

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[hemi(hexane-1,6diammonium) [[aquadibromidomanganese(II)]-*µ*-pyridine-2carboxylato]]

Nam-Ho Kim,^a In-Chul Hwang^b and Kwang Ha^a*

^aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea, and ^bInstitute of Basic Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

Correspondence e-mail: hakwang@chonnam.ac.kr

Received 20 March 2009; accepted 30 April 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.031; wR factor = 0.114; data-to-parameter ratio = 17.8.

The asymmetric unit of the title compound, $\{(C_6H_{18}N_2)_{0.5}-[MnBr_2(C_6H_4NO_2)(H_2O)]\}_n$, contains the repeat unit of the complex anion and one-half of a hexane-1,6-diammonium cation that is located on a twofold rotation axis. In the anionic polymer, the Mn²⁺ ions are bridged by the pyridinecarboxylate (pic) anion ligand, forming a chain structure along the *c* axis. The Mn²⁺ ion is six-coordinated in a distorted octahedral environment by one N atom of the pyridine ring, two O atoms of the two carboxylate groups, one O atom of the water molecule and two Br atoms. The compound displays intermolecular N-H···O, N-H···Br, O-H···Br and O-H···O hydrogen bonding. There may also be intermolecular π - π interactions between adjacent pyridine rings, with a centroid-centroid distance of 3.992 (4) Å.

Related literature

For the synthesis and structure of the Mn(III)–pic complex, $[Mn(pic)_3]$, see: Figgis *et al.* (1978); Yamaguchi & Sawyer (1985); Li *et al.* (2000). For the synthesis and structure of the Mn(II)–pic complex, $[Mn(pic)_2(H_2O)_2]$, see: Okabe & Koizumi (1998); Barandika *et al.* (1999). For details of mono-, di- and polynuclear Mn(II, III, IV)–pic complexes, see: Huang *et al.* (2004).

 $n/2 [NH_3(CH_2)_6NH_3]^{2+}$

 $\beta = 91.125 \ (4)^{\circ}$

Z = 8

V = 2843.9 (11) Å³

Mo $K\alpha$ radiation

 $0.10 \times 0.10 \times 0.10 \; \mathrm{mm}$

7815 measured reflections

2705 independent reflections

1846 reflections with $I > 2\sigma(I)$

 $\mu = 6.55 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.030$

Experimental

Crystal data

 $\begin{array}{l} ({\rm C_6H_{18}N_2})_{0.5} [{\rm MnBr_2}({\rm C_6H_4NO_2}) - \\ ({\rm H_2O})] \\ M_r = 413.99 \\ {\rm Monoclinic}, \ C2/c \\ a = 13.490 \ (3) \ {\rm \AA} \\ b = 21.510 \ (5) \ {\rm \AA} \\ c = 9.803 \ (2) \ {\rm \AA} \end{array}$

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.394, T_{max} = 0.520$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	152 parameters
$wR(F^2) = 0.114$	H-atom parameters constrained
S = 0.94	$\Delta \rho_{\rm max} = 0.68 \text{ e } \text{\AA}^{-3}$
2705 reflections	$\Delta \rho_{\rm min} = -0.56 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdotsO1^{i}$	0.89	2.44	2.949 (6)	117
$N2-H2A\cdots O2^{i}$	0.89	2.47	3.300 (6)	155
$N2-H2B\cdots Br2^{i}$	0.89	2.61	3.339 (4)	139
$N2-H2C\cdots Br2^{ii}$	0.89	2.58	3.417 (5)	157
O3−H3A···Br1 ⁱⁱⁱ	0.99	2.28	3.245 (4)	165
$O3-H3B\cdots O1^{iv}$	0.83	2.18	2.961 (5)	157
	1			4

Symmetry codes: (i) $x, -y, z + \frac{1}{2}$; (ii) x, y, z + 1; (iii) $-x + 1, y, -z + \frac{1}{2}$; (iv) -x + 1, -y, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-412-J02001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2117).

References

- Barandika, M. G., Serna, Z. E., Urtiaga, M. K., de Larramendi, J. I. R., Arriortua, M. I. & Cortés, R. (1999). Polyhedron, 18, 1311–1316.
- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Figgis, B. N., Raston, C. L., Sharma, R. P. & White, A. H. (1978). *Aust. J. Chem.* **31**, 2545–2548.
- Huang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2004). *Eur. J. Inorg. Chem.* pp. 1454–1464.
- Li, Y.-Z., Wang, M., Wang, L.-F. & Xia, C.-G. (2000). Acta Cryst. C56, e445– e446.
- Okabe, N. & Koizumi, M. (1998). Acta Cryst. C54, 288-290.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yamaguchi, K. & Sawyer, D. T. (1985). Inorg. Chem. 24, 971-976.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, m621 [doi:10.1107/S1600536809016316]

catena-Poly[hemi(hexane-1,6-diammonium) [[aquadibromidomanganese(II)]-µ-pyridine-2-carboxylato]]

Nam-Ho Kim, In-Chul Hwang and Kwang Ha

S1. Comment

Complex polymers are attracting great attention because of their potential applications such as in catalysis, magnetism, molecular recognition and other fileds (Huang *et al.*, 2004). The title compound, { $(C_6H_{18}N_2)_{0.5}$ [MnBr₂($C_6H_4NO_2$)(H₂O)]}_n, consists of an anionic complex chain polymer with counter-cations (Fig. 1). In the anionic polymer, symmetry related Mn²⁺ ions are bridged by pyridinecarboxylate (pic) anion ligands to form one-dimensional zigzag chain structures along the *c* axis (Fig. 2). The Mn ion is six-coordinated in a distorted octahedral structure by one N atom of the pyridine ring, two O atoms of two carboxylate groups, one O atom of the water molecule and two Br atoms. The three O atoms are disposed in the facial position. The asymmetric unit contains the repeat unit of the polymer, [MnBr₂(C₆H₄NO₂)(H₂O)]⁺, and one half of a 1,6-diammoniohexane cation. Cations sit on a 2-fold symmetry axes at 0, *y*, 1/4 (Wyckoff letter *e*). The compound displays intermolecular hydrogen bonding (Table 1). There may be also intermolecular π - π interactions between adjacent pyridine rings, with a centroid-centroid distance of 3.992 (4) Å. The structure of the anionic complex polymer is very similar to the structure of the neutral compound [MnCl(pic)(H₂O)₂]_n in which the Mn ions are linked to each other by pyridinecarboxylate bridges in a *syn - anti* mode (Huang *et al.*, 2004).

S2. Experimental

A solution of $MnBr_2.4H_2O$ (0.116 g, 0.404 mmol), pyridine-2-carboxylic acid (0.101 g, 0.734 mmol) and 1,6-diaminohexane (0.021 g, 0.184 mmol) in H_2O (10 ml) was refluxed for 4 h. The solvent was removed under vacuum and the residue was dried at 70 °C, to give a pale yellow film. Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH₃CN solution.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å (aromatic) or 0.97 Å (CH₂) and N—H = 0.89 Å, and U_{iso} (H) = $1.2U_{eq}$ (C) or $1.5U_{eq}$ (N)]. The H atoms of the water molecule were located from Fourier difference maps, but not refined.

Figure 1

A structure detail of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms [Symmetry codes: (a) x, -y, -1/2 + z, (b) x, -y, 1/2 + z, (c) - x, y, 3/2 - z].

Figure 2

View of the unit-cell contents and chain structure of the title compound. H atoms have been omitted for clarity.

catena-Poly[hemi(hexane-1,6-diammonium) [[aquadibromidomanganese(II)]-µ-pyridine-2-carboxylato]]

Crystal data	
$(C_6H_{18}N_2)_{0.5}[MnBr_2(C_6H_4NO_2)(H_2O)]$	$V = 2843.9 (11) \text{ Å}^3$
$M_r = 413.99$	Z = 8
Monoclinic, $C2/c$	F(000) = 1616
Hall symbol: -C 2yc	$D_x = 1.934 \text{ Mg m}^{-3}$
a = 13.490 (3) Å	Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A}
b = 21.510 (5) Å	Cell parameters from 806 reflections
c = 9.803 (2) Å	$\theta = 2.8-25.3^{\circ}$
$\beta = 91.125$ (4)°	$\mu = 6.55 \text{ mm}^{-1}$

T = 293 KStick, colorless

Data collection

7815 measured reflections 2705 independent reflections
1846 reflections with $I > 2\sigma(I)$
$R_{\rm int}=0.030$
$\theta_{\rm max} = 25.7^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
$h = -16 \rightarrow 15$
$k = -26 \rightarrow 26$
$l = -7 \rightarrow 11$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0606P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 0.68 \ { m e} \ { m \AA}^{-3}$

 $0.10 \times 0.10 \times 0.10 \text{ mm}$

 $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
0.32935 (6)	0.06982 (4)	0.41356 (8)	0.0340 (2)
0.34335 (4)	0.15379 (3)	0.21825 (6)	0.0438 (2)
0.13026 (5)	0.06928 (3)	0.40001 (8)	0.0585 (2)
0.3336 (3)	0.01771 (15)	0.6076 (4)	0.0406 (10)
0.3331 (3)	-0.02393 (17)	0.3343 (4)	0.0491 (11)
0.4928 (3)	0.06506 (18)	0.4217 (5)	0.0549 (12)
0.5358	0.0983	0.3865	0.082*
0.5394	0.0408	0.4376	0.082*
0.3431 (3)	0.14114 (19)	0.5834 (4)	0.0349 (11)
0.3514 (4)	0.2031 (2)	0.5714 (6)	0.0442 (15)
0.3488	0.2203	0.4844	0.053*
0.3634 (5)	0.2422 (3)	0.6809 (7)	0.0519 (16)
0.3667	0.2850	0.6687	0.062*
0.3702 (5)	0.2168 (3)	0.8077 (7)	0.0558 (18)
0.3800	0.2422	0.8836	0.067*
0.3625 (5)	0.1532 (3)	0.8234 (6)	0.0470 (15)
0.3667	0.1351	0.9095	0.056*
0.3488 (4)	0.1175 (2)	0.7091 (5)	0.0318 (12)
0.3378 (4)	0.0470 (3)	0.7180 (6)	0.0343 (13)
0.1654 (3)	0.06720 (19)	1.0558 (5)	0.0717 (19)
0.2232	0.0622	1.0151	0.107*
0.1262	0.0350	1.0366	0.107*
0.1754	0.0696	1.1457	0.107*
	x 0.32935 (6) 0.34335 (4) 0.13026 (5) 0.3336 (3) 0.3331 (3) 0.4928 (3) 0.5358 0.5394 0.3431 (3) 0.3514 (4) 0.3488 0.3634 (5) 0.3667 0.3702 (5) 0.3667 0.3488 (4) 0.3378 (4) 0.1654 (3) 0.2232 0.1262 0.1754	x y $0.32935(6)$ $0.06982(4)$ $0.34335(4)$ $0.15379(3)$ $0.13026(5)$ $0.06928(3)$ $0.3336(3)$ $0.01771(15)$ $0.3331(3)$ $-0.02393(17)$ $0.4928(3)$ $0.06506(18)$ 0.5358 0.0983 0.5394 0.0408 $0.3431(3)$ $0.14114(19)$ $0.3514(4)$ $0.2031(2)$ 0.3488 0.2203 0.3667 0.2850 $0.3702(5)$ $0.2168(3)$ 0.3667 $0.1532(3)$ 0.3667 $0.1175(2)$ $0.3378(4)$ $0.0470(3)$ $0.1654(3)$ $0.06720(19)$ 0.2232 0.0622 0.1262 0.0350 0.1754 0.0696	x y z $0.32935(6)$ $0.06982(4)$ $0.41356(8)$ $0.34335(4)$ $0.15379(3)$ $0.21825(6)$ $0.13026(5)$ $0.06928(3)$ $0.40001(8)$ $0.3336(3)$ $0.01771(15)$ $0.6076(4)$ $0.3331(3)$ $-0.02393(17)$ $0.3343(4)$ $0.4928(3)$ $0.06506(18)$ $0.4217(5)$ 0.5358 0.0983 0.3865 0.5394 0.0408 0.4376 $0.3431(3)$ $0.14114(19)$ $0.5834(4)$ $0.3514(4)$ $0.2031(2)$ $0.5714(6)$ 0.3488 0.2203 0.4844 0.3667 0.2850 0.6687 $0.3702(5)$ $0.2168(3)$ $0.8077(7)$ 0.3800 0.2422 0.8836 $0.3625(5)$ $0.1532(3)$ $0.8234(6)$ 0.3667 0.1351 0.9095 $0.3488(4)$ $0.1175(2)$ $0.7091(5)$ $0.378(4)$ $0.06720(19)$ $1.0558(5)$ 0.2232 0.0622 1.0151 0.1262 0.0350 1.0366 0.1754 0.0696 1.1457

supporting information

C7	0.1177 (3)	0.12511 (19)	1.0062 (5)	0.0564 (18)
H7A	0.1654	0.1588	1.0122	0.068*
H7B	0.0630	0.1353	1.0650	0.068*
C8	0.0796 (5)	0.1202 (3)	0.8624 (7)	0.0545 (17)
H8A	0.0399	0.0828	0.8525	0.065*
H8B	0.1351	0.1169	0.8013	0.065*
C9	0.0174 (5)	0.1762 (3)	0.8230 (7)	0.065 (2)
H9A	-0.0400	0.1777	0.8810	0.078*
H9B	0.0560	0.2136	0.8400	0.078*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0451 (5)	0.0302 (4)	0.0267 (5)	0.0019 (4)	0.0001 (4)	0.0004 (4)
Br1	0.0526 (4)	0.0416 (3)	0.0371 (4)	0.0026 (3)	0.0016 (3)	0.0072 (3)
Br2	0.0466 (4)	0.0593 (4)	0.0697 (5)	0.0030 (3)	0.0012 (3)	0.0179 (4)
01	0.068 (3)	0.0250 (19)	0.029 (2)	-0.0015 (18)	0.001 (2)	0.0003 (17)
O2	0.082 (3)	0.036 (2)	0.029 (2)	0.003 (2)	-0.001 (2)	-0.0072 (18)
O3	0.042 (2)	0.055 (3)	0.068 (3)	0.008 (2)	0.005 (2)	0.021 (2)
N1	0.045 (3)	0.029 (3)	0.031 (3)	0.002 (2)	0.000(2)	0.004 (2)
C1	0.062 (4)	0.028 (3)	0.043 (4)	-0.002 (3)	0.001 (3)	0.009 (3)
C2	0.066 (4)	0.029 (3)	0.061 (4)	0.001 (3)	0.003 (4)	-0.005 (3)
C3	0.082 (5)	0.034 (3)	0.051 (4)	-0.004 (3)	0.001 (4)	-0.015 (3)
C4	0.069 (4)	0.037 (3)	0.035 (3)	0.001 (3)	0.000 (3)	-0.001 (3)
C5	0.038 (3)	0.029 (3)	0.028 (3)	0.004 (2)	0.004 (2)	0.001 (2)
C6	0.036 (3)	0.038 (3)	0.030 (3)	-0.002(2)	-0.001 (3)	0.005 (3)
N2	0.092 (5)	0.050 (3)	0.072 (4)	0.012 (3)	-0.031 (4)	-0.015 (3)
C7	0.051 (4)	0.050 (4)	0.067 (5)	0.009 (3)	-0.016 (4)	-0.012 (4)
C8	0.050 (4)	0.060 (4)	0.053 (4)	0.001 (3)	-0.005 (3)	-0.003 (3)
C9	0.079 (5)	0.042 (4)	0.073 (5)	0.007 (4)	-0.019 (4)	-0.003 (4)

Geometric parameters (Å, °)

Mn1—O2	2.162 (4)	C4—C5	1.368 (7)	
Mn1—O3	2.206 (4)	C4—H4	0.93	
Mn1—O1	2.208 (4)	C5—C6	1.526 (7)	
Mn1—N1	2.269 (4)	C6—O2 ⁱⁱ	1.247 (6)	
Mn1—Br1	2.6416 (11)	N2—C7	1.4799	
Mn1—Br2	2.6864 (12)	N2—H2A	0.89	
O1—C6	1.253 (6)	N2—H2B	0.89	
O2—C6 ⁱ	1.247 (6)	N2—H2C	0.89	
O3—H3A	0.99	C7—C8	1.495 (7)	
O3—H3B	0.83	C7—H7A	0.97	
N1—C5	1.334 (6)	C7—H7B	0.97	
N1—C1	1.343 (6)	C8—C9	1.514 (8)	
C1—C2	1.371 (8)	C8—H8A	0.97	
C1—H1	0.93	C8—H8B	0.97	
С2—С3	1.359 (9)	С9—С9 ^{ііі}	1.497 (13)	

С2—Н2	0.93	С9—Н9А	0.97
C3—C4	1.382 (8)	С9—Н9В	0.97
С3—Н3	0.93		
02 M 1 02	9(52(1()	C5 C4 H4	120.0
02—Mn1—03	86.53 (16)	C5—C4—H4	120.9
02-Mn1-01	80.53 (14)	C3—C4—H4	120.9
03—Mn1—01	86.35 (15)	NI-C5-C4	123.2 (5)
O2—Mn1—N1	153.14 (15)	NIC5C6	115.3 (5)
O3—Mn1—N1	86.42 (16)	C4—C5—C6	121.5 (5)
O1—Mn1—N1	73.17 (14)	O2 ⁱⁱ —C6—O1	126.0 (5)
O2—Mn1—Br1	112.02 (11)	$O2^{ii}$ —C6—C5	117.1 (5)
O3—Mn1—Br1	88.42 (11)	O1—C6—C5	117.0 (5)
O1—Mn1—Br1	166.09 (10)	C7—N2—H2A	109.5
N1—Mn1—Br1	93.65 (11)	C7—N2—H2B	109.5
O2—Mn1—Br2	90.48 (12)	H2A—N2—H2B	109.5
O3—Mn1—Br2	176.99 (12)	C7—N2—H2C	109.5
O1—Mn1—Br2	92.83 (11)	H2A—N2—H2C	109.5
N1—Mn1—Br2	96.13 (12)	H2B—N2—H2C	109.5
Br1—Mn1—Br2	93.02 (3)	N2—C7—C8	112.9 (3)
C6—O1—Mn1	119.3 (3)	N2—C7—H7A	109.0
C6 ⁱ —O2—Mn1	134.6 (4)	С8—С7—Н7А	109.0
Mn1—O3—H3A	123.2	N2—C7—H7B	109.0
Mn1—O3—H3B	142.1	C8—C7—H7B	109.0
$H_{3}A = O_{3} = H_{3}B$	94	H7A - C7 - H7B	107.8
C_{5} N1-C1	117 2 (5)	C7-C8-C9	107.0 111.3(5)
C_{5} N1 M_{n1}	117.2(3) 115.0(3)	C7 - C8 - H8A	109.4
C1 N1 Mn1	113.0(3) 127.7(4)	C_{0} C_{8} H8A	109.4
C1 - N1 - MIII	127.7(4) 123.3(6)	C_{2} C_{3} C_{3} C_{4} H_{8} R_{1}	109.4
NI = CI = UI	123.3 (0)	C = C = H S B	109.4
	110.4	$C_9 = C_0 = H_0 D$	109.4
$C_2 = C_1 = H_1$	110.4		108.0
$C_3 = C_2 = C_1$	118.4 (6)	$C9^{\text{m}} = C9 = C8$	113.9(5)
C3—C2—H2	120.8	C9	108.8
C1—C2—H2	120.8	C8—C9—H9A	108.8
C2—C3—C4	119.7 (6)	С9 ^{н1} —С9—Н9В	108.8
С2—С3—Н3	120.2	С8—С9—Н9В	108.8
C4—C3—H3	120.2	Н9А—С9—Н9В	107.7
C5—C4—C3	118.3 (6)		
Ω^2 —Mn1— Ω^1 — $C6$	176 8 (4)	C_{5} N1 $-C_{1}$ $-C_{2}$	-11(9)
Mn1 - 01 - C6	897(4)	Mn1 - N1 - C1 - C2	-1773(4)
N1 $Mn1$ $O1$ $C6$	23(4)	NI $C1$ $C2$ $C3$	20(10)
$R_{r1} = M_{r1} = 01 = C6$	2.3(4)	$R_{1} = C_{1} = C_{2} = C_{3}$	-1.6(10)
Br1 - Mr1 - O1 - C6	21.0(6)	$C_1 = C_2 = C_3 = C_4$	-1.0(10)
$D_1 = - C_1 = C_0$	73.2 (4) 80.0 (6)	$C_2 - C_3 - C_4 - C_3$	0.4(10)
$03 - Wi11 - 02 - 00^{\circ}$	-69.0(0)	$\bigcup_{i=1}^{i} \bigcup_{j=1}^{i} \bigcup_{j$	-0.2(8)
V_1 V_1 V_2 V_2 V_3	-1/5.9(6)	$\frac{1}{10000000000000000000000000000000000$	1/0.5 (4)
$N1 - Mn1 - O2 - C6^{1}$	-164.0(5)	CI—NI—C5—C6	179.3 (5)
$Br1-Mn1-O2-C6^{1}$	-2.1 (6)	Mn1—N1—C5—C6	-4.0 (6)
$Br2-Mn1-O2-C6^{i}$	91.3 (5)	C3—C4—C5—N1	0.5 (9)

O2—Mn1—N1—C5	-10.9 (6)	C3—C4—C5—C6	-178.9 (5)
O3—Mn1—N1—C5	-86.0 (4)	Mn1-01-C6-02 ⁱⁱ	174.2 (4)
O1—Mn1—N1—C5	1.3 (4)	Mn1—O1—C6—C5	-5.2 (6)
Br1—Mn1—N1—C5	-174.2 (4)	N1-C5-C6-O2 ⁱⁱ	-173.3 (5)
Br2—Mn1—N1—C5	92.4 (4)	C4—C5—C6—O2 ⁱⁱ	6.3 (8)
O2—Mn1—N1—C1	165.3 (4)	N1—C5—C6—O1	6.2 (7)
O3—Mn1—N1—C1	90.3 (5)	C4—C5—C6—O1	-174.3 (5)
O1—Mn1—N1—C1	177.5 (5)	N2—C7—C8—C9	171.0 (4)
Br1—Mn1—N1—C1	2.1 (5)	C7—C8—C9—C9 ⁱⁱⁱ	176.1 (7)
Br2—Mn1—N1—C1	-91.4 (5)		

Symmetry codes: (i) *x*, *-y*, *z*-1/2; (ii) *x*, *-y*, *z*+1/2; (iii) *-x*, *y*, *-z*+3/2.

Hydrogen-bond geometry (Å, °)

HA	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N2—H2A···O1 ⁱⁱ	0.89	2.44	2.949 (6)	117
N2—H2A····O2 ⁱⁱ	0.89	2.47	3.300 (6)	155
N2—H2B···Br2 ⁱⁱ	0.89	2.61	3.339 (4)	139
N2—H2C···Br2 ^{iv}	0.89	2.58	3.417 (5)	157
O3—H3A····Br1 ^v	0.99	2.28	3.245 (4)	165
O3—H3 <i>B</i> ···O1 ^{vi}	0.83	2.18	2.961 (5)	157

Symmetry codes: (ii) *x*, -*y*, *z*+1/2; (iv) *x*, *y*, *z*+1; (v) -*x*+1, *y*, -*z*+1/2; (vi) -*x*+1, -*y*, -*z*+1.