metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[*u*-1,1'-(ferrocene-1,1'-diyl)bis-(butane-1,3-dionato)]di-*u*-methanoldiiron(II)

Yan-Feng Xiao, Hong-Feng Li, Peng-Fei Yan and **Guang-Ming Li***

Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Nangang District, Harbin 150080, People's Republic of China

Correspondence e-mail: gmli@hlju.edu.cn

Received 31 March 2009; accepted 30 April 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.031; wR factor = 0.069; data-to-parameter ratio = 16.9

The asymmetric unit of the title compound, $[Fe_4(C_9H_8O_2)_4-$ (CH₃OH)₂], contains one half-molecule located on a twofold rotational axis. In the molecule, the two Fe^{II} ions bridged by two coordinating methanol molecules are separated by 3.1286 (7) Å. Two crystallographically independent methanol molecules are situated on a twofold rotational axis; all attached H atoms are rotationally disordered between two equal orientations.

Related literature

For the similar cobalt and manganese complexes of the same beta-diketone, see: Yan et al. (2007).

Experimental

Crystal data

$Fe_4(C_9H_8O_2)_4(CH_4O)_2$]	
$M_r = 880.10$	
Orthorhombic, Aba2	
u = 14.599 (3) Å	
9 = 19.290 (4) Å	
= 12.955 (3) Å	

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR: Higashi, 1995) $T_{\min} = 0.685, T_{\max} = 0.737$

Refinement

R

$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.069$	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
4079 reflections	Absolute structure: Flack (1983),
242 parameters	1899 Friedel pairs
13 restraints	Flack parameter: -0.001 (16)

 $V = 3648.5 (13) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 1.62 \text{ mm}^-$

 $0.25 \times 0.22 \times 0.20$ mm

16837 measured reflections

4079 independent reflections

3473 reflections with $I > 2\sigma(I)$

Z = 4

T = 291 K

 $R_{\rm int} = 0.042$

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002): program(s) used to solve structure: SHELXS97 (Sheldrick. 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 20572018 and 20672032), Heilongjiang Province (grant Nos. 1055HZ001, ZJG0504 and JC200605) and Heilongjiang University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2543).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yan, C.-G., Zhu, M.-J., Sun, J., Liu, W.-L. & Shi, Y.-C. (2007). J. Coord. Chem. 60 1083-1091

supporting information

Acta Cryst. (2009). E65, m624 [doi:10.1107/S1600536809016353]

Bis[µ-1,1'-(ferrocene-1,1'-diyl)bis(butane-1,3-dionato)]di-µ-methanol-diiron(II)

Yan-Feng Xiao, Hong-Feng Li, Peng-Fei Yan and Guang-Ming Li

S1. Comment

Recently, the cobalt and manganese complexes of the specific beta-diketone were published by Yan *et al.* (2007). Herewith we present the crystal structure of the title Fe^{II} complex with the same ligand, (I),

In (I) (Fig. 1), the tetradentate ferrocene-containing bis-beta-diketones ligand links Fe atoms into a complex through four O atoms of the two beta-diketone from two ligands. The two Fe^{II} ions and two 1,1'-bis(acetoacetyl)ferrocenes are bridged by two methanols molecules, dividing this macrocyclic framework into two small cyclic subunits. The four atoms - C19, C20, O5 and O6 - of the two methanol molecules lie on a twofold axis.

S2. Experimental

The title complex was obtained by the treatment of iron(II) chloride tetrahydrate (0.5 mmol, 0.099 g) with 1,1'-bis(aceto-acetyl)ferrocene (0.5 mmol, 0.177 g) in methanol. The first two reactants were stirred for 12 h. The resulting precipitates were filtered, washed with methanol several times and dried; The deep red crystals were grown by slow evaporation of methanol. Single crystals were obtained after several weeks. Analysis calculated for $C_{38}H_{38}Fe_4O_{10}$: C, 51.98; H, 4.36; found: C, 50.83; H, 4.02%.

S3. Refinement

All H atoms were placed in calculated positions (C—H = 0.93-0.97 Å, O—H = 0.82 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2-1.5 \text{Ueq}(C, O)$.

Figure 1

The molecular structure of (I) showing the atomic numbering and 66% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry code (-x, 2 - y, z). H atoms omitted for clarity.

Bis[µ-1,1'-(Ferrocene-1,1'-diyl)bis(butane-1,3-dionato)]di-µ-methanol- diiron(II)

Crystal data

 $[Fe_4(C_9H_8O_2)_4(CH_4O)_2]$ $M_r = 880.10$ Orthorhombic, Aba2 Hall symbol: A 2 -2ac a = 14.599 (3) Å b = 19.290 (4) Å c = 12.955 (3) Å V = 3648.5 (13) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.685, T_{\max} = 0.737$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.069$ F(000) = 1808 $D_x = 1.602 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13899 reflections $\theta = 3.2-27.5^{\circ}$ $\mu = 1.62 \text{ mm}^{-1}$ T = 291 KBlock, colourless $0.25 \times 0.22 \times 0.20 \text{ mm}$

16837 measured reflections 4079 independent reflections 3473 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -18 \rightarrow 18$ $k = -24 \rightarrow 24$ $l = -16 \rightarrow 16$

S = 1.054079 reflections 242 parameters 13 restraints

Primary atom site location: structure-invariant direct methods	$(\Delta/\sigma)_{ m max}=0.002$ $\Delta ho_{ m max}=0.24$ e Å ⁻³
Secondary atom site location: difference Fourier	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$
map	Extinction correction: SHELXL97 (Sheldrick,
Hydrogen site location: inferred from	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
neighbouring sites	Extinction coefficient: 0.00077 (11)
H-atom parameters constrained	Absolute structure: Flack (1983), 1899 Friedel
$w = 1/[\sigma^2(F_o^2) + (0.0338P)^2 + 0.1021P]$	pairs
where $P = (F_0^2 + 2F_c^2)/3$	Absolute structure parameter: -0.001 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.19291 (19)	0.81289 (13)	0.8190 (2)	0.0354 (7)	
C2	0.26358 (18)	0.76630 (12)	0.7841 (4)	0.0447 (7)	
H2	0.2613	0.7380	0.7213	0.054*	
C3	0.3373 (2)	0.76887 (17)	0.8546 (3)	0.0512 (9)	
Н3	0.3945	0.7425	0.8498	0.061*	
C4	0.3135 (2)	0.81604 (17)	0.9337 (3)	0.0506 (8)	
H4	0.3518	0.8282	0.9931	0.061*	
C5	0.2264 (2)	0.84401 (15)	0.9114 (2)	0.0407 (7)	
Н5	0.1938	0.8784	0.9533	0.049*	
C6	0.3017 (2)	0.93295 (15)	0.6728 (2)	0.0423 (7)	
H6	0.2494	0.9363	0.6257	0.051*	
C7	0.3795 (2)	0.88989 (17)	0.6594 (3)	0.0504 (8)	
H7	0.3905	0.8584	0.6013	0.060*	
C8	0.4386 (2)	0.90046 (18)	0.7442 (3)	0.0534 (9)	
H8	0.4974	0.8772	0.7553	0.064*	
C9	0.39808 (19)	0.94907 (15)	0.8111 (3)	0.0445 (8)	
Н9	0.4241	0.9658	0.8763	0.053*	
C10	0.31223 (18)	0.96990 (14)	0.7674 (2)	0.0345 (7)	
C11	0.10328 (17)	0.83008 (12)	0.7745 (2)	0.0330 (7)	
C12	0.0715 (2)	0.79896 (15)	0.6841 (2)	0.0374 (7)	
H12	0.1085	0.7663	0.6518	0.045*	
C13	-0.0128 (2)	0.81460 (14)	0.6404 (2)	0.0360 (6)	
C14	-0.0418 (2)	0.77915 (17)	0.5423 (3)	0.0506 (8)	
H14A	-0.1028	0.7613	0.5503	0.076*	
H14B	-0.0005	0.7417	0.5276	0.076*	
H14C	-0.0406	0.8118	0.4864	0.076*	
C15	0.24318 (18)	1.01769 (12)	0.8099 (2)	0.0318 (7)	

C16	0.2553 (2)	1.04853 (15)	0.9063 (3)	0.0444 (7)	
H16	0.3070	1.0368	0.9445	0.053*	
C17	0.1943 (2)	1.09561 (14)	0.9477 (2)	0.0387 (7)	
C18	0.2130 (3)	1.12866 (18)	1.0513 (3)	0.0588 (10)	
H18A	0.2171	1.1780	1.0432	0.088*	
H18B	0.2696	1.1112	1.0785	0.088*	
H18C	0.1640	1.1178	1.0980	0.088*	
C19	0.0000	1.0000	0.5883 (5)	0.087 (2)	
H19A	-0.0225	1.0437	0.5636	0.130*	0.50
H19B	-0.0388	0.9634	0.5636	0.130*	0.50
H19C	0.0613	0.9929	0.5636	0.130*	0.50
C20	0.0000	1.0000	0.9899 (4)	0.078 (2)	
H20A	-0.0137	0.9542	1.0146	0.117*	0.50
H20B	-0.0455	1.0319	1.0146	0.117*	0.50
H20C	0.0592	1.0139	1.0146	0.117*	0.50
Fe1	-0.05321 (2)	0.929603 (15)	0.78857 (4)	0.02974 (10)	
Fe2	0.31370 (2)	0.865393 (17)	0.79403 (4)	0.03331 (10)	
01	0.05773 (13)	0.87374 (10)	0.82598 (15)	0.0409 (5)	
O2	-0.06968 (14)	0.85889 (10)	0.67618 (17)	0.0406 (5)	
03	0.17416 (13)	1.02878 (10)	0.75155 (16)	0.0367 (5)	
O4	0.11978 (14)	1.11480 (9)	0.90521 (16)	0.0382 (5)	
05	0.0000	1.0000	0.6928 (2)	0.0346 (7)	
H20	-0.0100	1.0397	0.7126	0.052*	0.50
O6	0.0000	1.0000	0.8820 (2)	0.0319 (7)	
H21	0.0530	1.0026	0.8623	0.048*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0409 (16)	0.0301 (12)	0.0351 (19)	0.0054 (11)	0.0030 (11)	0.0041 (12)
C2	0.0463 (15)	0.0309 (12)	0.0568 (18)	0.0085 (10)	0.004 (2)	-0.0019 (19)
C3	0.0468 (19)	0.0421 (17)	0.065 (2)	0.0151 (15)	-0.0060 (17)	0.0099 (17)
C4	0.055 (2)	0.059 (2)	0.0379 (18)	0.0072 (16)	-0.0096 (15)	0.0118 (16)
C5	0.0437 (18)	0.0459 (17)	0.0327 (15)	0.0087 (13)	-0.0019 (13)	0.0055 (14)
C6	0.0486 (19)	0.0465 (17)	0.0320 (16)	0.0059 (13)	0.0039 (14)	0.0056 (14)
C7	0.056 (2)	0.0577 (19)	0.0376 (17)	0.0114 (16)	0.0106 (15)	-0.0005 (16)
C8	0.0356 (17)	0.058 (2)	0.066 (2)	0.0113 (15)	0.0113 (16)	0.0046 (18)
C9	0.0336 (14)	0.0454 (15)	0.055 (3)	0.0009 (12)	-0.0060 (14)	-0.0036 (16)
C10	0.0340 (14)	0.0336 (13)	0.036 (2)	0.0000 (10)	-0.0001 (12)	0.0033 (12)
C11	0.0377 (14)	0.0269 (11)	0.0345 (18)	-0.0003 (10)	0.0080 (13)	-0.0012 (13)
C12	0.0381 (16)	0.0370 (15)	0.0371 (16)	0.0054 (12)	0.0066 (13)	-0.0091 (13)
C13	0.0421 (17)	0.0307 (13)	0.0352 (15)	-0.0099 (12)	0.0066 (13)	-0.0059 (12)
C14	0.049 (2)	0.055 (2)	0.0480 (19)	-0.0067 (15)	0.0030 (15)	-0.0194 (17)
C15	0.0344 (14)	0.0265 (11)	0.0347 (19)	-0.0048 (9)	-0.0053 (12)	0.0027 (12)
C16	0.0420 (17)	0.0434 (15)	0.0479 (19)	0.0061 (13)	-0.0190 (15)	-0.0071 (16)
C17	0.0453 (18)	0.0296 (14)	0.0412 (17)	-0.0037 (12)	-0.0112 (14)	-0.0044 (13)
C18	0.066 (2)	0.061 (2)	0.0492 (19)	0.0117 (16)	-0.023 (2)	-0.0177 (18)
C19	0.146 (7)	0.085 (4)	0.030 (3)	-0.044 (4)	0.000	0.000

supporting information

C20	0.103 (5)	0.102 (5)	0.028 (3)	-0.047 (4)	0.000	0.000
Fe1	0.03050 (18)	0.02938 (16)	0.02933 (18)	-0.00004 (12)	0.0040 (2)	-0.0034 (2)
Fe2	0.03464 (19)	0.03372 (17)	0.03157 (19)	0.00768 (13)	-0.0017 (3)	-0.0015 (2)
O1	0.0402 (11)	0.0450 (11)	0.0374 (11)	0.0151 (9)	-0.0024 (8)	-0.0119 (9)
O2	0.0365 (12)	0.0411 (11)	0.0442 (12)	0.0003 (9)	-0.0024 (10)	-0.0119 (10)
O3	0.0345 (11)	0.0389 (10)	0.0366 (10)	0.0042 (8)	-0.0050 (8)	-0.0024 (9)
O4	0.0397 (12)	0.0296 (10)	0.0452 (12)	0.0028 (9)	-0.0111 (10)	-0.0053 (9)
O5	0.038 (2)	0.0422 (18)	0.0235 (15)	-0.0045 (14)	0.000	0.000
O6	0.042 (2)	0.0326 (16)	0.0215 (14)	-0.0051 (13)	0.000	0.000

Geometric parameters (Å, °)

$\overline{C1}$	1 426 (4)	<u>C13_02</u>	1 279 (3)
C1 - C2	1.720(7) 1.441(4)	$C_{13} = 0_2$	1.277(3) 1 503 (4)
$C_1 = C_2$	1.771(7)	C14 $H14A$	0.9600
$C1 - E^2$	2 059 (3)	C14—H14R	0.9000
$C_1 - C_2$	2.039(3)	C14 = H14C	0.9000
$C_2 = C_3$	1.412(3)	C_{14} C_{15} C_{2}	0.9000
	2.031 (3)	C15 - C16	1.278(3) 1.204(4)
C2—H2	0.9800		1.394 (4)
$C_3 - C_4$	1.413 (5)		1.381 (4)
C3—Fe2	2.050 (3)		0.9300
C3—H3	0.9800	C17 - 04	1.274 (3)
C4—C5	1.412 (4)	C17—C18	1.511 (4)
C4—Fe2	2.044 (3)	C18—H18A	0.9600
C4—H4	0.9800	C18—H18B	0.9600
C5—Fe2	2.027 (3)	C18—H18C	0.9600
С5—Н5	0.9800	C19—O5	1.355 (7)
C6—C7	1.418 (4)	С19—Н19А	0.9600
C6—C10	1.426 (4)	C19—H19B	0.9600
C6—Fe2	2.048 (3)	C19—H19C	0.9600
С6—Н6	0.9800	C20—O6	1.398 (6)
C7—C8	1.412 (5)	C20—H20A	0.9600
C7—Fe2	2.047 (3)	С20—Н20В	0.9600
С7—Н7	0.9800	С20—Н20С	0.9600
C8—C9	1.407 (4)	Fe1—O6	1.9783 (17)
C8—Fe2	2.049 (3)	Fe1—O4 ⁱ	1.991 (2)
C8—H8	0.9800	Fe1—O5	1.9964 (18)
C9—C10	1.433 (4)	Fe1—O3 ⁱ	1.9982 (19)
C9—Fe2	2.043 (3)	Fe1—O1	2.0048 (19)
С9—Н9	0.9800	Fe1—O2	2.010 (2)
C10—C15	1.473 (4)	O3—Fe1 ⁱ	1.9982 (19)
C10—Fe2	2.045 (3)	O4—Fel ⁱ	1.991 (2)
C11—O1	1.263 (3)	O5—Fel ⁱ	1.9964 (18)
C11—C12	1.395 (4)	O5—H20	0.8211
C12—C13	1.389 (4)	O6—Fe1 ⁱ	1.9783 (17)
С12—Н12	0.9300	O6—H21	0.8158
C5—C1—C2	106.3 (3)	H18B—C18—H18C	109.5

~ ~ ~ ~ ~ ~			
C5—C1—C11	122.7 (2)	O5—C19—H19A	109.5
C2—C1—C11	131.0 (3)	O5—C19—H19B	109.5
C5—C1—Fe2	68.37 (17)	H19A—C19—H19B	109.5
C2-C1-Fe2	69.16 (15)	O5—C19—H19C	109.5
C11—C1—Fe2	126.20 (18)	H19A—C19—H19C	109.5
C3—C2—C1	108.7 (3)	H19B—C19—H19C	109.5
C3—C2—Fe2	69.82 (18)	O6—C20—H20A	109.5
C1—C2—Fe2	69.79 (15)	O6—C20—H20B	109.5
C3—C2—H2	125.6	H20A—C20—H20B	109.5
C1—C2—H2	125.6	06—C20—H20C	109.5
Fe2—C2—H2	125.6	H20A—C20—H20C	109.5
$C_2 - C_3 - C_4$	107.7(3)	$H_{20B} - C_{20} - H_{20C}$	109.5
$C_2 = C_3 = F_{e^2}$	69.89 (16)	$06-Fe1-04^{i}$	91 29 (9)
$C_{2} = C_{3} = 102$	69.60 (18)	06 Fe1 05	76.14(7)
$C_1 = C_2 = C_2$	126.1	O_{i}^{i} Eq. 05	162.62(7)
$C_2 = C_3 = H_3$	120.1	04 - re1 - 03	102.02(7)
C4 - C3 - H3	126.1	$00 - FeI - 03^{1}$	102.00(0)
Fe2—C3—H3	126.1	$04 - Fei - 03^{\circ}$	85.61 (8)
C5-C4-C3	108.6 (3)	05 —FeI— 03°	85.50 (6)
C5—C4—Fe2	69.05 (18)	O6—Fel—Ol	84.48 (6)
C3—C4—Fe2	70.0 (2)	O4 ¹ —Fe1—O1	88.83 (9)
C5—C4—H4	125.7	O5—Fe1—O1	101.62 (6)
C3—C4—H4	125.7	O3 ⁱ —Fe1—O1	171.08 (8)
Fe2—C4—H4	125.7	O6—Fe1—O2	163.02 (7)
C4—C5—C1	108.6 (3)	O4 ⁱ —Fe1—O2	101.51 (8)
C4—C5—Fe2	70.37 (19)	O5—Fe1—O2	93.34 (9)
C1C5Fe2	70.80 (17)	O3 ⁱ —Fe1—O2	89.60 (8)
С4—С5—Н5	125.7	O1—Fe1—O2	84.66 (8)
С1—С5—Н5	125.7	C5—Fe2—C9	117.30 (13)
Fe2—C5—H5	125.7	C5—Fe2—C4	40.58 (12)
C7—C6—C10	108.2 (3)	C9—Fe2—C4	105.82 (14)
C7—C6—Fe2	69.68 (18)	C5—Fe2—C10	108.69 (11)
C10—C6—Fe2	69.52 (17)	C9—Fe2—C10	41.04 (11)
С7—С6—Н6	125.9	C4—Fe2—C10	127.46 (13)
С10—С6—Н6	125.9	C5—Fe2—C7	169.03 (13)
Fe2—С6—Н6	125.9	C9—Fe2—C7	68.09 (14)
C8-C7-C6	108.0 (3)	C4—Fe2—C7	149.56 (14)
$C8-C7-Fe^{2}$	69.91 (19)	C10—Fe2—C7	68 51 (12)
$C6-C7-Fe^{2}$	69.78 (18)	C_{5} Fe ² C ₆	130.60(12)
C8 C7 H7	126.0	C_{0} F_{e2} C_{0}	68 41 (14)
C6 C7 H7	126.0	$C_{2} = C_{2} = C_{0}$	167.07(13)
$E_0 = C_7 = H_7$	126.0	$C_{1} = C_{2} = C_{0}$	107.07(13)
re2 - C / - H / C = C - C - C - C - C - C - C - C - C -	120.0	C10— $Fe2$ — $C0$	40.77(12)
$C_{2} = C_{2}$	100.0(3)	C_{1} $- Fe_{2}$ C_{2}	40.34 (12)
C7 = C9 = F(2)	(1/)	$C_3 = F_{c_2} = C_3$	149.07 (14)
$C_{1} = C_{2} = C_{2}$	09.70(19)		40.23 (13)
C9—C8—H8	125.7		115.68 (15)
С/—С8—Н8	125.7	C10—Fe2—C8	68.34 (12)
Fe2—C8—H8	125.7	C/—Fe2—C8	40.33 (14)
C8—C9—C10	108.1 (3)	C6—Fe2—C8	67.97 (14)

C8—C9—Fe2	70.11 (18)	C5—Fe2—C3	68.49 (13)
C10—C9—Fe2	69.58 (15)	C9—Fe2—C3	125.10 (14)
С8—С9—Н9	125.9	C4—Fe2—C3	40.38 (14)
С10—С9—Н9	125.9	C10—Fe2—C3	164.08 (13)
Fe2—C9—H9	125.9	C7—Fe2—C3	117.22 (14)
C6—C10—C9	107.1 (3)	C6—Fe2—C3	152.39 (14)
C6-C10-C15	124.1 (3)	C8—Fe2—C3	105.73 (14)
C9—C10—C15	128.8 (3)	C5—Fe2—C2	68.45 (15)
C6-C10-Fe2	69.71 (16)	C9—Fe2—C2	163.45 (11)
C9-C10-Fe2	69.37 (16)	C4—Fe2—C2	67.72 (17)
C15—C10—Fe2	124.13 (18)	C10—Fe2—C2	154.74 (12)
O1—C11—C12	123.7 (2)	C7—Fe2—C2	109.24 (16)
O1—C11—C1	114.4 (2)	C6—Fe2—C2	120.98 (16)
C12—C11—C1	121.9 (2)	C8—Fe2—C2	127.27 (13)
C13—C12—C11	123.0 (2)	C3—Fe2—C2	40.29 (14)
C13—C12—H12	118.5	C5—Fe2—C1	40.83 (11)
C11—C12—H12	118.5	C9—Fe2—C1	152.63 (12)
O2—C13—C12	124.9 (3)	C4—Fe2—C1	68.34 (12)
O2—C13—C14	115.3 (3)	C10—Fe2—C1	120.15 (10)
C12—C13—C14	119.7 (3)	C7—Fe2—C1	130.52 (13)
C13—C14—H14A	109.5	C6—Fe2—C1	111.11 (12)
C13—C14—H14B	109.5	C8—Fe2—C1	166.90 (13)
H14A—C14—H14B	109.5	C3—Fe2—C1	68.70 (12)
C13—C14—H14C	109.5	C2—Fe2—C1	41.05 (10)
H14A—C14—H14C	109.5	C11-O1-Fe1	131.01 (19)
H14B—C14—H14C	109.5	C13—O2—Fe1	129.69 (19)
O3—C15—C16	124.0 (3)	C15—O3—Fe1 ⁱ	128.48 (19)
O3—C15—C10	115.0 (2)	C17—O4—Fe1 ⁱ	128.29 (18)
C16—C15—C10	121.0 (3)	C19—O5—Fe1 ⁱ	128.41 (7)
C17—C16—C15	123.1 (3)	C19—O5—Fe1	128.41 (7)
C17—C16—H16	118.4	Fe1 ⁱ —O5—Fe1	103.19 (13)
C15—C16—H16	118.4	С19—О5—Н20	108.2
O4—C17—C16	125.1 (3)	Fe1 ⁱ —O5—H20	40.6
O4—C17—C18	114.5 (3)	Fe1—O5—H20	111.8
C16—C17—C18	120.4 (3)	C20—O6—Fe1	127.74 (6)
C17—C18—H18A	109.5	C20—O6—Fe1 ⁱ	127.74 (6)
C17—C18—H18B	109.5	Fe1—O6—Fe1 ⁱ	104.52 (13)
H18A—C18—H18B	109.5	C20—O6—H21	108.2
C17—C18—H18C	109.5	Fe1—O6—H21	102.9
H18A—C18—H18C	109.5	Fel ⁱ —O6—H21	52.7

Symmetry code: (i) -x, -y+2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C20—H20 <i>A</i> ····O4 ⁱ	0.96	2.49	3.028 (3)	116
C20—H20 <i>C</i> ···O4	0.96	2.57	3.028 (3)	110

supporting information

C19—H19B····O2	0.96	2.53	3.121 (3)	120
C3—H3…O4 ⁱⁱ	0.98	2.57	3.107 (4)	114
O6—H21…O4	0.82	2.44	2.8377 (19)	111
O6—H21…O3	0.82	2.33	3.103 (3)	158
O5—H20…O1 ⁱ	0.82	2.33	3.101 (3)	157
$O5$ —H20···· $O2^{i}$	0.82	2.32	2.914 (2)	129
	=		==)	

Symmetry codes: (i) -*x*, -*y*+2, *z*; (ii) -*x*+1/2, *y*-1/2, *z*.