Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{\mathbf{1 0}}$ from X-ray powder data

Zhen-Hua Liang, ${ }^{\text {a,b }}$ Kai-Bin Tang, ${ }^{\text {a,b* }}$ Qian-Wang Chen ${ }^{\text {b }}$ and Hua-Gui Zheng ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China, and ${ }^{\text {b }}$ Department of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Correspondence e-mail: kbtang@ustc.edu.cn

Received 7 May 2009; accepted 13 May 2009

Key indicators: powder X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{Nb}-\mathrm{O})=0.003 \AA ; R$ factor $=$ $0.035 ; w R$ factor $=0.053$; data-to-parameter ratio $=9.2$.

Rubidium dicalcium triniobate $(\mathrm{V}), \mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$, has been synthesized by solid-state reaction and its crystal structure refined from X-ray powder diffraction data using Rietveld analysis. The compound is a three-layer perovskite DionJacobson phase with the perovskite-like slabs derived by termination of the three-dimensional CaNbO_{3} perovskite structure along the $a b$ plane. The rubidium ions ($4 / \mathrm{mmm}$ symmetry) are located in the interstitial space.

Related literature

For the synthesis of $\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$, see: Dion et al. (1981). For related three-layer Dion-Jacobson analogues, see: $\mathrm{CsCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ (Dion et al., 1984); $\mathrm{RbSr}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ (Thangadurai et al., 2001); $\mathrm{KCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ (Fukuoka et al., 2000). For the application of Dion-Jacobson phases, see: Thangadurai et al. (2001); Li et al. (2007); Ida et al. (2008); Compton \& Osterloh (2009). For properties of $\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$, see: Thangadurai \& Weppner (2001, 2004); Byeon et al. (2003).

Experimental

Crystal data

```
RbCa2}\mp@subsup{\textrm{Nb}}{3}{}\mp@subsup{\textrm{O}}{10}{
Mr=604.34
Tetragonal, P4/mmm
a=3.85865 (6) \AA
c=14.9108 (3) \AA
V=222.01 (1) \AA \AA
Z=1
```


$\mathrm{Cu} K \alpha$ radiation

```
\(T=298 \mathrm{~K}\)
Specimen shape: flat sheet
\(10 \times 15 \times 1 \mathrm{~mm}\)
Specimen prepared at 1423 K
Particle morphology: plate-like, white
```


Data collection

PANalytical X'pert PRO diffractometer Specimen mounting: packed powder pellet

Refinement

$R_{\mathrm{p}}=0.035$
$R_{\text {wp }}=0.053$
$R_{\text {exp }}=0.008$
$S=2.54$
Wavelength of incident radiation: 1.54178 A

Profile function: pseudo-Voigt

Specimen mounted in reflection mode
Scan method: continuous
$2 \theta_{\text {min }}=10.0,2 \theta_{\text {max }}=110.0^{\circ}$
Increment in $2 \theta=0.02^{\circ}$

238 reflections

26 parameters
Preferred orientation correction: March-Dollase (Dollase, 1986) AXIS 1 Ratio $=0.95964, h=k=0$, $l=1$; correction range: $\mathrm{min}=$ $0.94007, \max =1.13156$

Data collection: X'pert Data Collector (PANalytical, 2003); cell refinement: GSAS (Larson \& Von Dreele, 2000) and EXPGUI (Toby, 2001); data reduction: X'pert Data Collector; method used to solve structure: coordinates taken from an isotypic compound (Thangadurai et al., 2001); program(s) used to refine structure: GSAS and EXPGUI; molecular graphics: VESTA (Momma \& Izumi, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

The authors are grateful for financial support by the National Natural Science Foundation of China, the 973 Projects of China and the Program for New Century Excellent Talents in Universities (NCET).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2107).

References

Byeon, S. H., Kim, H. J., Kim, D. K. \& Hur, N. H. (2003). Chem. Mater. 15, $383-$ 389.

Compton, O. C. \& Osterloh, F. E. (2009). J. Phys. Chem. C., 113, 479-485.
Dion, M., Ganne, M. \& Tournoux, M. (1981). Mater. Res. Bull. 16, 1429-1435.
Dion, M., Ganne, M. \& Tournoux, M. (1984). Rev. Chim. Mineral. 21, 92-103. Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.
Ida, S., Ogata, C., Eguchi, M., Youngblood, W. J., Mallouk, T. E. \& Matsumoto, Y. (2008). J. Am. Chem. Soc. 130, 7052-7059.

Fukuoka, H., Isami, T. \& Yamanaka, S. (2000). J. Solid State Chem. 151, 40-45.
Larson, A. C. \& Von Dreele, R. B. (2000). GSAS. Los Alamos National Laboratory, New Mexico, USA.
Li, L., Ma, R., Ebina, Y., Fukuda, K., Takada, K. \& Sasaki, T. (2007). J. Am. Chem. Soc. 129, 8000-8007
Momma, K. \& Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.
PANalytical (2003). X'pert Data collector. PANalytical BV, Almelo, The Netherlands.
Thangadurai, V., Beurmann, P. S. \& Weppner, W. J. (2001). Solid State Chem. 158, 279-289.
Thangadurai, V. \& Weppner, W. (2001). Ionics, 7, 22-31
Thangadurai, V. \& Weppner, W. (2004). Solid State Ionics, 174, 175-183.
Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.
Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, i44 [doi:10.1107/S1600536809018157]

$\mathrm{RbCa}_{2} \mathbf{N b}_{3} \mathrm{O}_{\mathbf{1 0}}$ from X-ray powder data

Zhen-Hua Liang, Kai-Bin Tang, Qian-Wang Chen and Hua-Gui Zheng

S1. Comment

The Dion-Jacobson phase which was first discovered by Dion et al. (1981), has a general formula $\mathrm{A}^{\prime}\left[\mathrm{A}_{n-1} \mathrm{~B}_{\mathrm{n}} \mathrm{O}_{3 n+1}\right]$, where A'is a monovalent ion, A is a divalent alkaline earth metal ion and B is a tetravalent or pentavalent transition metal ion. Related crystal structures of three-layer Dion-Jacobson phase have been reported for $\mathrm{KCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ (Dion et al., 1984), $\mathrm{RbSr}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ (Thangadurai et al., 2001), and $\mathrm{KCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ (Fukuoka et al., 2000). Although the three-layer Dion-Jacobson phase $\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ was first synthesized by Dion et al. (1981), its crystal structure has not yet been reported. The structure of $\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ has now been refined by the Rietveld method from powder diffraction data in the present communication.
The observed, calculated and intensities difference plots of the Rietveld refinement are shown in Fig. 1. There are some $00 l$ preferential orientation which were often observed in the Rietveld refinement of the layered perovskites. Then we applied the March-Dollase option for a correction in the EXPGUI program and obtain the best result finally.

The structure of the compound is illustrated in Fig. 2. The structure consists of three layers of corner-sharing NbO_{6} octahedra that run perpendicular to the c axis; adjacent sets of layers are staggered.

Table 1 shows refined interatomic distances and angles for the $\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ structure. The octahedra forming the inner layer are less distorted with $\mathrm{Nb}-\mathrm{O}$ distances ranging from 1.876 (7) to 1.92932 (3) \AA (Table 2), which is typical for layered perovskites involving $\mathrm{Nb}(\mathrm{V})$. As it is well known in layered perovskites, the NbO octahedra forming the outer layer of the slabs are characterized by off-centering of the Nb atoms, leading to four equal equatorial $\mathrm{Nb}-\mathrm{O}$ distances within the perovskite layers [1.9663 (11) \AA] , a short $\mathrm{Nb}-\mathrm{O}$ bond toward the interlayer spacing [1.650 (8) \AA], and a long opposite $\mathrm{Nb}-\mathrm{O}$ bond [2.379 (7) \AA]. Such a distortion is quite similar to that encountered in homologous niobates and tantalates where the niobium shows an out-of-plane distortion, moving away from the more positively charged calcium towards the rubidium layer. Similar behavior has been observed in a number of d^{0} systems containing niobium, tantalum, and titanium. This has been attributed to a second-order Jahn-Teller effect. Concerning the interlayer, the rubidium ions are coordinated with eight terminal oxygen atoms to form the same eight $\mathrm{Rb}-\mathrm{O}$ bonds [3.318(4) \AA]. These distances, as for the $\mathrm{Ca}-\mathrm{O}$ bonds $[2.560(4)-2.9207(22) \AA$] are close to those commonly observed in layered perovskites.

S2. Experimental

$\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ powders were prepared by a conventional solid state reaction described previously (Byeon et al., 2003). All starting materials were of analytical grade and were used without further purification. Stoichiometric amounts of CaCO_{3} and $\mathrm{Nb}_{2} \mathrm{O}_{5}$ with a 50% molar excess of $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ were mixed together and heated in air at 1423 K for 24 h (heating rate 5 $\mathrm{K} / \mathrm{min}$). The calcination procedure was repeated one time after grinding to ensure a complete reaction. A 50% molar excess of $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ was used in the reaction to offset the volatilization of the alkali oxides at the synthesis temperature. The products were washed thoroughly with distilled water to remove excess alkali oxides, and were then dried at 393 K overnight.

S3. Refinement

All peaks of the XRD pattern could be indexed on a tetragonal cell and the systematic absences show simple tetragonal symmetry. The $\mathrm{P} 4 / \mathrm{mmm}$ crystal structure of $\mathrm{RbSr}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ (Thangadurai et al., 2001) was used as a starting model for the Rietveld refinement of the structure of $\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$. The corresponding isotropic atomic displacement parameters of all oxygen atoms are constrained to be equal. The March-Dollase option in the EXPGUI program was applied to correct $00 l$ preferential orientation which were often observed in the Rietveld refinement of the layered perovskites.

Figure 1

Rietveld difference plot for the multi-phase refinement of $\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$. The red crosses, and green and pink lines show respectively the observed, calculated and difference plots. Calculated Bragg reflection positions are indicated by black lines for the $\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ phase.

Figure 2
The crystal structure of $\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$. blue octahedron show NbO_{3} units with Nb^{5+} cations as black spheres and O^{2-} anions as red spheres. Large green spheres represent Ca^{2+} cations and large blue spheres Rb^{+}cations.

Rubidium dicalcium triniobate(V)

Crystal data

$\mathrm{RbCa}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$
$M_{r}=604.34$
Tetragonal, $P 4 / \mathrm{mmm}$
Hall symbol: -P 42
$a=3.85865$ (6) \AA
$c=14.9108$ (3) \AA
$V=222.01(1) \AA^{3}$
$Z=1$
$D_{\mathrm{x}}=4.520 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
$T=298 \mathrm{~K}$
Particle morphology: plate-like
white
flat sheet, $10 \times 15 \mathrm{~mm}$
Specimen preparation: Prepared at 1423 K

Data collection

PANalytical X'pert PRO
diffractometer
Radiation source: sealed tube
Graphite monochromator

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R_{\mathrm{p}}=0.035$
$R_{\text {wp }}=0.053$
$R_{\text {exp }}=0.008$
$R\left(F^{2}\right)=0.08530$
$\chi^{2}=6.452$
? data points
Profile function: pseudo-Voigt

Specimen mounting: packed powder pellet
Data collection mode: reflection
Scan method: continuous
$2 \theta_{\text {min }}=10.008^{\circ}, 2 \theta_{\max }=109.985^{\circ}, 2 \theta_{\text {step }}=0.017^{\circ}$

26 parameters
0 restraints
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0677 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.020$
Preferred orientation correction: March-Dollase (Dollase, 1986) AXIS 1 Ratio $=0.95964, \mathrm{~h}=\mathrm{k}=$ $0,1=1$. Prefered orientation correction range: $\min =0.94007, \mathrm{Max}=1.13156$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Rb 1	0.5	0.5	0.5	$0.0433(8)^{*}$
Ca 1	0.5	0.5	$0.14706(19)$	$0.0281(8)^{*}$
Nb 1	0.0	0.0	0.0	$0.0127(6)^{*}$
Nb 2	0.0	0.0	$0.28537(8)$	$0.0134(5)^{*}$
O 1	0.0	0.5	0.0	$0.0716(14)^{*}$
O 2	0.0	0.0	$0.1258(5)$	$0.0716(14)^{*}$
O 3	0.0	0.5	$0.2599(4)$	$0.0716(14)^{*}$
O 4	0.0	0.0	$0.3960(6)$	$0.0716(14)^{*}$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Rb1}-\mathrm{O} 4$	3.138 (4)	$\mathrm{Ca} 1-\mathrm{O} 3$	2.560 (4)
$\mathrm{Rb} 1-\mathrm{O} 4{ }^{\text {i }}$	3.138 (4)	$\mathrm{Ca} 1-\mathrm{O} 3{ }^{\text {ii }}$	2.560 (4)
$\mathrm{Rb1}-\mathrm{O} 4{ }^{\text {ii }}$	3.138 (4)	$\mathrm{Ca} 1-\mathrm{O}^{\text {iv }}$	2.560 (4)
$\mathrm{Rb1}-\mathrm{O} 4{ }^{\text {iii }}$	3.138 (4)	$\mathrm{Ca} 1-\mathrm{O}^{\text {v }}$	2.560 (4)
Rbl - O 4	3.138 (4)	$\mathrm{Nb} 1-\mathrm{Ol}^{\text {vi }}$	1.9293 (1)
Rb1-O4	3.138 (4)	$\mathrm{Nb} 1-\mathrm{O} 1$	1.9293 (1)
Rbl - O 4	3.138 (4)	$\mathrm{Nb} 1-\mathrm{O} 1^{\text {vii }}$	1.9293 (1)
$\mathrm{Rb} 1-\mathrm{O} 4$	3.138 (4)	$\mathrm{Nb} 1-\mathrm{Ol}^{\text {iv }}$	1.9293 (1)
$\mathrm{Cal}-\mathrm{O} 1$	2.921 (2)	$\mathrm{Nb} 1-\mathrm{O} 2$	1.877 (7)
$\mathrm{Ca}-\mathrm{Ol}^{\text {ii }}$	2.921 (2)	$\mathrm{Nb} 1-\mathrm{O} 2$	1.877 (7)
$\mathrm{Cal}-\mathrm{Ol}^{\text {iv }}$	2.921 (2)	$\mathrm{Nb} 2-\mathrm{O} 2$	2.379 (7)
$\mathrm{Ca}-\mathrm{Ol}^{\text {v }}$	2.921 (2)	$\mathrm{Nb} 2-\mathrm{O}^{\text {vi }}$	1.9663 (11)
$\mathrm{Ca} 1-\mathrm{O} 2$	2.7468 (9)	$\mathrm{Nb} 2-\mathrm{O} 3$	1.9663 (11)
$\mathrm{Ca} 1-\mathrm{O}^{2}{ }^{\text {i }}$	2.7468 (9)	$\mathrm{Nb} 2-\mathrm{O} 3{ }^{\text {vii }}$	1.9663 (11)
$\mathrm{Ca} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.7468 (9)	$\mathrm{Nb} 2-\mathrm{O}^{\text {iv }}$	1.9663 (11)
$\mathrm{Ca} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.7468 (9)	$\mathrm{Nb} 2-\mathrm{O} 4$	1.650 (8)
$\mathrm{O} 1{ }^{\text {vi}}-\mathrm{Nb} 1-\mathrm{O} 1$	180.0	$\mathrm{O} 1{ }^{\text {iv }}-\mathrm{Nb} 1-\mathrm{O} 2$	90.0
$\mathrm{O} 1{ }^{\text {vi }}-\mathrm{Nb} 1-\mathrm{O} 1^{\text {vii }}$	90.0	$\mathrm{O} 2-\mathrm{Nb} 1-\mathrm{O} 2$	180.0

supporting information

$\mathrm{O} 1^{\text {vi }}-\mathrm{Nb} 1-\mathrm{O} 1^{\text {iv }}$	90.0	$\mathrm{O} 3{ }^{\text {vi}}-\mathrm{Nb} 2-\mathrm{O} 3$	157.8 (3)
$\mathrm{O} 1{ }^{\text {vi}}-\mathrm{Nb} 1-\mathrm{O} 2$	90.0	$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{Nb} 2-\mathrm{O} 3{ }^{\text {vii }}$	87.87 (6)
$\mathrm{O} 1{ }^{\text {vi}}-\mathrm{Nb} 1-\mathrm{O} 2$	90.0	$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{Nb} 2-\mathrm{O} 3{ }^{\text {iv }}$	87.87 (6)
$\mathrm{O} 1-\mathrm{Nb} 1-\mathrm{Ol}^{\text {vii }}$	90.0	$\mathrm{O} 3{ }^{\text {vi}}-\mathrm{Nb} 2-\mathrm{O} 4$	101.12 (16)
$\mathrm{O} 1-\mathrm{Nb} 1-\mathrm{O}^{1{ }^{\text {iv }}}$	90.0	$\mathrm{O} 3-\mathrm{Nb} 2-\mathrm{O} 3{ }^{\text {vii }}$	87.87 (6)
$\mathrm{O} 1-\mathrm{Nb} 1-\mathrm{O} 2$	90.0	$\mathrm{O} 3-\mathrm{Nb} 2-\mathrm{O}^{3 \mathrm{iv}}$	87.87 (6)
$\mathrm{O} 1-\mathrm{Nb} 1-\mathrm{O} 2$	90.0	$\mathrm{O} 3-\mathrm{Nb} 2-\mathrm{O} 4$	101.12 (16)
$\mathrm{O} 1^{\text {vii }}-\mathrm{Nb} 1-\mathrm{O} 1^{\text {iv }}$	180.0	$\mathrm{O} 3{ }^{\text {vii }}-\mathrm{Nb} 2-\mathrm{O} 3{ }^{\text {iv }}$	157.8 (3)
$\mathrm{O} 1^{\text {vii }}-\mathrm{Nb} 1-\mathrm{O} 2$	90.0	$\mathrm{O} 3{ }^{\text {vii }}-\mathrm{Nb} 2-\mathrm{O} 4$	101.12 (16)
$\mathrm{O} 1{ }^{\text {vii }}-\mathrm{Nb} 1-\mathrm{O} 2$	90.0	$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Nb} 2-\mathrm{O} 4$	101.12 (16)
$\mathrm{O} 1{ }^{\text {iv }}-\mathrm{Nb} 1-\mathrm{O} 2$	90.0		

Symmetry codes: (i) $x, y+1, z$; (ii) $x+1, y, z$; (iii) $x+1, y+1, z$; (iv) $-y+1, x, z$; (v) $-y+1, x+1, z$; (vi) $x, y-1, z$; (vii) $-y, x, z$.

