Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1R,3S,5R,6S)-6-Acetoxy-8-methyl-3-(ptolvlsulfonvloxy)-8-azoniabicvclo[3.2.1]octane (2R,3R)-2,3-bis(benzoyloxy)-3carboxypropanoate

Li-Min Yang, Yi-Fan Xie, Ya-Fang Gu, Hong-Zhuan Chen and Yang Lu*

Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, South Chongging Road 280, Shanghai 200025, People's Republic of China Correspondence e-mail: huaxue@shsmu.edu.cn

Received 6 January 2009; accepted 3 April 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.063; wR factor = 0.125; data-to-parameter ratio = 14.3.

The title compound, $C_{17}H_{24}NO_5S^+ \cdot C_{18}H_{13}O_8^-$, is the key intermediate during the preparation of lesatropane [systematic name (1R,3S,5R,6S)-6-acetoxy-3-(4-methylphenylsulfonyloxy)tropane], a potential antiglaucoma agent. The tertiary N atom of the tropane ring is involved in intermolecular $N-H \cdots O$ hydrogen bonding, and the carboxylate groups are involved in intermolecular O-H···O hydrogen bonding.

Related literature

For the crystal structure of lesatropane, see: Yang et al. (2008). For its improved agonistic activity compared to its racemic counterpart, see: Zhu et al. (2008). For synthetic details, see: Yang & Wang (1998).

V = 3534.3 (4) Å³

Mo $K\alpha$ radiation $\mu = 0.16 \text{ mm}^{-1}$

 $0.31 \times 0.16 \times 0.08 \text{ mm}$

18779 measured reflections

6550 independent reflections 5135 reflections with $I > 2\sigma(I)$

Z = 4

T = 293 K

 $R_{\rm int} = 0.081$

Experimental

Crystal data

$C_{17}H_{24}NO_5S^+ \cdot C_{18}H_{13}O_8^-$
$M_r = 711.72$
Orthorhombic, $P2_12_12_1$
a = 7.4153 (5) Å
b = 19.2664 (12) Å
c = 24.7388 (16) Å

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\min} = 0.863, T_{\max} = 1.000$
(expected range = 0.852 - 0.987)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	H atoms treated by a mixture of
$wR(F^2) = 0.125$	independent and constrained
S = 1.06	refinement
6550 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
459 parameters	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$
1 restraint	Absolute structure: Flack (1983),
	3094 Friedel pairs
	Flack parameter: 0.03 (12)

Table 1 (Å 0)

Hydrogen-bond	geometry (A, $^{\circ}$).	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots O1^{i}$ $O4 - H4 \cdots O2^{i}$	0.860 (18) 0.82	1.89 (2) 1.66	2.699 (4) 2.460 (3)	156 (3) 164
	4			

Symmetry code: (i) x - 1, y, z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Fund of the Science and Technology Commission of Shanghai Municipality (Key item, grant No. 06DZ19001) and the Shanghai Municipal Education Commission Fund (grant No. 06BZ009). We thank the Shanghai Institute of Organic Chemistry for the X-ray data collection and analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2139).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, L. & Wang, H. (1998). Acta Pharm. Sin. 33, 832-835.
- Yang, L.-M., Zhu, L., Niu, Y.-Y., Chen, H.-Z. & Lu, Y. (2008). Acta Cryst. E64, o2331.
- Zhu, L., Yang, L.-M., Cui, Y.-Y., Zheng, P.-L., Niu, Y.-Y., Wang, H., Lu, Y., Ren, Q.-S., Wei, P.-J. & Chen, H.-Z. (2008). Acta Pharmacol. Sin. 29, 177-184.

supporting information

Acta Cryst. (2009). E65, o1037 [doi:10.1107/S1600536809012732]

(1*R*,3*S*,5*R*,6*S*)-6-Acetoxy-8-methyl-3-(*p*-tolylsulfonyloxy)-8-azoniabicyclo-[3.2.1]octane (2*R*,3*R*)-2,3-bis(benzoyloxy)-3-carboxypropanoate

Li-Min Yang, Yi-Fan Xie, Ya-Fang Gu, Hong-Zhuan Chen and Yang Lu

S1. Comment

 6β -Acetoxy- 3α -paramethylbenzene sulfonyloxy tropane is a potent muscarinic receptor agonist and has been shown to be a promising candidate as a new antiglaucoma agent. The pharmacology results suggest that the (1*R*,3*S*,5*R*,6*S*) isomer (lesatropane), the crystal structure has been reported (Yang *et al.*, 2008), displays an improved agonistic activity compared to its racemic counterpart (Zhu *et al.*, 2008). The enantiopure isomer was obtained by the optical resolution of the racemic tropane alkaloids with the chiral acid (Yang & Wang, 1998). We report here the crystal structure of the diastereoisomeric salt, (1*R*,3*S*,5*R*,6*S*)-6-acetoxy-3-paramethylbenzene sulfonyloxytropane and (-)-*O'*,*O'*-dibenzyl-*L*tartaric acid (1/1), formed during the resolution. The three-dimensional structure of the title compound is shown in Fig.1. X-ray structure analytical data showed that the diastereoisomeric salt is produced by the formation of hydrogen bonds. The nitrogen atom of the tropane alkaloid is protonated to form the cation and the chiral acid is deprotonated to form anion. Each anion interacts with a cation (*via* N atom) forming N–H…O hydrogen bond, and chiral acid anions are linked by O–H…O hydrogen bond with each other (Fig. 2).

S2. Experimental

Rac 6β -acetoxy- 3α -paramethylbenzene sulfonyloxytropane (586.3 mg, 1.66 mmol) and (-)-2,3-dibenzoyl-*L*-tartaric acid (728.3 mg, 2.03 mmol) were dissolved in methanol. After disposing at room temperature for 12 h, the title compound as precipitate was collected by filtration. Three recrystallizations of the crude product from anhydrous ethanol gave pure colorless crystals, 30% yield, m.p. 443–445 K, $[\alpha]_D^{20}$ -14.23 (c = 0.084, EtOH).

S3. Refinement

H atoms were located in a difference Fourier map and refined isotropically with bond restraint: N1–H1A=0.860 (18)Å, other H atoms were positioned geometrically and treated as riding, with C–H and O–H bond lengths constrained to 0.96Å for methyl, 0.97Å for methylene, 0.98Å for methine, 0.93Å for Csp²—H and 0.82Å for hydroxyl, with $U_{iso}(H) = 1.5U_{eq}$ (methyl C and hydroxyl O) and $U_{iso}(H) = 1.2U_{eq}$ (methylene and methine C). The 3094 Friedel pairs were used in the measurement of the Flack parameter (Flack, 1983).

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The intermolecular N-H···O and O-H···O hydrogen bonds (dashed lines).

(1R, 3S, 5R, 6S) - 6 - Acetoxy - 8 - methyl - 3 - (p-tolyl sulfonyloxy) - 8 - azonia bicyclo [3.2.1] octane (2R, 3R) - 2, 3 -

bis(benzoyloxy)-3-carboxypropanoate

 $D_x = 1.338 \text{ Mg m}^{-3}$ Melting point: 445 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3212 reflections $\theta = 4.5-39.6^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 293 KPrismatic, colorless $0.31 \times 0.16 \times 0.08 \text{ mm}$ Data collection

Bruker SMART CCD area-detector	18779 measured reflections
diffractometer	6550 independent reflections
Radiation source: fine-focus sealed tube	5135 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.081$
φ and ω scans	$\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(<i>SADABS</i> ; Sheldrick, 2002)	$k = -23 \rightarrow 22$
$T_{\min} = 0.863, T_{\max} = 1.000$	$l = -29 \rightarrow 25$
Refinement $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=$	Hadre and site la setient informed from
Remember on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H atoms treated by a mixture of independent
$wR(F^2) = 0.125$	and constrained refinement
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0406P)^2]$
6550 reflections	where $P = (F_o^2 + 2F_c^2)/3$
459 parameters	$(\Delta/\sigma)_{max} = 0.002$
1 restraint	$\Delta\rho_{max} = 0.19$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta\rho_{min} = -0.17$ e Å ⁻³
direct methods	Absolute structure: Flack (1983), 3094 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.03 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.43913 (19)	0.80222 (5)	0.07318 (5)	0.0665 (4)	
01	0.8630 (3)	0.65740 (12)	0.25014 (9)	0.0447 (6)	
O2	0.9488 (3)	0.64372 (13)	0.33606 (9)	0.0503 (7)	
03	0.3089 (4)	0.53125 (14)	0.33986 (11)	0.0635 (8)	
O4	0.2542 (3)	0.63195 (15)	0.29838 (11)	0.0607 (8)	
H4	0.1541	0.6282	0.3121	0.091*	
05	0.6110 (3)	0.64586 (10)	0.37312 (8)	0.0344 (5)	
O6	0.6373 (5)	0.76048 (13)	0.37990 (11)	0.0713 (9)	
O7	0.6535 (3)	0.52908 (11)	0.29852 (8)	0.0381 (6)	
08	0.4990 (4)	0.47399 (14)	0.23402 (11)	0.0665 (8)	
09	0.3342 (3)	0.51778 (11)	0.09819 (9)	0.0437 (6)	
O10	0.6199 (4)	0.54125 (18)	0.11767 (14)	0.0864 (10)	
011	0.3041 (4)	0.74042 (11)	0.08365 (9)	0.0567 (8)	
O12	0.5495 (5)	0.81346 (16)	0.12012 (13)	0.0827 (10)	
013	0.5200 (6)	0.78393 (14)	0.02309 (13)	0.1013 (14)	

N1	0.0691 (4)	0.60385 (15)	0.17050 (12)	0.0403 (7)
C1	0.5418 (4)	0.58904 (15)	0.28989 (13)	0.0312 (7)
H1	0.5325	0.5974	0.2509	0.037*
C2	0.6353 (4)	0.65030 (16)	0.31564 (11)	0.0308 (7)
H2	0.5784	0.6931	0.3026	0.037*
C3	0.8340 (4)	0.65123 (16)	0.29961 (14)	0.0337 (8)
C4	0.3536 (5)	0.57930 (19)	0.31248 (13)	0.0382 (8)
C5	0.6121 (5)	0.70611 (18)	0.40081 (14)	0.0425 (9)
C6	0.5822 (5)	0.69397 (18)	0.45963 (14)	0.0431 (9)
C7	0.5218 (6)	0.6320 (2)	0.48022 (15)	0.0561 (11)
H7	0.5015	0.5949	0.4570	0.067*
C8	0.4907 (7)	0.6240 (2)	0.53502 (18)	0.0750 (14)
H8	0.4476	0.5821	0.5485	0.090*
C9	0.5241 (7)	0.6785 (3)	0.56931 (18)	0.0791 (15)
H9	0.5055	0.6732	0.6063	0.095*
C10	0.5841 (7)	0.7403 (3)	0.54952 (18)	0.0780 (15)
H10	0.6052	0.7771	0.5730	0.094*
C11	0.6139 (6)	0.7486 (2)	0.49489 (17)	0.0663 (12)
H11	0.6553	0.7909	0.4817	0.080*
C12	0.6235 (5)	0.47548 (18)	0.26441 (14)	0.0431 (9)
C13	0.7706 (6)	0.42341 (17)	0.26702 (14)	0.0464 (10)
C14	0.7538 (7)	0.36354 (19)	0.23575 (15)	0.0697 (14)
H14	0.6463	0.3543	0.2178	0.084*
C15	0.8981 (10)	0.3175 (2)	0.2315 (2)	0.0876 (19)
H15	0.8885	0.2781	0.2100	0.105*
C16	1.0522 (10)	0.3306 (3)	0.2589 (2)	0.093 (2)
H16	1.1479	0.2996	0.2560	0.111*
C17	1.0715 (7)	0.3883 (2)	0.2910 (2)	0.0732 (14)
H17	1.1785	0.3962	0.3096	0.088*
C18	0.9293 (6)	0.43443 (18)	0.29510 (16)	0.0529 (11)
H18	0.9405	0.4734	0.3170	0.064*
C19	0.2672 (5)	0.61242 (17)	0.16238 (12)	0.0380 (8)
H19	0.3349	0.5816	0.1865	0.046*
C20	0.3139 (5)	0.68767 (17)	0.17330 (13)	0.0448 (9)
H20A	0.4423	0.6944	0.1680	0.054*
H20B	0.2865	0.6984	0.2107	0.054*
C21	0.2105 (6)	0.73772 (18)	0.13658 (14)	0.0509(11)
H21	0.2102	0.7841	0.1529	0.061*
C22	0.0196 (6)	0.71503 (18)	0.12643 (15)	0.0533 (10)
H22A	-0.0239	0.7379	0.0940	0.064*
H22B	-0.0548	0.7305	0.1563	0.064*
C23	-0.0048(5)	0.63679 (18)	0.11971 (14)	0.0450 (9)
H23	-0.1322	0.6249	0.1146	0.054*
C24	0.1113 (5)	0.60421 (18)	0.07602 (13)	0.0459 (10)
H24A	0.1233	0.6353	0.0454	0.055*
H24B	0.0591	0.5608	0.0637	0.055*
C25	0.2953 (5)	0.59160 (16)	0.10286 (13)	0.0365 (8)
H25	0.3898	0.6197	0.0859	0.044*

C26	0.5068 (6)	0.4997 (2)	0.10702 (16)	0.0547 (11)
C27	0.5346 (8)	0.4234 (2)	0.10171 (19)	0.0869 (16)
H27A	0.6415	0.4101	0.1210	0.130*
H27B	0.5478	0.4116	0.0642	0.130*
H27C	0.4325	0.3993	0.1165	0.130*
C28	0.0126 (6)	0.53036 (19)	0.17885 (16)	0.0608 (11)
H28A	0.0494	0.5030	0.1484	0.091*
H28B	-0.1162	0.5282	0.1825	0.091*
H28C	0.0682	0.5126	0.2110	0.091*
C29	0.2935 (7)	0.87247 (18)	0.06412 (14)	0.0555 (11)
C30	0.3384 (7)	0.93614 (18)	0.08560 (15)	0.0591 (12)
H30	0.4453	0.9419	0.1047	0.071*
C31	0.2217 (8)	0.9912 (2)	0.07822 (17)	0.0699 (14)
H31	0.2523	1.0342	0.0925	0.084*
C32	0.0617 (8)	0.9846 (2)	0.05054 (16)	0.0696 (14)
C33	0.0230 (9)	0.9193 (2)	0.03008 (17)	0.0857 (17)
H33	-0.0847	0.9128	0.0115	0.103*
C34	0.1363 (8)	0.8643 (2)	0.03609 (16)	0.0794 (17)
H34	0.1069	0.8214	0.0212	0.095*
C35	-0.0664 (10)	1.0455 (3)	0.04588 (19)	0.111 (2)
H35A	-0.1094	1.0580	0.0812	0.167*
H35B	-0.1667	1.0329	0.0234	0.167*
H35C	-0.0043	1.0843	0.0301	0.167*
H1A	0.032 (5)	0.6269 (16)	0.1981 (11)	0.054 (12)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0980 (10)	0.0401 (5)	0.0614 (7)	-0.0053 (6)	0.0372 (7)	0.0059 (5)
01	0.0397 (14)	0.0591 (15)	0.0352 (13)	-0.0003 (13)	0.0084 (11)	0.0051 (11)
O2	0.0320 (14)	0.0785 (18)	0.0404 (14)	0.0036 (14)	0.0004 (12)	-0.0020 (13)
O3	0.0570 (19)	0.0574 (17)	0.076 (2)	-0.0078 (15)	0.0169 (15)	0.0155 (15)
O4	0.0278 (14)	0.087 (2)	0.0668 (18)	0.0102 (15)	0.0113 (13)	0.0265 (16)
O5	0.0368 (13)	0.0345 (12)	0.0318 (12)	0.0018 (11)	0.0078 (10)	-0.0011 (10)
06	0.121 (3)	0.0339 (14)	0.0589 (18)	-0.0120 (16)	0.0077 (18)	-0.0011 (13)
O7	0.0399 (14)	0.0359 (12)	0.0385 (13)	0.0052 (11)	-0.0030 (11)	-0.0047 (10)
08	0.075 (2)	0.0667 (18)	0.0578 (18)	-0.0039 (17)	-0.0186 (16)	-0.0172 (15)
09	0.0515 (17)	0.0386 (13)	0.0409 (14)	0.0016 (12)	-0.0038 (12)	-0.0042 (11)
O10	0.053 (2)	0.086 (2)	0.120 (3)	-0.0026 (19)	-0.015 (2)	0.012 (2)
011	0.095 (2)	0.0355 (13)	0.0397 (15)	-0.0029 (14)	0.0216 (14)	-0.0002 (11)
012	0.077 (2)	0.077 (2)	0.093 (2)	-0.0141 (19)	-0.003 (2)	0.0102 (18)
013	0.159 (4)	0.0518 (18)	0.093 (2)	0.002 (2)	0.081 (2)	0.0111 (16)
N1	0.0452 (19)	0.0415 (17)	0.0341 (17)	-0.0024 (14)	0.0082 (14)	0.0053 (14)
C1	0.0264 (18)	0.0359 (16)	0.0314 (17)	0.0040 (15)	-0.0011 (14)	0.0034 (14)
C2	0.0279 (18)	0.0348 (17)	0.0299 (17)	0.0031 (15)	0.0025 (14)	0.0021 (14)
C3	0.0327 (19)	0.0298 (16)	0.038 (2)	0.0031 (15)	0.0062 (16)	0.0033 (15)
C4	0.034 (2)	0.048 (2)	0.0325 (19)	-0.0028 (18)	0.0006 (16)	0.0029 (16)
C5	0.039 (2)	0.041 (2)	0.047 (2)	-0.0050 (18)	0.0061 (17)	-0.0086 (18)

C6	0.037 (2)	0.047 (2)	0.045 (2)	-0.0001 (18)	0.0039 (17)	-0.0130 (18)
C7	0.067 (3)	0.058 (2)	0.044 (2)	0.007 (2)	0.007 (2)	-0.0068 (19)
C8	0.093 (4)	0.078 (3)	0.054 (3)	0.010 (3)	0.015 (3)	0.007 (2)
C9	0.084 (4)	0.115 (4)	0.038 (3)	0.016 (3)	0.002 (2)	0.001 (3)
C10	0.074 (4)	0.106 (4)	0.054 (3)	0.001 (3)	0.002 (3)	-0.037 (3)
C11	0.073 (3)	0.075 (3)	0.050 (3)	-0.013 (3)	0.007 (2)	-0.020 (2)
C12	0.053 (2)	0.045 (2)	0.031 (2)	-0.0080 (19)	0.0071 (18)	-0.0013 (17)
C13	0.074 (3)	0.0310 (18)	0.035 (2)	0.0024 (19)	0.018 (2)	0.0075 (16)
C14	0.123 (4)	0.046 (2)	0.040 (2)	0.006 (3)	0.020 (2)	0.0053 (19)
C15	0.158 (6)	0.039 (2)	0.066 (3)	0.033 (3)	0.036 (4)	0.004 (2)
C16	0.132 (6)	0.057 (3)	0.090 (4)	0.038 (4)	0.054 (4)	0.026 (3)
C17	0.075 (3)	0.055 (3)	0.089 (3)	0.023 (2)	0.025 (3)	0.026 (2)
C18	0.063 (3)	0.039 (2)	0.057 (2)	0.004 (2)	0.020 (2)	0.0065 (18)
C19	0.048 (2)	0.0395 (18)	0.0269 (18)	-0.0054 (17)	-0.0006 (16)	0.0074 (15)
C20	0.061 (3)	0.043 (2)	0.0304 (19)	-0.0098 (19)	-0.0002 (17)	-0.0058 (16)
C21	0.075 (3)	0.0370 (19)	0.041 (2)	-0.002 (2)	0.026 (2)	0.0010 (16)
C22	0.066 (3)	0.050 (2)	0.043 (2)	0.013 (2)	0.006 (2)	0.0064 (18)
C23	0.037 (2)	0.053 (2)	0.045 (2)	0.0005 (18)	-0.0034 (17)	0.0060 (18)
C24	0.063 (3)	0.0428 (19)	0.0320 (19)	0.0073 (19)	-0.0083 (18)	0.0002 (16)
C25	0.048 (2)	0.0293 (17)	0.0320 (19)	-0.0012 (17)	0.0033 (16)	0.0030 (14)
C26	0.053 (3)	0.062 (3)	0.049 (2)	0.003 (2)	-0.002 (2)	-0.003 (2)
C27	0.114 (5)	0.066 (3)	0.081 (3)	0.034 (3)	-0.019 (3)	-0.010 (3)
C28	0.060 (3)	0.056 (2)	0.066 (3)	-0.013 (2)	0.013 (2)	0.020 (2)
C29	0.099 (4)	0.039 (2)	0.028 (2)	-0.012 (2)	0.013 (2)	-0.0027 (16)
C30	0.094 (4)	0.037 (2)	0.047 (2)	-0.015 (2)	0.013 (2)	-0.0071 (17)
C31	0.127 (5)	0.037 (2)	0.045 (3)	-0.012 (3)	0.017 (3)	-0.0121 (19)
C32	0.123 (5)	0.052 (3)	0.034 (2)	0.006 (3)	0.000 (3)	0.0035 (19)
C33	0.141 (5)	0.068 (3)	0.048 (3)	-0.005 (3)	-0.037 (3)	0.004 (2)
C34	0.157 (5)	0.035 (2)	0.047 (3)	-0.011 (3)	-0.026 (3)	0.0005 (19)
C35	0.183 (7)	0.086 (4)	0.064 (3)	0.055 (4)	0.009 (4)	0.004 (3)

Geometric parameters (Å, °)

<u>S1—013</u>	1.421 (3)	C15—C16	1.353 (7)
S1—012	1.437 (3)	C15—H15	0.9300
S1—O11	1.577 (3)	C16—C17	1.372 (7)
S1—C29	1.746 (4)	C16—H16	0.9300
O1—C3	1.248 (4)	C17—C18	1.383 (5)
O2—C3	1.249 (4)	C17—H17	0.9300
O3—C4	1.194 (4)	C18—H18	0.9300
O4—C4	1.301 (4)	C19—C20	1.515 (5)
O4—H4	0.8200	C19—C25	1.540 (4)
O5—C5	1.348 (4)	C19—H19	0.9800
O5—C2	1.436 (3)	C20—C21	1.530 (5)
O6—C5	1.183 (4)	C20—H20A	0.9700
O7—C12	1.352 (4)	C20—H20B	0.9700
O7—C1	1.437 (3)	C21—C22	1.503 (6)
O8—C12	1.191 (4)	C21—H21	0.9800

O9—C26	1.344 (5)	C22—C23	1.527 (5)
O9—C25	1.456 (4)	C22—H22A	0.9700
O10—C26	1.189 (5)	C22—H22B	0.9700
O11—C21	1.483 (4)	C23—C24	1.518 (5)
N1—C28	1.491 (4)	С23—Н23	0.9800
N1—C19	1.492 (5)	C24—C25	1.537 (5)
N1—C23	1.511 (4)	C24—H24A	0.9700
N1—H1A	0.860 (18)	C24—H24B	0.9700
C1—C2	1.510 (4)	C25—H25	0.9800
C1—C4	1.515 (5)	C26—C27	1.490 (5)
C1—H1	0.9800	С27—Н27А	0.9600
$C^2 - C^3$	1 525 (4)	С27—Н27В	0.9600
C2H2	0.9800	C_{27} H27D	0.9600
C_{2}	1 491 (5)	C_{28} H28A	0.9600
C6-C7	1.491(5) 1.373(5)	C28_H28B	0.9600
C_{0}	1.375(5)	C28 H28C	0.9600
$C_0 = C_1$	1.387(5)	$C_{20} = C_{24}$	1.365(6)
C_{7} H_{7}	1.364(3)	$C_{29} = C_{34}$	1.303(0) 1.378(5)
C = H	0.9300	$C_{29} = C_{30}$	1.378(3)
C8_C9	1.373 (0)	C_{30} C_{31}	1.381 (6)
	0.9300	C30—H30	0.9300
C9—C10	1.362 (6)	C_{31}	1.375(7)
C9—H9	0.9300	C31—H31	0.9300
C10—C11	1.379 (6)	C32—C33	1.386 (6)
C10—H10	0.9300	C32—C35	1.515 (7)
С11—Н11	0.9300	C33—C34	1.360 (7)
C12—C13	1.484 (5)	С33—Н33	0.9300
C13—C18	1.383 (5)	C34—H34	0.9300
C13—C14	1.394 (5)	C35—H35A	0.9600
C14—C15	1.393 (7)	C35—H35B	0.9600
C14—H14	0.9300	C35—H35C	0.9600
O13—S1—O12	120.1 (2)	C20—C19—C25	112.9 (3)
O13—S1—O11	102.92 (17)	N1—C19—H19	110.8
O12—S1—O11	110.05 (17)	C20—C19—H19	110.8
O13—S1—C29	109.95 (19)	С25—С19—Н19	110.8
O12—S1—C29	109.84 (19)	C19—C20—C21	112.5 (3)
O11—S1—C29	102.33 (19)	C19—C20—H20A	109.1
C4—O4—H4	109.5	C21—C20—H20A	109.1
C5—O5—C2	116.8 (2)	C19—C20—H20B	109.1
C12—O7—C1	115.2 (3)	C21—C20—H20B	109.1
C26—O9—C25	115.4 (3)	H20A—C20—H20B	107.8
C21—O11—S1	117.9 (2)	O11—C21—C22	107.7 (3)
C28—N1—C19	113.6 (3)	O11—C21—C20	108.2 (3)
C28—N1—C23	114.4 (3)	C22—C21—C20	112.8 (3)
C19—N1—C23	101.5 (3)	O11—C21—H21	109.4
C28—N1—H1A	107 (2)	C22—C21—H21	109.4
C19—N1—H1A	111 (3)	C20—C21—H21	109.4
C23—N1—H1A	109 (2)	C21—C22—C23	114.6 (3)

O7—C1—C2	107.5 (2)	C21—C22—H22A	108.6
O7—C1—C4	112.1 (3)	C23—C22—H22A	108.6
C2—C1—C4	111.4 (3)	C21—C22—H22B	108.6
O7—C1—H1	108.6	C23—C22—H22B	108.6
C2—C1—H1	108.6	H22A—C22—H22B	107.6
C4—C1—H1	108.6	N1—C23—C24	102.3 (3)
O5—C2—C1	108.3 (2)	N1—C23—C22	106.3 (3)
O5—C2—C3	112.3 (3)	C24—C23—C22	114.7 (3)
C1—C2—C3	110.1 (3)	N1—C23—H23	111.0
05—C2—H2	108.7	С24—С23—Н23	111.0
С1—С2—Н2	108.7	С22—С23—Н23	111.0
C3—C2—H2	108.7	C_{23} C_{24} C_{25}	105.2 (3)
01	127.0 (3)	C23—C24—H24A	110.7
01 - C3 - C2	115.0 (3)	C25—C24—H24A	110.7
02-C3-C2	118.0(3)	C23—C24—H24B	110.7
03-C4-04	126 8 (3)	C25—C24—H24B	110.7
03-C4-C1	120.0(3) 124.1(3)	$H_{24} = C_{24} = H_{24B}$	108.8
04-C4-C1	1090(3)	09-C25-C24	107.2(3)
06	122 8 (3)	09-C25-C19	107.2(3) 1109(2)
06-C5-C6	122.0(3) 126.1(3)	C_{24} C_{25} C_{19}	101.5(2)
05-05-06	120.1(3)	09-C25-H25	111 3
C7 - C6 - C11	118 8 (4)	C_{24} C_{25} H_{25}	111.3
C7 - C6 - C5	123 2 (3)	C19 - C25 - H25	111.3
$C_{11} - C_{6} - C_{5}$	123.2(3) 1180(4)	010-025-025	1222(4)
C6-C7-C8	1210(4)	010 - C26 - C27	122.2(1) 1259(4)
C6-C7-H7	119.5	09-C26-C27	1119(4)
C8-C7-H7	119.5	$C_{26} = C_{27} = H_{27A}$	109.5
C9 - C8 - C7	119.3 (4)	$C_{26} = C_{27} = H_{27R}$	109.5
C9—C8—H8	120.3	$H_{27A} - C_{27} - H_{27B}$	109.5
C7-C8-H8	120.3	$C_{26} = C_{27} = H_{27}C$	109.5
C_{10} C_{9} C_{8}	120.3 120.4(4)	$H_{27} = C_{27} = H_{27} C_{27}$	109.5
C10-C9-H9	119.8	H27B - C27 - H27C	109.5
C8-C9-H9	119.8	N1-C28-H28A	109.5
C9-C10-C11	120.4 (4)	N1-C28-H28B	109.5
C9-C10-H10	119.8	H28A—C28—H28B	109.5
C11—C10—H10	119.8	N1-C28-H28C	109.5
C10-C11-C6	1201(4)	$H_{28A} - C_{28} - H_{28C}$	109.5
C10-C11-H11	119.9	H_{28B} C_{28} H_{28C}	109.5
C6-C11-H11	119.9	C_{34} C_{29} C_{30}	120 3 (4)
08-012-07	122.7 (4)	C_{34} C_{29} S_{1}	120.3(1) 120.3(3)
08-012-013	125.5 (3)	C_{30} C_{29} S_{1}	119.4 (4)
07-012-013	111.6 (3)	$C_{29} = C_{30} = C_{31}$	118 8 (4)
C18—C13—C14	118.8 (4)	C29—C30—H30	120.6
C18—C13—C12	122.9 (3)	C31—C30—H30	120.6
C14—C13—C12	118.0 (4)	C32—C31—C30	122.4 (4)
C15—C14—C13	120.0 (5)	C32—C31—H31	118.8
C15—C14—H14	120.0	C30—C31—H31	118.8
C13—C14—H14	120.0	C31—C32—C33	116.4 (5)

C16—C15—C14	119 5 (5)	C31 - C32 - C35	120.5(4)
C_{16} C_{15} H_{15}	120.3	C_{33}^{33} C_{32}^{32} C_{35}^{35}	120.3(4) 123 1(5)
$C_{10} = C_{15} = H_{15}$	120.3	$C_{33} = C_{32} = C_{33}$	123.1(3)
$C_{14} = C_{15} = 1115$	120.5	$C_{34} = C_{33} = C_{32}$	122.0(3)
	121.9 (5)	C34—C33—H33	118.7
C15—C16—H16	119.0	С32—С33—Н33	118./
C17—C16—H16	119.0	C33—C34—C29	119.5 (4)
C16—C17—C18	118.9 (5)	C33—C34—H34	120.2
С16—С17—Н17	120.5	С29—С34—Н34	120.2
C18—C17—H17	120.5	С32—С35—Н35А	109.5
C13—C18—C17	120.9 (4)	С32—С35—Н35В	109.5
C13—C18—H18	119.6	H35A—C35—H35B	109.5
C17—C18—H18	119.6	С32—С35—Н35С	109.5
N1—C19—C20	107.9 (3)	H35A—C35—H35C	109.5
N1—C19—C25	103.5 (3)	H35B—C35—H35C	109.5
013— <u>81</u> —011—C21	172.7 (3)	C28—N1—C19—C20	-161.2(3)
012 - 81 - 011 - C21	43 5 (3)	C_{23} N1 $-C_{19}$ $-C_{20}$	75.6 (3)
$C_{29} = S_1 = O_{11} = C_{21}$	-732(3)	$C_{28} N_{1} C_{19} C_{25}$	79.0 (3)
$C_{12} = 07 = C_{12} = C_{22}$	-1594(3)	C_{23} N1 C_{19} C_{23}	-44.2(3)
$C_{12} = 07 C_1 = C_2$	77.9(3)	N1 C19 C20 C21	-58.4(4)
$C_{12} = 07 = 07 = 04$	-1521(3)	$C_{25} = C_{19} = C_{20} = C_{21}$	55 3 (4)
$C_{5} = 0_{5} = 0_{2} = 0_{1}$	152.1(5)	$C_{25} = C_{15} = C_{20} = C_{21}$	33.3(4)
$C_{3} = 0_{3} = 0_{2} = 0_{3}$	7(2(2))	S1 = 011 = 021 = 022	140.3(3)
0/C1C205	-70.2(3)	SI = 0II = 02I = 020	-97.5(3)
C4—C1—C2—O5	47.0 (3)	C19 - C20 - C21 - O11	-81.1 (4)
07-C1-C2-C3	47.0 (3)	C19—C20—C21—C22	37.9 (4)
C4—C1—C2—C3	170.1 (3)	O11—C21—C22—C23	81.2 (4)
O5—C2—C3—O1	-177.7 (3)	C20—C21—C22—C23	-38.1 (4)
C1—C2—C3—O1	61.6 (4)	C28—N1—C23—C24	-75.5 (4)
O5—C2—C3—O2	4.5 (4)	C19—N1—C23—C24	47.2 (3)
C1—C2—C3—O2	-116.2 (3)	C28—N1—C23—C22	163.8 (3)
O7—C1—C4—O3	8.4 (5)	C19—N1—C23—C22	-73.5 (3)
C2-C1-C4-O3	-112.1 (4)	C21—C22—C23—N1	56.9 (4)
O7—C1—C4—O4	-173.3 (3)	C21—C22—C23—C24	-55.3 (4)
C2-C1-C4-O4	66.2 (3)	N1—C23—C24—C25	-31.6 (3)
C2—O5—C5—O6	-2.3(5)	C22—C23—C24—C25	83.1 (4)
C2—O5—C5—C6	179.0 (3)	C26—O9—C25—C24	164.0 (3)
Q6—C5—C6—C7	167.8 (4)	C26-09-C25-C19	-82.3(4)
Q5—C5—C6—C7	-13.5 (5)	C_{23} C_{24} C_{25} O_{9}	122.5(3)
06-C5-C6-C11	-10.9(6)	C_{23} C_{24} C_{25} C_{19}	47(3)
05-C5-C6-C11	167.8 (3)	N1 - C19 - C25 - O9	-90.9(3)
C_{11} C_{6} C_{7} C_{8}	0.8(6)	C_{20} C_{10} C_{25} C_{9}	152.8(3)
$C_{1} = C_{0} = C_{1} = C_{0}$	-177.0(4)	1000000000000000000000000000000000000	132.8(3)
$C_{3} = C_{0} = C_{1} = C_{3}$	177.9(4)	N1 - C19 - C23 - C24	-020(3)
$C_{1} = C_{2} = C_{2} = C_{1}$	1.2(7)	$C_{20} = C_{19} = C_{23} = C_{24}$	92.0(3)
$C_{1} = C_{0} = C_{10} = C_{11}$	1.2(0)	$C_{23} = 0_{3} = 0_{20} = 0_{10}$	-0.3 (0)
	-0.7(8)	$U_{23} = U_{3} = U_{20} = U_{20} = U_{20}$	1/9./(3)
C9—C10—C11—C6	0.2 (8)	013 - 81 - 029 - 034	69.6 (4)
C/C6C11C10	-0.3 (7)	012—\$1—C29—C34	-156.1 (3)
C5-C6-C11-C10	178.5 (4)	O11—S1—C29—C34	-39.3 (4)

C1 - 07 - C12 - 08	-93(5)	013 - 81 - C29 - C30	-110.6(3)
C1 - 07 - C12 - C13	166.2 (3)	012 - S1 - C29 - C30	23.7 (4)
08—C12—C13—C18	166.6 (4)	011—S1—C29—C30	140.6 (3)
O7—C12—C13—C18	-8.7 (5)	C34—C29—C30—C31	0.0 (6)
O8—C12—C13—C14	-7.5 (5)	S1—C29—C30—C31	-179.8 (3)
O7—C12—C13—C14	177.1 (3)	C29—C30—C31—C32	0.5 (6)
C18—C13—C14—C15	-2.6 (5)	C30—C31—C32—C33	-0.1 (7)
C12—C13—C14—C15	171.8 (4)	C30—C31—C32—C35	176.9 (4)
C13—C14—C15—C16	1.6 (7)	C31—C32—C33—C34	-0.8 (7)
C14—C15—C16—C17	-0.2 (8)	C35—C32—C33—C34	-177.7 (5)
C15—C16—C17—C18	-0.3 (7)	C32—C33—C34—C29	1.2 (8)
C14—C13—C18—C17	2.2 (5)	C30—C29—C34—C33	-0.9 (7)
C12—C13—C18—C17	-171.9 (3)	S1—C29—C34—C33	179.0 (4)
C16-C17-C18-C13	-0.8 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
N1—H1A···O1 ⁱ	0.86 (2)	1.89 (2)	2.699 (4)	156 (3)
O4—H4…O2 ⁱ	0.82	1.66	2.460 (3)	164

Symmetry code: (i) x-1, y, z.