

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2,2'-bipyridyl- $\kappa^2 N, N'$)(nitrato- $\kappa^2 O.O'$ (trifluoroacetato- κO)cadmium(II)

Wenzeng Duan,^{a,b}* Junshan Sun,^c Yudao Ma^b and Rentao Wu^a

^aDepartment of Chemistry and Environmental Science, Taishan University, 271021 Taian, Shandong, People's Republic of China, ^bSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China, and ^cDepartment of Materials and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China Correspondence e-mail: duanwenzeng@163.com

Received 23 April 2009; accepted 4 May 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.013 Å; disorder in main residue; R factor = 0.059; wR factor = 0.170; data-to-parameter ratio = 12.4.

In the title complex, $[Cd(C_2F_3O_2)(NO_3)(C_{10}H_8N_2)_2]$, the Cd(II) ion is heptacoordinated by two chelating 2,2'-bipyridyl ligands [Cd···N 2.370 (6)–2.416 (6) Å], one carboxylate O atom [Cd···O 2.290 (6) Å] from the trifluoroacetate ligand and two O atoms [Cd···O 2.386 (6), 2.633 (6) Å] from a chelating nitrate anion. The trifluoromethyl fragment is rotationally disordered between two orientations in a 0.640 (7):0.360 (7) ratio. In the crystal, weak intermolecular C-H···O hydrogen bonds contribute to the crystal packing stability.

Related literature

For the crystal structures of related compounds with nickel, see: Eremenko et al. (1999); Rajaraman et al. (2005).

V = 2301.8 (3) Å³

Mo $K\alpha$ radiation $\mu = 1.02 \text{ mm}^{-1}$

 $0.12 \times 0.10 \times 0.06 \; \rm mm$

11743 measured reflections

4075 independent reflections

3128 reflections with $I > 2\sigma(I)$

Z = 4

T = 273 K

 $R_{\rm int} = 0.029$

Experimental

Crystal data

 $[Cd(C_2F_3O_2)(NO_3)(C_{10}H_8N_2)_2]$ $M_r = 599.80$ Monoclinic, $P2_1/c$ a = 14.9327 (13) Åb = 9.6613 (8) Å c = 15.9859 (14) Å $\beta = 93.568 \ (2)^{\circ}$

Data collection

Bruker Smart APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.888, T_{\max} = 0.941$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	516 restraints
$wR(F^2) = 0.170$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.94 \ {\rm e} \ {\rm \AA}^{-3}$
4075 reflections	$\Delta \rho_{\rm min} = -1.42 \text{ e } \text{\AA}^{-3}$
329 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7 - H7 \cdots O5^{i}$	0.93	2.44	3.160 (13)	134
C19−H19· · ·O2 ⁱⁱ	0.93	2.52	3.320 (11)	145
C13−H13···O3 ⁱⁱⁱ	0.93	2.43	3.287 (12)	152
$C14-H14\cdots O2^{iv}$	0.93	2.44	3.294 (11)	152
	(1)	1 . 1	(**)	. 1 (11)

Symmetry codes: (i) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2};$ (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2};$ (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) -x + 1, -y + 1, -z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Postgraduate Foundation of Taishan University (grant No. Y07-2-16).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2556).

References

Eremenko, I. L., Nefedov, V. N. & Sidorov, A. A. (1999). Inorg. Chem. 38, 3764-3773

Rajaraman, G., Christensen, K. E. & Larsen, F. K. (2005). Chem. Commun. pp. 3053-3055.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2009). E65, m635 [doi:10.1107/S1600536809016717]

Bis(2,2'-bipyridyl- $\kappa^2 N, N'$)(nitrato- $\kappa^2 O, O'$)(trifluoroacetato- κO)cadmium(II)

Wenzeng Duan, Junshan Sun, Yudao Ma and Rentao Wu

S1. Comment

In recent years, researchers showed considerable interest in the physical and chemical properties of mono- and polynuclear complexes of transition metals. especially in the metal complexes with carboxylates, which are among the most investigated complexes in the field of coordination chemistry. Due to their versatile bonding modes with metal ions, they have also been used in the synthesis of mononuclear (Eremenko, *et al.*, 1999) and multi-nuclear (Rajaraman, *et al.*, 2005) compounds. Herein, we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), the Cd^{II} ion is seven-coordinated by four N and three O atoms. Weak intermolecular C—H···O hydrogen bonds (Table 1) stabilize the crystal packing.

S2. Experimental

A mixture of trifluoroacetate(1 mmol), 2, 2'-bipyridine(bpy)(1 mmol), cadmium nitrate tetrahydrate (0.5 mmol), NaOH(1 mmol) and H2O(15 ml) were placed in a Teflon-lined stainless steel vessel, and heated to 418 K for 48 h. It was then cooled to room temperature over a period of 24 h. Colourless crystals suitable for X-ray diffraction analysis were obtained.

S3. Refinement

All H atoms were positioned geometrically with C—H = 0.93 Å are refined as riding model withh $U_{iso}(H) = 1.2$ times $U_{eq}(C)$. Trifluoromethyl fragment was treated as rotationally disordered between two orientations with the refined occupancies of 0.640 (7) and 0.360 (7), respectively.

Figure 1

The molecular structure of (I) showing the atomic labeling and 30% probability displacement ellipsoids for non-H atoms. Only major part of the disordered trifluoromethyl group is shown. H atoms omitted for clarity.

Bis(2,2'-bipyridyl- $\kappa^2 N, N'$)(nitrato- $\kappa^2 O, O'$)(trifluoroacetato- κO)cadmium(II)

Crystal data	
$[Cd(C_{2}F_{3}O_{2})(NO_{3})(C_{10}H_{8}N_{2})_{2}]$	F(000) = 1192
$M_r = 599.80$	$D_x = 1.731 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 14.9327 (13) Å	Cell parameters from 3157 reflections
b = 9.6613 (8) Å	$\theta = 2.5 - 23.1^{\circ}$
c = 15.9859 (14) Å	$\mu = 1.02 \text{ mm}^{-1}$
$\beta = 93.568 (2)^{\circ}$	T = 273 K
V = 2301.8 (3) Å ³	Block, colourless
Z=4	$0.12 \times 0.10 \times 0.06 \text{ mm}$
Data collection	
Bruker Smart APEX	11743 measured reflections
diffractometer	4075 independent reflections
Radiation source: fine-focus sealed tube	3128 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.029$
phi and ω scans	$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -17 \rightarrow 17$
(SADABS; Sheldrick, 1996)	$k = -11 \rightarrow 8$
$T_{\min} = 0.888, T_{\max} = 0.941$	$l = -18 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.170$	neighbouring sites
S = 1.02	H-atom parameters constrained
4075 reflections	$w = 1/[\sigma^2(F_o^2) + (0.080P)^2 + 9.6055P]$
329 parameters	where $P = (F_o^2 + 2F_c^2)/3$
516 restraints	$(\Delta/\sigma)_{\rm max} = 0.006$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.94 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -1.42 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	0.73713 (3)	0.51539 (5)	0.16084 (3)	0.0502 (2)	
01	0.7323 (4)	0.7621 (7)	0.1656 (4)	0.0763 (10)	
O2	0.6002 (4)	0.6880 (7)	0.1509 (4)	0.0773 (11)	
O3	0.6236 (5)	0.9068 (7)	0.1476 (4)	0.0931 (18)	
O4	0.7112 (5)	0.4828 (7)	0.2991 (4)	0.0792 (10)	
05	0.8383 (6)	0.5634 (11)	0.3232 (6)	0.128 (2)	
N1	0.8898 (4)	0.5660 (7)	0.1289 (4)	0.0559 (15)	
N2	0.8265 (4)	0.3090 (7)	0.1600 (4)	0.0577 (16)	
N3	0.6969 (4)	0.5131 (6)	0.0152 (4)	0.0527 (15)	
N4	0.6102 (4)	0.3705 (6)	0.1314 (4)	0.0521 (14)	
N5	0.6504 (5)	0.7896 (8)	0.1543 (4)	0.0679 (14)	
F1	0.6917 (8)	0.4254 (18)	0.4519 (9)	0.1036 (14)	0.428 (7)
F2	0.8262 (10)	0.3799 (16)	0.4695 (9)	0.1036 (14)	0.428 (7)
F3	0.7842 (17)	0.580 (2)	0.4859 (17)	0.206 (12)	0.428 (7)
F1′	0.7171 (8)	0.5430 (14)	0.4766 (6)	0.113 (5)	0.572 (7)
F2′	0.7697 (8)	0.3425 (11)	0.4502 (7)	0.1036 (14)	0.572 (7)
F3′	0.8551 (7)	0.5117 (12)	0.4745 (7)	0.1036 (14)	0.572 (7)
C1	0.9188 (6)	0.6926 (10)	0.1099 (6)	0.0709 (12)	
H1	0.8782	0.7656	0.1092	0.085*	
C2	1.0062 (6)	0.7201 (10)	0.0911 (6)	0.0740 (15)	
H2	1.0241	0.8094	0.0781	0.089*	
C3	1.0650 (6)	0.6135 (10)	0.0922 (6)	0.0743 (14)	
H3	1.1243	0.6284	0.0799	0.089*	
C4	1.0364 (6)	0.4838 (9)	0.1116 (6)	0.0720 (13)	
H4	1.0765	0.4101	0.1123	0.086*	

C5	0.9488 (6)	0.4609 (9)	0.1302 (6)	0.0689 (12)
C6	0.9155 (6)	0.3222 (9)	0.1502 (6)	0.0675 (12)
C7	0.9715 (6)	0.2077 (9)	0.1592 (6)	0.0709 (13)
H7	1.0328	0.2173	0.1532	0.085*
C8	0.9367 (6)	0.0811 (10)	0.1766 (6)	0.0725 (14)
H8	0.9741	0.0043	0.1830	0.087*
C9	0.8474 (6)	0.0680 (10)	0.1846 (6)	0.0713 (14)
H9	0.8222	-0.0175	0.1962	0.086*
C10	0.7951 (6)	0.1839 (9)	0.1752 (6)	0.0710 (12)
H10	0.7336	0.1742	0.1797	0.085*
C11	0.7339 (6)	0.5950 (9)	-0.0407 (5)	0.0667 (12)
H11	0.7785	0.6563	-0.0213	0.080*
C12	0.7101 (6)	0.5938 (9)	-0.1246 (5)	0.0678 (14)
H12	0.7378	0.6528	-0.1610	0.081*
C13	0.6456 (6)	0.5054 (9)	-0.1536 (6)	0.0688 (13)
H13	0.6290	0.5008	-0.2106	0.083*
C14	0.6042 (6)	0.4213 (9)	-0.0969 (5)	0.0684 (13)
H14	0.5582	0.3619	-0.1154	0.082*
C15	0.6322 (6)	0.4267 (9)	-0.0128 (5)	0.0642 (11)
C16	0.5884 (5)	0.3408 (9)	0.0510 (5)	0.0644 (11)
C17	0.5253 (6)	0.2399 (9)	0.0290 (6)	0.0680 (13)
H17	0.5104	0.2206	-0.0271	0.082*
C18	0.4850 (6)	0.1688 (9)	0.0905 (6)	0.0698 (13)
H18	0.4442	0.0987	0.0763	0.084*
C19	0.5047 (5)	0.2006 (9)	0.1722 (6)	0.0679 (14)
H19	0.4765	0.1552	0.2146	0.082*
C20	0.5677 (5)	0.3019 (9)	0.1906 (6)	0.0669 (12)
H20	0.5815	0.3241	0.2466	0.080*
C21	0.7753 (7)	0.5073 (11)	0.3446 (6)	0.0822 (16)
C22	0.7743 (6)	0.4755 (11)	0.4334 (8)	0.1036 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0439 (3)	0.0563 (4)	0.0505 (3)	-0.0040 (2)	0.0033 (2)	-0.0030 (2)
01	0.070 (2)	0.0743 (17)	0.085 (2)	-0.002 (2)	0.005 (2)	-0.003 (2)
O2	0.068 (2)	0.081 (2)	0.083 (2)	0.0039 (18)	0.006 (2)	-0.004 (2)
03	0.105 (4)	0.079 (4)	0.094 (4)	0.028 (3)	0.004 (3)	-0.006 (3)
O4	0.078 (2)	0.098 (2)	0.0612 (14)	-0.006 (2)	0.0060 (19)	0.004 (2)
05	0.114 (4)	0.154 (4)	0.116 (4)	-0.029 (4)	0.009 (4)	0.011 (4)
N1	0.051 (4)	0.054 (4)	0.063 (4)	-0.006 (3)	0.008 (3)	-0.003 (3)
N2	0.052 (4)	0.056 (4)	0.065 (4)	-0.002 (3)	0.003 (3)	0.003 (3)
N3	0.048 (3)	0.059 (4)	0.051 (3)	-0.001 (3)	0.006 (3)	0.001 (3)
N4	0.048 (3)	0.059 (4)	0.050 (3)	-0.005 (3)	0.003 (3)	0.003 (3)
N5	0.068 (3)	0.067 (3)	0.069 (3)	0.004 (3)	0.008 (3)	-0.008 (3)
F1	0.100 (3)	0.122 (3)	0.087 (3)	0.000 (3)	-0.005 (3)	0.010 (3)
F2	0.100 (3)	0.122 (3)	0.087 (3)	0.000 (3)	-0.005 (3)	0.010 (3)
F3	0.207 (12)	0.206 (12)	0.206 (12)	0.0001 (11)	0.0128 (13)	-0.0002 (11)

supporting information

F1′	0.115 (9)	0.166 (12)	0.061 (6)	0.071 (9)	0.029 (6)	-0.019 (6)
F2′	0.100 (3)	0.122 (3)	0.087 (3)	0.000 (3)	-0.005 (3)	0.010 (3)
F3′	0.100 (3)	0.122 (3)	0.087 (3)	0.000 (3)	-0.005 (3)	0.010 (3)
C1	0.062 (2)	0.072 (2)	0.080 (2)	-0.005 (2)	0.009 (2)	-0.001 (2)
C2	0.064 (3)	0.075 (3)	0.084 (3)	-0.009 (3)	0.011 (3)	-0.001 (3)
C3	0.062 (3)	0.078 (3)	0.084 (3)	-0.006 (2)	0.011 (2)	-0.002 (3)
C4	0.060 (2)	0.075 (3)	0.082 (3)	-0.004 (2)	0.009 (2)	-0.002 (2)
C5	0.059 (2)	0.073 (2)	0.075 (2)	-0.005 (2)	0.008 (2)	-0.001 (2)
C6	0.060 (2)	0.069 (2)	0.074 (2)	-0.002 (2)	0.005 (2)	0.000 (2)
C7	0.062 (2)	0.073 (3)	0.078 (3)	0.000 (2)	0.007 (2)	0.000 (2)
C8	0.067 (3)	0.072 (3)	0.079 (3)	0.002 (2)	0.005 (2)	0.000 (3)
C9	0.067 (3)	0.070 (3)	0.078 (3)	-0.001 (3)	0.005 (3)	0.001 (3)
C10	0.064 (2)	0.074 (2)	0.075 (2)	-0.003 (2)	0.006 (2)	0.003 (2)
C11	0.060 (2)	0.071 (2)	0.070 (2)	-0.003 (2)	0.006 (2)	0.003 (2)
C12	0.064 (3)	0.073 (3)	0.067 (3)	0.001 (3)	0.008 (3)	0.006 (3)
C13	0.066 (3)	0.075 (3)	0.066 (3)	0.000 (2)	0.002 (2)	0.003 (2)
C14	0.064 (2)	0.073 (3)	0.068 (2)	-0.001 (2)	0.001 (2)	0.002 (2)
C15	0.058 (2)	0.069 (2)	0.066 (2)	-0.0006 (19)	0.0032 (19)	0.000 (2)
C16	0.056 (2)	0.069 (2)	0.068 (2)	-0.0015 (19)	0.0023 (19)	0.002 (2)
C17	0.061 (2)	0.072 (3)	0.071 (2)	-0.005 (2)	0.001 (2)	0.002 (2)
C18	0.061 (3)	0.072 (3)	0.076 (3)	-0.008 (2)	0.002 (2)	0.003 (2)
C19	0.058 (3)	0.071 (3)	0.075 (3)	-0.004 (2)	0.007 (3)	0.008 (3)
C20	0.060 (2)	0.073 (2)	0.068 (2)	-0.004 (2)	0.005 (2)	0.004 (2)
C21	0.073 (3)	0.099 (3)	0.074 (3)	-0.010 (3)	0.002 (3)	0.005 (3)
C22	0.100 (3)	0.122 (3)	0.087 (3)	0.000 (3)	-0.005 (3)	0.010 (3)

Geometric parameters (Å, °)

Cd1—O4	2.289 (6)	С3—Н3	0.9300
Cd1—N3	2.367 (6)	C4—C5	1.377 (12)
Cd1—N4	2.379 (6)	C4—H4	0.9300
Cd1—O1	2.386 (6)	C5—C6	1.471 (12)
Cd1—N2	2.400 (6)	C6—C7	1.389 (12)
Cd1—N1	2.417 (6)	С7—С8	1.365 (12)
Cd1—O2	2.636 (6)	С7—Н7	0.9300
O1—N5	1.254 (8)	C8—C9	1.354 (12)
O2—N5	1.235 (9)	С8—Н8	0.9300
O3—N5	1.203 (9)	C9—C10	1.368 (12)
O4—C21	1.190 (11)	С9—Н9	0.9300
O5—C21	1.156 (12)	C10—H10	0.9300
N1—C1	1.339 (11)	C11—C12	1.366 (11)
N1—C5	1.343 (11)	C11—H11	0.9300
N2—C10	1.325 (10)	C12—C13	1.347 (12)
N2—C6	1.354 (10)	C12—H12	0.9300
N3—C15	1.334 (10)	C13—C14	1.389 (12)
N3—C11	1.339 (10)	C13—H13	0.9300
N4—C16	1.336 (10)	C14—C15	1.383 (11)
N4—C20	1.347 (10)	C14—H14	0.9300

F1—C22	1.374 (13)	C15—C16	1.497 (11)
F2—C22	1.316 (13)	C16—C17	1.386 (11)
F3—C22	1.316 (15)	C17—C18	1.369 (12)
F1′—C22	1.306 (11)	C17—H17	0.9300
F2′—C22	1.315 (12)	C18—C19	1.355 (12)
F3'-C22	1.382 (12)	C18—H18	0.9300
C1-C2	1.382(12)	C19— $C20$	1 377 (11)
C1—H1	0.9300	C19—H19	0.9300
$C^2 - C^3$	1.352(12)	C20_H20	0.9300
C2—C3	0.9300	$C_{20} = 1120$	1.454(15)
$C_2 = C_1$	1 366 (12)	021-022	1.454 (15)
CJC4	1.300 (12)		
O4—Cd1—N3	154.2 (2)	С7—С8—Н8	120.2
O4-Cd1-N4	85.9 (2)	C8-C9-C10	118.1 (9)
N3—Cd1—N4	69.5 (2)	С8—С9—Н9	120.9
04—Cd1—O1	95.7(2)	C10-C9-H9	120.9
$N_3 - C_{d1} - O_1$	93.7(2) 92.0(2)	N_{2} (10 C) (1)	120.9 124.1(8)
N4-Cd1-O1	124.7(2)	$N_2 - C_{10} - H_{10}$	117.9
$\Omega_4 Cd1 N2$	124.7(2)	$C_{0} = C_{10} = H_{10}$	117.9
$N_2 C_{d1} N_2$	91.1(2)	$N_{2} = C_{10} = 1110$	117.9
N3-Cd1-N2	95.4 (2) 86.0 (2)	$N_{3} = C_{11} = C_{12}$	123.9 (8)
N4 - Cd1 - N2	80.9 (2) 148 0 (2)		110.1
OI-CdI-N2	148.0 (2)		118.1
O4—Cd1—N1	116.8 (2)	C13—C12—C11	118.7 (9)
N3—Cd1—N1	88.8 (2)	C13—C12—H12	120.6
N4—Cd1—N1	145.8 (2)	C11—C12—H12	120.6
O1—Cd1—N1	80.6 (2)	C12—C13—C14	118.9 (9)
N2—Cd1—N1	68.6 (2)	C12—C13—H13	120.6
O4—Cd1—O2	88.2 (2)	C14—C13—H13	120.6
N3—Cd1—O2	78.3 (2)	C15—C14—C13	119.5 (8)
N4—Cd1—O2	75.8 (2)	C15—C14—H14	120.3
O1—Cd1—O2	49.1 (2)	C13—C14—H14	120.3
N2-Cd1-O2	162.7 (2)	N3—C15—C14	121.3 (8)
N1-Cd1-O2	126.7 (2)	N3—C15—C16	117.1 (7)
N5-01-Cd1	103.8 (5)	C14—C15—C16	121.6 (8)
N5	91.9 (5)	N4—C16—C17	121.1 (8)
C21—O4—Cd1	112.6 (7)	N4C16C15	116.5 (7)
C1—N1—C5	118.2 (7)	C17—C16—C15	122.4 (8)
C1—N1—Cd1	123.7 (5)	C18—C17—C16	119.5 (8)
C5—N1—Cd1	118.1 (5)	C18—C17—H17	120.2
C10—N2—C6	117.9 (7)	C16—C17—H17	120.2
C10—N2—Cd1	123.6 (6)	C19—C18—C17	120.0 (8)
C6—N2—Cd1	118.2 (5)	C19—C18—H18	120.0
C15—N3—C11	117.7 (7)	C17—C18—H18	120.0
C15-N3-Cd1	118 1 (5)	C18 - C19 - C20	118 1 (8)
C11-N3-Cd1	124 1 (5)	C18 - C19 - H19	120.9
$C16_N4_C20$	127.1(3) 118 2 (7)	C_{20} C_{10} H_{10}	120.9
C16 N4 Cd1	117.4(7)	N4-C20-C19	120.9
C_{20} N4 C_{d1}	123 7 (5)	N4-C20-H20	118 5
	120.1 (0)		110.5

O3—N5—O2	123.2 (8)	С19—С20—Н20	118.5
O3—N5—O1	121.9 (8)	05—C21—O4	123.5 (11)
02—N5—01	114.9 (7)	05-C21-C22	116.5 (10)
N1-C1-C2	123.2 (9)	$04-C_{21}-C_{22}$	119.9 (10)
N1-C1-H1	118.4	F1'-C22-F2'	109.6(11)
C2-C1-H1	118.4	F1' - C22 - F3	48.0 (11)
$C_3 - C_2 - C_1$	118 1 (9)	F2'-C22-F3	1286(18)
$C_3 - C_2 - H_2$	120.9	F1' - C22 - F2	120.0(10) 120.3(13)
C1 - C2 - H2	120.9	$F_{2}' = C_{2}^{2} = F_{2}^{2}$	424(7)
$C_2 - C_3 - C_4$	119 3 (9)	F_{3} C_{22} F_{2}	102.6(14)
C2C3H3	120.4	$F_{12} = C_{22} = F_{12}$	55 7 (9)
C4 - C3 - H3	120.1	F2' - C22 - F1	634(9)
$C_{3} - C_{4} - C_{5}$	120.4	$F_{2} = C_{22} = F_{1}$	101.5(13)
$C_3 - C_4 - H_4$	119.6	F_{2} C_{22} F_{1}	99.8 (11)
C5-C4-H4	119.6	F1' = C22 = F1'	101.7(10)
V_{1}	120.4 (8)	$F_{2}' = C_{2}^{2} = F_{3}^{2}'$	101.7(10) 101.9(9)
N1_C5_C6	120.4(0) 117.5(7)	$F_{2} = C_{22} = F_{3}$	561(10)
C4 - C5 - C6	117.3(7) 122.1(8)	F_{2} C_{22} F_{3}'	59.7 (8)
N_{2} C6 C7	122.1(0) 120.1(8)	$F_{1} = C_{22} = F_{3}'$	1391(13)
$N_2 = C_0 = C_7$	120.1(0) 1173(8)	F1' = C22 = 13	137.1(13) 117.3(10)
C_{7}	122.6 (8)	$F_{2}' = C_{2}^{2} = C_{2}^{2}$	117.3(10) 114.2(10)
$C_{8} - C_{7} - C_{6}$	122.0 (8)	$F_{2} = C_{22} = C_{21}$	117.0(17)
C8-C7-H7	120.0 (0)	F_{2} C_{22} C_{21} C_{21}	117.0(17) 122 4 (11)
C6 C7 H7	120.0	$F_{1} = C_{22} = C_{21}$	122.4(11) 110.4(10)
$C_{0} - C_{8} - C_{7}$	119.6 (9)	$F_1 = C_2 = C_2 T_1$	110.4(10)
C_{0} C_{8} H_{8}	120.2	15-022-021	110.4 (10)
09-00-110	120.2		
O4—Cd1—O1—N5	-85.4 (5)	Cd1—O1—N5—O3	-175.2 (7)
N3—Cd1—O1—N5	69.9 (5)	Cd1—O1—N5—O2	5.0 (8)
N4—Cd1—O1—N5	3.6 (6)	C5—N1—C1—C2	0.3 (13)
N2—Cd1—O1—N5	173.4 (5)	Cd1—N1—C1—C2	-179.5 (7)
N1—Cd1—O1—N5	158.4 (5)	N1—C1—C2—C3	-0.1 (14)
O2—Cd1—O1—N5	-2.8 (4)	C1—C2—C3—C4	0.0 (14)
O4—Cd1—O2—N5	101.9 (5)	C2—C3—C4—C5	-0.2 (15)
N3—Cd1—O2—N5	-100.2 (5)	C1—N1—C5—C4	-0.6 (13)
N4—Cd1—O2—N5	-171.8 (5)	Cd1—N1—C5—C4	179.3 (7)
O1—Cd1—O2—N5	2.8 (4)	C1—N1—C5—C6	-179.3 (8)
N2—Cd1—O2—N5	-170.4 (6)	Cd1—N1—C5—C6	0.6 (10)
N1—Cd1—O2—N5	-20.6 (6)	C3—C4—C5—N1	0.5 (14)
N3—Cd1—O4—C21	178.0 (7)	C3—C4—C5—C6	179.1 (9)
N4—Cd1—O4—C21	160.1 (7)	C10—N2—C6—C7	-2.4 (12)
O1—Cd1—O4—C21	-75.4 (7)	Cd1—N2—C6—C7	172.5 (6)
N2—Cd1—O4—C21	73.3 (7)	C10—N2—C6—C5	177.7 (8)
N1—Cd1—O4—C21	6.9 (8)	Cd1—N2—C6—C5	-7.5 (10)
O2—Cd1—O4—C21	-123.9 (7)	N1—C5—C6—N2	4.6 (12)
O4—Cd1—N1—C1	-103.4 (7)	C4—C5—C6—N2	-174.1 (8)
N3—Cd1—N1—C1	80.5 (7)	N1—C5—C6—C7	-175.4 (8)
N4—Cd1—N1—C1	129.6 (6)	C4—C5—C6—C7	5.9 (14)

O1—Cd1—N1—C1	-11.7 (6)	N2—C6—C7—C8	1.0 (13)
N2—Cd1—N1—C1	176.8 (7)	C5—C6—C7—C8	-179.1 (9)
O2—Cd1—N1—C1	6.0 (7)	C6—C7—C8—C9	0.4 (14)
O4—Cd1—N1—C5	76.8 (6)	C7—C8—C9—C10	-0.4 (14)
N3—Cd1—N1—C5	-99.4 (6)	C6—N2—C10—C9	2.5 (13)
N4—Cd1—N1—C5	-50.2 (8)	Cd1—N2—C10—C9	-172.0 (7)
O1—Cd1—N1—C5	168.4 (6)	C8-C9-C10-N2	-1.1 (14)
N2-Cd1-N1-C5	-3.1 (6)	C15—N3—C11—C12	-0.9 (12)
O2—Cd1—N1—C5	-173.9 (6)	Cd1—N3—C11—C12	-179.6 (6)
O4—Cd1—N2—C10	61.6 (7)	N3-C11-C12-C13	0.0 (14)
N3—Cd1—N2—C10	-93.3 (7)	C11—C12—C13—C14	1.6 (13)
N4—Cd1—N2—C10	-24.3 (7)	C12-C13-C14-C15	-2.2 (13)
O1—Cd1—N2—C10	164.1 (6)	C11—N3—C15—C14	0.2 (12)
N1-Cd1-N2-C10	-179.9 (7)	Cd1—N3—C15—C14	179.0 (6)
O2-Cd1-N2-C10	-25.6 (11)	C11—N3—C15—C16	-177.1 (7)
O4—Cd1—N2—C6	-112.9 (6)	Cd1—N3—C15—C16	1.7 (10)
N3—Cd1—N2—C6	92.2 (6)	C13—C14—C15—N3	1.3 (13)
N4—Cd1—N2—C6	161.2 (6)	C13—C14—C15—C16	178.5 (8)
O1—Cd1—N2—C6	-10.4 (8)	C20—N4—C16—C17	-1.6 (12)
N1—Cd1—N2—C6	5.6 (6)	Cd1—N4—C16—C17	169.2 (6)
O2—Cd1—N2—C6	159.9 (7)	C20—N4—C16—C15	175.6 (7)
O4—Cd1—N3—C15	-25.2 (9)	Cd1—N4—C16—C15	-13.6 (9)
N4—Cd1—N3—C15	-6.1 (6)	N3—C15—C16—N4	8.0 (11)
O1—Cd1—N3—C15	-132.6 (6)	C14—C15—C16—N4	-169.3 (8)
N2—Cd1—N3—C15	78.6 (6)	N3-C15-C16-C17	-174.9 (8)
N1—Cd1—N3—C15	146.9 (6)	C14—C15—C16—C17	7.8 (13)
O2—Cd1—N3—C15	-85.2 (6)	N4—C16—C17—C18	-0.4 (13)
O4—Cd1—N3—C11	153.5 (6)	C15—C16—C17—C18	-177.3 (8)
N4—Cd1—N3—C11	172.6 (7)	C16—C17—C18—C19	2.2 (14)
O1—Cd1—N3—C11	46.1 (6)	C17—C18—C19—C20	-2.1 (13)
N2—Cd1—N3—C11	-102.7 (6)	C16—N4—C20—C19	1.8 (12)
N1—Cd1—N3—C11	-34.4 (6)	Cd1—N4—C20—C19	-168.5 (6)
O2—Cd1—N3—C11	93.6 (6)	C18—C19—C20—N4	0.1 (13)
O4—Cd1—N4—C16	-177.7 (6)	Cd1—O4—C21—O5	12.3 (15)
N3—Cd1—N4—C16	10.5 (5)	Cd1—O4—C21—C22	-172.2 (7)
O1—Cd1—N4—C16	88.2 (6)	O5—C21—C22—F1'	111.4 (14)
N2—Cd1—N4—C16	-86.4 (6)	O4—C21—C22—F1′	-64.4 (15)
N1—Cd1—N4—C16	-43.3 (7)	O5—C21—C22—F2'	-118.5 (13)
O2—Cd1—N4—C16	93.2 (6)	O4—C21—C22—F2′	65.8 (14)
O4—Cd1—N4—C20	-7.4 (6)	O5—C21—C22—F3	57.0 (18)
N3—Cd1—N4—C20	-179.2 (7)	O4—C21—C22—F3	-118.7 (15)
O1—Cd1—N4—C20	-101.5 (6)	O5—C21—C22—F2	-70.8 (17)
N2—Cd1—N4—C20	83.9 (6)	O4—C21—C22—F2	113.5 (14)
N1—Cd1—N4—C20	127.0 (6)	O5—C21—C22—F1	172.4 (13)
O2—Cd1—N4—C20	-96.5 (6)	O4—C21—C22—F1	-3.4 (16)
Cd1—O2—N5—O3	175.8 (8)	O5—C21—C22—F3'	-4.4 (15)
Cd1—O2—N5—O1	-4.4 (7)	O4—C21—C22—F3′	179.9 (10)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	D··· A	D—H···A
0.93	2.44	3.160 (13)	134
0.93	2.52	3.320 (11)	145
0.93	2.43	3.287 (12)	152
0.93	2.44	3.294 (11)	152
	<i>D</i> —H 0.93 0.93 0.93 0.93 0.93	D—H H…A 0.93 2.44 0.93 2.52 0.93 2.43 0.93 2.44	D—H H···A D···A 0.93 2.44 3.160 (13) 0.93 2.52 3.320 (11) 0.93 2.43 3.287 (12) 0.93 2.44 3.294 (11)

Symmetry codes: (i) -x+2, y-1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) x, -y+3/2, z-1/2; (iv) -x+1, -y+1, -z.