.043*
C11	0.2904 (7)	0.8744 (9)	0.0098 (3)	0.032 (2)
H11	0.3740	0.9063	0.0138	0.039*
C12	0.1267 (6)	0.7589 (9)	0.0569 (3)	0.0226 (18)
C13	0.0858 (6)	0.6824 (10)	0.1185 (3)	0.0237 (17)
H1B	0.213 (6)	1.151 (9)	0.146 (2)	0.052 (12)*
H2B	0.549 (6)	1.076 (5)	0.159 (3)	0.041 (7)*
H1C	0.291 (5)	1.130 (10)	0.212 (2)	0.049 (9)*
H2C	0.570 (4)	0.898 (7)	0.160 (3)	0.041 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0385 (7)	0.0469 (8)	0.0425 (6)	0.0000 (7)	0.0044 (5)	-0.0012 (6)
S 1	0.0247 (11)	0.0297 (13)	0.0272 (10)	0.0014 (11)	0.0024 (8)	-0.0027 (10)
N1	0.025 (4)	0.023 (4)	0.025 (3)	0.001 (3)	0.002 (3)	0.001 (3)
N2	0.028 (4)	0.023 (4)	0.025 (3)	0.002 (3)	0.008 (3)	-0.002 (3)
N3	0.020 (4)	0.037 (4)	0.025 (3)	-0.005 (3)	0.007 (3)	-0.001 (3)
N4	0.028 (4)	0.028 (4)	0.029 (3)	0.005 (3)	-0.001 (3)	0.004 (3)
01	0.052 (4)	0.041 (4)	0.036 (4)	0.018 (3)	-0.008(3)	0.007 (3)
O2	0.031 (4)	0.027 (4)	0.067 (4)	-0.004 (3)	0.013 (3)	0.006 (3)
O3	0.022 (3)	0.029 (4)	0.053 (3)	0.006 (3)	0.002 (3)	0.000 (2)
O4	0.040 (3)	0.054 (4)	0.023 (3)	-0.009(3)	0.009 (3)	-0.005(2)
O5	0.025 (3)	0.031 (3)	0.039 (3)	-0.005 (3)	-0.002 (2)	0.002 (3)
O6	0.035 (3)	0.026 (3)	0.027 (2)	0.004 (3)	-0.007(2)	0.004 (2)
C1	0.042 (5)	0.027 (5)	0.020 (4)	0.001 (4)	-0.007(4)	0.002 (3)
C2	0.036 (5)	0.035 (5)	0.031 (4)	-0.003 (5)	0.010 (4)	0.004 (4)
C3	0.033 (5)	0.042 (6)	0.029 (4)	0.005 (4)	0.012 (4)	-0.003 (4)
C4	0.025 (4)	0.011 (5)	0.034 (4)	0.003 (4)	0.003 (4)	-0.006 (3)
C5	0.023 (4)	0.025 (5)	0.031 (4)	-0.001 (4)	0.003 (4)	-0.006 (4)

supporting information

C6	0.024 (4)	0.024 (5)	0.034 (4)	0.009 (4)	-0.002 (4)	-0.002 (4)
C7	0.022 (4)	0.021 (5)	0.032 (4)	0.001 (4)	0.002 (4)	0.004 (4)
C8	0.018 (4)	0.016 (5)	0.029 (4)	0.000 (3)	-0.001 (3)	-0.002 (3)
C9	0.035 (5)	0.018 (5)	0.032 (4)	0.002 (4)	0.001 (4)	-0.001 (4)
C10	0.051 (6)	0.036 (6)	0.028 (4)	-0.002 (4)	0.025 (4)	-0.002 (4)
C11	0.030 (5)	0.033 (5)	0.036 (5)	0.000 (4)	0.012 (4)	0.005 (4)
C12	0.023 (5)	0.021 (5)	0.024 (4)	0.005 (4)	0.005 (4)	0.000 (3)
C13	0.029 (4)	0.015 (4)	0.027 (4)	0.003 (4)	0.004 (3)	-0.003 (4)

Geometric parameters (Å, °)

Co1-03	2.152 (4)	O2—H2C	0.83 (5)	
Co1—O6 ⁱ	2.162 (4)	O6—Co1 ⁱⁱ	2.162 (4)	
Co1—O2	2.192 (5)	C1—C2	1.406 (9)	
Co1—O1	2.190 (5)	C1—H1A	0.9300	
Co1—N1	2.249 (5)	C2—C3	1.343 (8)	
Co1—N2	2.263 (5)	C2—H2A	0.9300	
S1—O4	1.451 (4)	C3—C4	1.438 (8)	
S1—O3	1.465 (4)	С3—Н3	0.9300	
S1—O6	1.469 (4)	C4—C5	1.397 (8)	
S1—O5	1.471 (5)	C4—C13	1.417 (9)	
N1-C1	1.317 (7)	C5—C7	1.382 (8)	
N1-C13	1.347 (7)	С6—Н6	0.9300	
N2-C11	1.312 (7)	C7—C8	1.438 (8)	
N2-C12	1.368 (7)	C8—C12	1.375 (8)	
N3—C6	1.325 (7)	C8—C9	1.414 (8)	
N3—C5	1.391 (7)	C9—C10	1.374 (9)	
N3—H3A	0.8600	С9—Н9	0.9300	
N4—C6	1.322 (7)	C10—C11	1.393 (9)	
N4—C7	1.353 (8)	C10—H10	0.9300	
O1—H1B	0.84 (5)	C11—H11	0.9300	
O1—H1C	0.82 (5)	C12—C13	1.462 (8)	
O2—H2B	0.82 (5)			
O3—Co1—O6 ⁱ	91.96 (17)	N1—C1—C2	122.4 (7)	
O3—Co1—O2	91.30 (19)	N1—C1—H1A	118.8	
O6 ⁱ —Co1—O2	97.5 (2)	C2—C1—H1A	118.8	
O3—Co1—O1	174.6 (2)	C3—C2—C1	120.3 (7)	
06 ⁱ —Co1—O1	86.69 (17)	C3—C2—H2A	119.8	
O2-Co1-O1	94.1 (2)	C1—C2—H2A	119.8	
O3—Co1—N1	88.53 (18)	C2—C3—C4	118.8 (7)	
O6 ⁱ —Co1—N1	93.88 (18)	С2—С3—Н3	120.6	
O2-Co1-N1	168.6 (2)	C4—C3—H3	120.6	
O1-Co1-N1	86.3 (2)	C5—C4—C13	116.6 (6)	
O3—Co1—N2	96.26 (18)	C5—C4—C3	126.3 (6)	
O6 ⁱ —Co1—N2	164.44 (18)	C13—C4—C3	117.0 (6)	
O2—Co1—N2	95.5 (2)	C7—C5—N3	103.5 (6)	
O1—Co1—N2	83.90 (18)	C7—C5—C4	125.0 (7)	

N1—Co1—N2	73.20 (19)	N3—C5—C4	131.4 (6)
O4—S1—O3	109.3 (3)	N4—C6—N3	113.4 (6)
O4—S1—O6	108.6 (3)	N4—C6—H6	123.3
O3—S1—O6	108.7 (3)	N3—C6—H6	123.3
O4—S1—O5	110.5 (3)	N4—C7—C5	111.8 (6)
O3—S1—O5	109.9 (3)	N4—C7—C8	129.9 (6)
O6—S1—O5	109.8 (3)	C5—C7—C8	118.3 (7)
C1—N1—C13	119.4 (6)	C12—C8—C9	117.9 (6)
C1—N1—Co1	124.9 (5)	C12—C8—C7	119.4 (6)
C13—N1—Co1	114.9 (4)	C9—C8—C7	122.7 (6)
C11—N2—C12	117.5 (6)	C10—C9—C8	118.0 (6)
C11—N2—Co1	126.7 (5)	С10—С9—Н9	121.0
C12—N2—Co1	115.3 (4)	С8—С9—Н9	121.0
C6—N3—C5	107.3 (5)	C9—C10—C11	120.0 (6)
C6—N3—H3A	126.4	C9—C10—H10	120.0
C5—N3—H3A	126.4	C11—C10—H10	120.0
C6-N4-C7	104 1 (5)	N2-C11-C10	122.9(7)
$C_01 - O1 - H1B$	124 (5)	N2-C11-H11	118.5
Col=Ol=HlC	94 (5)	C_{10} $-C_{11}$ $-H_{11}$	118.5
HIB-01-HIC	121 (7)	N_{2} C_{12} C_{8}	123 5 (6)
$C_01 = 02 = H^2B$	140(5)	$N_2 - C_{12} - C_{13}$	125.5(0) 115.6(6)
Col = O2 = H2C	105(5)	C8-C12-C13	120.9 (6)
$H^2B = \Omega^2 = H^2C$	101(7)	N1 - C13 - C4	120.9(0) 122.0(6)
S1_03_Co1	1330(3)	N1-C13-C12	122.0(0) 118.2(6)
\$1_06_Col ⁱⁱ	132.0(3)	C4-C13-C12	119.7 (6)
51 00 001	152.0 (5)	04 015 012	119.7 (0)
$03 - C_0 - N_1 - C_1$	79.0 (5)	C13—C4—C5—N3	-1792(7)
$O6^{i}$ Co1 N1 C1	-129(5)	C_{3} C_{4} C_{5} N_{3}	25(12)
Ω^2 —Co1—N1—C1	168 3 (9)	C7 - N4 - C6 - N3	-0.6(8)
O1 - Co1 - N1 - C1	-99.3(5)	C_{5} N3 C_{6} N4	0.7(8)
N_2 —Col—N1—Cl	175.9 (6)	C6-N4-C7-C5	0.7(0) 0.4(8)
$\Omega_3 = C_0 I = N I = C I 3$	-1113(5)	C6-N4-C7-C8	-1795(7)
06^{i} - Co1 - N1 - C13	156.9 (5)	N_{3} C_{5} C_{7} N_{4}	0.0(8)
Ω^2 —Col—Nl—Cl3	-220(13)	C4 - C5 - C7 - N4	177.6 (6)
$O_1 - C_{O_1} - N_1 - C_{I_3}$	22.0(13)	N_{3} C_{5} C_{7} C_{8}	179.9 (6)
$N_2 - C_0 - N_1 - C_{13}$	-143(4)	$C_{4} - C_{5} - C_{7} - C_{8}$	-25(11)
$O_3 Col N_2 Cll$	-88.4(6)	N4 $C7$ $C8$ $C12$	-179.6(7)
$O_{1}^{i} = O_{1}^{i} = N_{2}^{i} = O_{1}^{i}$	150.2(7)	$C_{5} = C_{7} = C_{8} = C_{12}$	179.0(7)
$O_2 C_{21} N_2 C_{11}$	150.2(7)	$N_{4} = C_{7} = C_{8} = C_{12}$	-1.8(12)
02 - 01 - N2 - 011	97.1 (6)	$C_{5} = C_{7} = C_{8} = C_{9}$	1.0(12) 178.3(7)
$N_1 = C_0 = N_2 = C_{11}$	-174.0(6)	C_{3} C_{3} C_{3} C_{3} C_{4}	-0.2(10)
$N_1 = C_0 I = N_2 = C_{11}$	1/4.7(0)	$C_{12} = C_{0} = C_{7} = C_{10}$	-178.2 (10)
O_{3} O_{1} N_{2} O_{12}	-21.7(10)	$C_{1} = C_{0} = C_{10} = C_{10}$	-1.0(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.7(10) -169.2(5)	$C_0 - C_2 - C_1 - C_{11} - C_{12}$	$^{-1.0}(10)$
02 - 01 - N2 - 012	-108.3(3)	C_{12} N_2 C_{11} C_{10}	3.1(10)
$ \begin{array}{c} U1 - U1 - N2 - U12 \\ U1 - U1 - N2 - U12 \\ U1 - U1 - U12 \\ $	-14.8(3)	$C_{0} = C_{10} = C_{11} = C_{10}$	-108.0(3)
N1 - C01 - N2 - C12	13.2(4)	$C_{11} = C_{12} = C_{12}$	-0.5(11)
04 - 51 - 03 - 001	-102.4(4)	$C_{11} = N_2 = C_{12} = C_2$	-4.4(10)
00-51-03-001	139.3 (3)	C01—N2—C12—C8	168.2 (5)

$\begin{array}{c} 05 \\ - S1 \\ - O3 \\ - Co1 \\ - O3 \\ - S1 \\ 02 \\ - Co1 \\ - O3 \\ - S1 \\ 04 \\ - S1 \\ - O6 \\ - Co1^{ii} \\ 03 \\ - S1 \\ - O6 \\ - Co1^{ii} \\ 05 \\ - S1 \\ - O6 \\ - Co1^{ii} \\ 05 \\ - S1 \\ - O6 \\ - Co1^{ii} \\ 05 \\ - S1 \\ - O6 \\ - Co1^{ii} \\ 05 \\ - S1 \\ - O6 \\ - Co1^{ii} \\ 05 \\ - S1 \\ - O6 \\ - Co1^{ii} \\ 05 \\ - S1 \\ - O6 \\ - Co1^{ii} \\ 05 \\ - S1 \\ - C1 \\ - C2 \\ - C3 \\ - C1 \\ - C2 \\ - C3 \\ - C4 \\ - C5 \\ C2 \\ - C3 \\ - C4 \\ - C5 \\ C2 \\ - C3 \\ - C4 \\ - C13 \\ C6 \\ - N3 \\ - C5 \\ - C7 \\ C6 \\ - N3 \\ - C5 \\ - C4 \\ - C1 \\ - C2 \\ - C4 \\ - C13 \\ - C5 \\ - C7 \\ - C4 \\ - C13 \\ - C5 \\ - C7 \\ - C6 \\ - N3 \\ - C5 \\ - C4 \\ - C1 \\ - C1 \\ - C2 \\ - C3 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C1 \\ - C1 \\ - C2 \\ - C3 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C1 \\ - C1 \\ - C2 \\ - C3 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C1 \\ - C1 \\ - C2 \\ - C3 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C1 \\ - C1 \\ - C2 \\ - C3 \\ - C4 \\ - C5 \\ - C7 \\ - C4 \\ - C1 \\ $	$19.1 (4) \\ -89.7 (4) \\ 7.9 (4) \\ 176.5 (4) \\ 103.6 (4) \\ 168.3 (3) \\ -72.9 (4) \\ 47.3 (4) \\ 0.1 (10) \\ 169.4 (5) \\ -1.0 (11) \\ 0.5 (11) \\ 179.3 (7) \\ 0.9 (10) \\ -0.4 (7) \\ -177 7 (7) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176.7 (6) -10.7 (7) 3.0 (10) -179.0 (6) -178.1 (6) -0.1 (10) 1.4 (10) -168.9 (5) -175.5 (6) 14.1 (8) 179.6 (6) -1.9 (10) -3.5 (10) 175.0 (6) -2.3 (9) 178.8 (6)
C6—N3—C5—C7	-0.4 (7)	N2—C12—C13—N1	-2.3 (9)
C6—N3—C5—C4	-177.7 (7)	C8—C12—C13—N1	178.8 (6)
C13—C4—C5—C7	4.0 (11)	N2—C12—C13—C4	-179.3 (6)
C3—C4—C5—C7	-174.3 (7)	C8—C12—C13—C4	1.7 (10)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*+1, *y*-1/2, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.83 (5)	1.91 (3)	2.698 (7)	159 (7)
0.82 (5)	2.00 (4)	2.749 (6)	150 (7)
0.82 (5)	2.18 (3)	2.957 (7)	158 (6)
0.84 (5)	1.91 (5)	2.731 (7)	168 (7)
0.86	1.95	2.795 (6)	168
	<i>D</i> —H 0.83 (5) 0.82 (5) 0.82 (5) 0.82 (5) 0.84 (5) 0.86	D—H H···A 0.83 (5) 1.91 (3) 0.82 (5) 2.00 (4) 0.82 (5) 2.18 (3) 0.84 (5) 1.91 (5) 0.86 1.95	D—H H···A D···A 0.83 (5) 1.91 (3) 2.698 (7) 0.82 (5) 2.00 (4) 2.749 (6) 0.82 (5) 2.18 (3) 2.957 (7) 0.84 (5) 1.91 (5) 2.731 (7) 0.86 1.95 2.795 (6)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (iii) *x*, *y*+1, *z*; (iv) -*x*, -*y*+2, -*z*; (v) *x*-1, *y*, *z*.