Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

The Chevrel phase $\mathrm{HgMo}_{6} \mathbf{S}_{8}$

Diala Salloum, Patrick Gougeon* and Michel Potel

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France Correspondence e-mail: Patrick.Gougeon@univ-rennes1.fr

Received 16 March 2009; accepted 2 April 2009

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma($ Mo-S $)=0.001 \AA$; disorder in main residue; R factor $=0.025 ; w R$ factor $=0.026$; data-to-parameter ratio $=36.2$.

The crystal structure of $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$, mercury(II) hexamolybdenum octasulfide, is based on $\left(\mathrm{Mo}_{6} \mathrm{~S}_{8}\right) \mathrm{S}_{6}$ cluster units ($\overline{3}$ symmetry) interconnected through interunit Mo-S bonds. The Hg^{2+} cations occupy large voids between the different cluster units and are covalently bonded to two S atoms. The Hg atoms and one S atom lie on sites with crystallographic $\overline{3}$ and 3 symmetry, respectively. Refinement of the occupancy factor of the Hg atom led to the composition $\mathrm{Hg}_{0.973(3)} \mathrm{Mo}_{6} \mathrm{~S}_{8}$.

Related literature

For isotypic structures, see: Chevrel \& Sergent (1982). For a previous report on the title compound as a polycrystalline material, see: Tarascon et al. (1983). For crystallographic background, see: Becker \& Coppens (1974); Johnson \& Levy (1974).

Experimental

Crystal data

$\mathrm{Hg}_{0.973} \mathrm{Mo}_{6} \mathrm{~S}_{8}$
$M_{r}=1027.3$
Trigonal, $R \overline{3}$
$a=9.4319$ (3) \AA 。
$c=10.7028(3) \AA$
$V=824.57(4) \mathrm{A}^{3}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: analytical (de Meulenaer \& Tompa, 1965) $T_{\text {min }}=0.298, T_{\text {max }}=0.384$

$$
Z=3
$$

Mo $K \alpha$ radiation
$\mu=21.62 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.08 \times 0.07 \times 0.06 \mathrm{~mm}$

[^0]
Refinement

$\begin{array}{ll}R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025 & 31 \text { parameters } \\ w R\left(F^{2}\right)=0.026 & \Delta \rho_{\max }=2.64 \mathrm{e}^{-3} \\ S=1.74 & \Delta \rho_{\min }=-1.57 \mathrm{e}^{-3}\end{array}$
1121 reflections

Table 1
Selected bond lengths (\AA).

Hg1-S1	2.3914 (8)	Mo1-S2	2.4236 (6)
Mo1-Mo1 ${ }^{\text {i }}$	2.7184 (3)	$\mathrm{Mo} 1-\mathrm{S} 2^{\text {iii }}$	2.4896 (8)
$\mathrm{Mo} 1-\mathrm{Mo1}{ }^{\text {ii }}$	2.7515 (3)	$\mathrm{Mo} 1-\mathrm{S}^{2 i}{ }^{\text {i }}$	2.4933 (6)
Mo1-S1	2.4108 (7)	$\mathrm{Mo} 1-\mathrm{S}^{\text {iv }}$	2.4340 (8)

Symmetry codes: (i) $-y, x-y, z$; (ii) $y,-x+y,-z-1$; (iii) $-y-\frac{1}{3}, x-y-\frac{2}{3}, z+\frac{1}{3}$; (iv)
$x-y, x,-z-1$.

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2000 (Petříček \& Dušek, 2000); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: JANA2000.

Intensity data were collected on the Nonius KappaCCD Xray diffactometer system of the Centre de diffractométrie de l'Université de Rennes I (www.cdifx.univ-rennes1.fr).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2226).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147.
Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.
Chevrel, R. \& Sergent, M. (1982). Superconductivity in Ternary Compounds, Vol. 1, edited by O. Fischer, pp. 25-86. New York: Springer.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229

Johnson, C. K. \& Levy, H. A. (1974). International Tables for X-ray Crystallography, edited by J. A. Ibers \& W. C. Hamilton, Vol. IV, pp. 311336. Birmingham: Kynoch Press.

Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. A19, 1014-1018.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Petříček, V. \& Dušek, M. (2000). JANA2000. Institute of Physics, Praha, Czech Republic.
Tarascon, J. M., Waszczak, J. V., Hull, G. W., DiSalvo, F. J. \& Blitzer, L. D. (1983). Solid State Commun. 47, 973-979.

supporting information

Acta Cryst. (2009). E65, i34 [doi:10.1107/S1600536809012495]

The Chevrel phase $\mathrm{HgMo}_{6} \mathbf{S}_{8}$

Diala Salloum, Patrick Gougeon and Michel Potel

S1. Comment

The superconducting compound $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ was first synthesized as a powder sample by Tarascon et al. (1983), but no details were given on its crystal structure. In the present study, we present the crystal structure refinement of $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ that has been determined from single-crystal X-ray diffraction data. The title compound is isostructural with the hexagonal Chevrel phases $M \mathrm{Mo}_{6} X_{8}$ where M is a large cation ($M=$ alkali metal, alkaline earth, lanthanide, actinide etc.; X $=\mathrm{S}, \mathrm{Se}, \mathrm{Te}$) [see, for instance, Chevrel \& Sergent (1982)]. As a consequence its crystal structure consists of octahedral Mo_{6} clusters surrounded by fourteen sulfur atoms with eight of them forming a distorted cube (i-type ligands) and the remaining six capping the faces of the S_{8} cube (a-type ligands). In the structure of $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$, a part of the chalcogen atoms of the $\mathrm{Mo}_{6} \mathrm{~S}_{8}^{i} \mathrm{~S}^{a}{ }_{6}$ unit are shared according to the formula $\mathrm{Mo}_{6} \mathrm{~S}_{2}{ }_{2} \mathrm{~S}^{i}-a_{6 / 2} \mathrm{~S}^{a}{ }_{-i_{6 / 2}}$ to form the three-dimensional Mo-S network. The $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ cluster unit is centered at Wyckoff position $6 b$ (3 symmetry). The Mo-Mo distances within the Mo_{6} clusters are 2.7184 (3) \AA for the intra-triangle distances (distances within the Mo_{3} triangles formed by the Mo atoms related through the threefold axis) and 2.7515 (3) \AA for the inter-triangle distances. Each Mo atom is surrounded by five S atoms (4 S1 and 1 S 2) forming a distorted square-based pyramid. The apex of the pyramid is shared with an adjacent unit and thus ensures the three-dimensional cohesion. Consequently, each $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ unit is interconnected to $6 \mathrm{Mo}_{6} \mathrm{~S}_{8}$ units to form the Mo—S framework. It results from this arrangement that the shortest intercluster Mo1—Mo1 distances between the Mo_{6} clusters is 3.2934 (3) \AA, indicating only weak metal-metal interaction. The Hg^{2+} cations reside in the large eight-coordinate voids formed by the chalcogen atoms from eight different $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ units. They are covalently bonded to two S2 atoms at a distance of 2.3914 (8) \AA.
$\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ was found to be superconducting at 8 K from DC-susceptibility measurements on a batch of single crystals.

S2. Experimental

$\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ was obtained in three steps involving, first, the syntheses of single-crystal of $\mathrm{InMo}_{6} \mathrm{~S}_{8}$ by solid state reaction, then the preparation of the binary compound $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ by 'chimie douce' methods and, finally, the synthesis of the title compound by inserting mercury into the $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ host structure at low temperatures. Single crystals of $\mathrm{InMo}_{6} \mathrm{~S}_{8}$ were obtained from a stoichiometric mixture of $\mathrm{In}_{2} \mathrm{~S}_{3}, \mathrm{MoS}_{2}$ and Mo. All handlings of materials were done in an argon-filled glove box. The initial mixture ($c a 5 \mathrm{~g}$) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at the rate of $300 \mathrm{~K} / \mathrm{h}$ up to 1773 K , the temperature which was held for six hours, then cooled at $100 \mathrm{~K} / \mathrm{h}$ down to 1273 K and finally furnace cooled. $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ was obtained by oxidation of single-crystals of $\mathrm{InMo}_{6} \mathrm{~S}_{8}$ by iodine in a glass tube sealed under vacuum. The end of the tube containing the crystals of the In compound and an excess of iodine was placed in a furnace with about 3 cm of the other end sticking out of the furnace, at about room temperature. The furnace was then heated at 523 K for 96 h . At the end of the reaction, crystals of InI_{3} and I_{2} were obtained at the cooler end of the tube. Finally, $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ was prepared by diffusion of mercury into crystals of $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ in a silica glass tube sealed under vacuum at 673 K during 96 h .

S3. Refinement

The structure was refined using an anisotropic approximation and converged at an reliability factor $R(F)=0.034$. Analyses of the difference Fourier maps revealed positive and negative residual peaks around the Hg atom. Fourth-order tensors in the Gram-Charlier expansion (Johnson \& Levy, 1974) of the mercury displacement factor were used to describe the electron density around this site. The resulting R value dropped to 0.025 for only five additional parameters. Refinement of the occupancy factor of the Hg atom led to the final composition $\mathrm{Hg}_{0.973(3)} \mathrm{Mo}_{6} \mathrm{~S}_{8}$.

Figure 1

View of $\mathrm{HgMo}_{6} \mathrm{~S}_{8}$ along [110].

Figure 2

Plot showing the atom-numbering scheme and the interunit linkage of the $\left(\mathrm{Mo}_{6} \mathrm{~S}_{8}\right) \mathrm{S}_{6}$ cluster units. Displacement ellipsoids are drawn at the 97% probability level.

(I)

Crystal data

$\mathrm{Hg}_{0.973} \mathrm{Mo}_{6} \mathrm{~S}_{8}$
$M_{r}=1027.3$
Trigonal, $R \overline{3}$
Hall symbol: -R 3
$a=9.4319$ (3) Å
$c=10.7028$ (3) \AA
$V=824.57(4) \AA^{3}$
$Z=3$
$F(000)=1374$
$D_{\mathrm{x}}=6.204$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 7043 reflections
$\theta=2.0-42.1^{\circ}$
$\mu=21.62 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Truncated cube, black
$0.08 \times 0.07 \times 0.06 \mathrm{~mm}$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Horizontally mounted graphite crystal monochromator
Detector resolution: 9 pixels mm^{-1}
ω - and φ-scans
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.298, T_{\text {max }}=0.384$
5784 measured reflections
1121 independent reflections
1069 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=39.8^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-16 \rightarrow 16$
$k=-16 \rightarrow 16$
$l=-13 \rightarrow 19$

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.026$
$S=1.74$
1121 reflections
31 parameters

$$
\begin{aligned}
& \text { Weighting scheme based on measured s.u.'s } w= \\
& \quad 1 / \sigma^{2}(F) \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=2.64 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.57 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: B-C type 1 Lorentzian } \\
& \quad \text { isotropic (Becker \& Coppens, 1974) } \\
& \text { Extinction coefficient: } 0.020681
\end{aligned}
$$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Hg1	0	0	0	$0.0339(4)$	$0.973(3)$
Mo1	$-0.01555(2)$	$-0.17363(2)$	$-0.394419(15)$	$0.00748(7)$	
S1	0	0	$-0.22344(8)$	$0.0113(2)$	
S2	$-0.03460(6)$	$-0.31591(7)$	$-0.58775(4)$	$0.00933(17)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	$0.0384(4)$	$0.0384(4)$	$0.0249(6)$	$0.0192(2)$	0	0
Mo1	$0.00780(9)$	$0.00831(9)$	$0.00617(10)$	$0.00391(6)$	$0.00003(5)$	$-0.00036(5)$
S1	$0.0126(2)$	$0.0126(2)$	$0.0088(3)$	$0.00628(12)$	0	0
S2	$0.0097(2)$	$0.0096(2)$	$0.0087(2)$	$0.00476(17)$	$0.00067(15)$	$-0.00032(15)$

Geometric parameters ($\AA,{ }^{\circ}$)

Hg1-S1	2.3914 (8)	Mo1-Mo1 ${ }^{\text {ix }}$	2.7184 (3)
$\mathrm{Hg} 1-\mathrm{Sl}^{\text {i }}$	2.3914 (8)	Mo1-Mo1 ${ }^{\text {x }}$	2.7515 (3)
$\mathrm{Hg} 1-\mathrm{S}^{2 i}$	3.2056 (4)	Mo1-Mo1 ${ }^{\text {xi }}$	2.7184 (4)
$\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	3.2056 (4)	Mol-Mo1 ${ }^{\text {xii }}$	2.7515 (2)
$\mathrm{Hg} 1-\mathrm{S} 2^{\text {iv }}$	3.2056 (7)	Mo1-S1	2.4108 (7)
$\mathrm{Hg} 1-\mathrm{S} 2^{\text {v }}$	3.2056 (7)	Mo1-S2	2.4236 (6)
$\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {vi }}$	3.2056 (8)	Mo1-S2 ${ }^{\text {xiii }}$	2.4896 (8)
$\mathrm{Hg} 1-\mathrm{S} 2^{\text {vii }}$	3.2056 (8)	Mo1-S2 ${ }^{\text {x }}$	2.4933 (6)
Mo1-Mo1 ${ }^{\text {viii }}$	3.8679 (3)	Mo1-S2 ${ }^{\text {xii }}$	2.4340 (8)
Mol-Mol ${ }^{\text {iii }}$	3.2131 (2)		
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 1^{\text {i }}$	180	Mo1 ${ }^{\text {x }}$ - Mo1-Mo1 ${ }^{\text {iii }}$	97.693 (7)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	105.278 (8)	Mo1 ${ }^{\text {x }}$ - Mo1-Mo1 ${ }^{\text {ix }}$	90
S1—Hg1—S2 ${ }^{\text {iii }}$	74.722 (8)	Mo1 ${ }^{\text {x }}$ - Mo1-Mo1 ${ }^{\text {xi }}$	60.398 (8)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iv }}$	105.278 (9)	Mo1 ${ }^{\text {x }}$ - Mo1-Mo1 ${ }^{\text {xii }}$	59.205 (7)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2^{\text {v }}$	74.722 (9)	Mo1 ${ }^{\text {x }}$ - $\mathrm{Mo} 1-\mathrm{S} 1$	115.964 (15)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2^{\text {vi }}$	105.278 (9)	Mo1 ${ }^{\text {x }} \mathrm{Mo}{ }^{\text {M }}$ - S 2	55.677 (18)
S1—Hg1—S2 ${ }^{\text {vii }}$	74.722 (9)	Mo1 ${ }^{\text {x }}$-Mo1-S2 ${ }^{\text {xiii }}$	138.626 (14)
$\mathrm{S} 1{ }^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{S} 1$	180	Mo1 ${ }^{\text {x }}$ - Mo1-S $2^{\text {x }}$	54.776 (13)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2^{\text {ii }}$	74.722 (8)	Mo1 - Mol-S2 ${ }^{\text {xii }}$	114.515 (14)
$\mathrm{S} 1{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	105.278 (8)	Mo1 ${ }^{\text {xi }}$-Mo1-Mol ${ }^{\text {iii }}$	96.739 (8)

S1 ${ }^{\text {i }}$ - $\mathrm{Hg} 1-\mathrm{S}^{\text {iv }}$	74.722 (9)
S1- ${ }^{\text {i }} \mathrm{Hg} 1-\mathrm{S}^{\text {v }}$	105.278 (9)
S1- ${ }^{\text {i }}$ - $\mathrm{Hg} 1-\mathrm{S}^{\text {vi }}$	74.722 (9)
$\mathrm{S} 1{ }^{\text {i }}$ - $\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {vii }}$	105.278 (9)
$\mathrm{S}^{2 i}$ - $\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	180
S2 ${ }^{\text {iii }}$ - $\mathrm{Hg} 1-\mathrm{S}^{2 \mathrm{iv}}$	113.319 (18)
$\mathrm{S} 2^{\text {ii- }} \mathrm{Hg} 1-\mathrm{S} 2^{\text {v }}$	66.681 (18)
$\mathrm{S}^{2 i}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {vi }}$	113.319 (17)
$\mathrm{S} 2{ }^{\text {iii }} \mathrm{Hg} 1-\mathrm{S} 2^{\text {vii }}$	66.681 (17)
S2 ${ }^{\text {iii }}$ - $\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	180
$\mathrm{S} 2{ }^{\text {iii- }}$ - $\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iv }}$	66.681 (18)
S2 ${ }^{\text {iii }}$ - $\mathrm{Hg} 1-\mathrm{S} 2^{\text {v }}$	113.319 (18)
S2 ${ }^{\text {iii- }} \mathrm{Hg} 1-\mathrm{S} 2^{\text {vi }}$	66.681 (17)
$\mathrm{S} 2{ }^{\text {iii }}$ - $\mathrm{Hg} 1-\mathrm{S}^{\text {vii }}$	113.319 (17)
$\mathrm{S} 2{ }^{\text {iv }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	113.319 (18)
$\mathrm{S} 2{ }^{\text {iv }}-\mathrm{Hg} 1-\mathrm{S} 2^{\text {iii }}$	66.681 (18)
$\mathrm{S} 2{ }^{\text {iv }}-\mathrm{Hg} 1-\mathrm{S}^{\text {v }}$	180
$\mathrm{S} 2^{\text {iv }}-\mathrm{Hg} 1-\mathrm{S} 2^{\text {vi }}$	113.319 (19)
$\mathrm{S} 2^{\text {iv }}$ - $\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {vii }}$	66.681 (19)
$\mathrm{S} 2{ }^{\text {v }}-\mathrm{Hg} 1-\mathrm{S} 2^{\text {ii }}$	66.681 (18)
S2 ${ }^{\text {v }}$ - $\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	113.319 (18)
$\mathrm{S} 2{ }^{\text {v }}-\mathrm{Hg} 1-\mathrm{S}^{\text {iv }}$	180
S2 ${ }^{v}-\mathrm{Hg} 1-\mathrm{S} 2^{\text {vi }}$	66.681 (19)
S2 ${ }^{\text {v }}$ - $\mathrm{Hg} 1-\mathrm{S} 2^{\text {vii }}$	113.319 (19)
S2 ${ }^{\text {vi }}$ - $\mathrm{Hg} 1-\mathrm{S} 2^{\text {ii }}$	113.319 (17)
S2 ${ }^{\text {vi }}$ - $\mathrm{Hg} 1-\mathrm{S} 2^{\text {iii }}$	66.681 (17)
S2 ${ }^{\text {vi }}$ - $\mathrm{Hg} 1-\mathrm{S} 2^{\text {iv }}$	113.319 (19)
S2 ${ }^{\text {vi }}$ - $\mathrm{Hg} 1-\mathrm{S}^{\text {v }}$	66.681 (19)
$\mathrm{S} 2{ }^{\text {vi }}-\mathrm{Hg} 1-\mathrm{S} 2^{\text {vii }}$	180
S2 ${ }^{\text {vii }}-\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {ii }}$	66.681 (17)
$\mathrm{S} 2{ }^{\text {vii }}$ - $\mathrm{Hg} 1-\mathrm{S} 2{ }^{\text {iii }}$	113.319 (17)
$\mathrm{S} 2{ }^{\text {vii }}-\mathrm{Hg} 1-\mathrm{S} 2^{\text {iv }}$	66.681 (19)
S2 ${ }^{\text {vii }}$ - $\mathrm{Hg} 1-\mathrm{S} 2^{\text {v }}$	113.319 (19)
S2 ${ }^{\text {vii }}$ - $\mathrm{Hg} 1-\mathrm{S} 2^{\text {vi }}$	180
Mo1 ${ }^{\text {viii- }}$-Mo1—Mo1 ${ }^{\text {iii }}$	133.459 (8)
Mo1 ${ }^{\text {viii- }}$ Mo1-S1	85.136 (14)
Mo1 ${ }^{\text {viii_-Mo1-S2 }}$	85.600 (16)
Mo1 ${ }^{\text {viii- }}$ Mo1-S2 ${ }^{\text {xiii }}$	176.394 (13)
Mo1 ${ }^{\text {viii - }}$ Mo1-S2 ${ }^{\text {x }}$	83.677 (18)
Mol ${ }^{\text {viii-_Mo1-S2 }}{ }^{\text {xii }}$	85.310 (16)
Mo1 ${ }^{\text {iii- }}$ Mo1-Mo1 ${ }^{\text {viii }}$	133.459 (8)
Mo1 ${ }^{\text {iii- }}$-Mo1-Mo1 ${ }^{\text {ix }}$	147.479 (10)
Mo1 ${ }^{\text {iii- }}$ - $\mathrm{Mo} 1-\mathrm{Mo}^{\text {x }}$	97.693 (7)
Mo1ii- ${ }^{\text {iii }}$ Mo1-Mo1 ${ }^{\text {xi }}$	96.739 (8)
Mo1 ${ }^{\text {iii- }}$-Mo1-Mo1 ${ }^{\text {xii }}$	148.317 (7)
Mol ${ }^{\text {iii]-Mo1-S1 }}$	92.988 (11)
Mol ${ }^{\text {iiii-Mo1-S2 }}$	92.457 (12)
Mo1 ${ }^{\text {iii }}$-Mo1-S2 ${ }^{\text {xiii }}$	49.898 (13)

74.722 (9)
105.278 (9)
74.722 (9)
105.278 (9)

180
113.319 (18)
66.681 (18)
113.319 (17)
66.681 (17)

180
66.681 (18)
66.681 (17)
113.319 (17)
113.319 (18)
66.681 (18)

180
113.319 (19)
66.681 (19)
66.681 (18)
113.319 (18)
66.681 (19)
113.319 (19)
113.319 (17)
66.681 (17)
113.319 (19)
66.681 (19)

180
113.319 (17)
66.681 (19)
113.319 (19)
133.459 (8)
85.136 (14)
85.600 (16)
176.394 (13)
83.677 (18)
85.310 (16)
133.459 (8)
147.479 (10)
97.693 (7)
96.739 (8)
92.988 (11)
49.898 (13)

Mo1 ${ }^{\text {xi }}-\mathrm{Mo}$ - $-\mathrm{Mol}^{\text {ix }}$	60.000 (8)
Mol ${ }^{\text {xi_ }}$-Mo1-Mo1 ${ }^{\text {x }}$	60.398 (8)
Mo1 ${ }^{\text {xi_ }}$-Mo1-Mo1 ${ }^{\text {xii }}$	90
Mol ${ }^{\text {xi- }}$-Mo1-S1	55.682 (12)
Mo1 ${ }^{\text {xi- }} \mathrm{Mo} 1-\mathrm{S} 2$	116.065 (18)
Mo1 ${ }^{\text {xi }}$ - Mol-S2 ${ }^{\text {xiii }}$	135.971 (18)
Mo1 ${ }^{\text {xi }}$ - $\mathrm{Mo} 1-\mathrm{S} 2^{\text {x }}$	55.48 (2)
Mo1 ${ }^{\text {xi }}$-Mo1-S2 ${ }^{\text {xii }}$	117.362 (19)
Mo1 ${ }^{\text {xii }}$ - $\mathrm{Mo} 1-\mathrm{Mo} 1^{\text {iii }}$	148.317 (7)
Mo1 ${ }^{\text {xii }}$-Mo1-Mo1 ${ }^{\text {ix }}$	60.398 (6)
Mo1 ${ }^{\text {xii }}$ - $\mathrm{Mo} 1-\mathrm{Mo}^{\text {x }}$	59.205 (7)
Mo1 ${ }^{\text {xii- }} \mathrm{Mo} 1-\mathrm{Mo}{ }^{\text {xi }}$	90
Mol ${ }^{\text {xii - Mol-S1 }}$	115.964 (13)
Mo1 ${ }^{\text {xii }}$-Mo1-S2	57.184 (12)
Mol ${ }^{\text {xii }}$ - $\mathrm{Mo} 1-\mathrm{S} 2^{\text {xiii }}$	133.837 (19)
Mo1 ${ }^{\text {xii }}$ - Mo 1 - $\mathrm{S}^{\text {x }}$	113.894 (15)
Mo1 ${ }^{\text {xii }}$ - Mo1-S $2^{\text {xii }}$	55.318 (14)
S1-Mo1-S2	170.65 (2)
S1-Mo1-S2 ${ }^{\text {xiii }}$	93.53 (2)
S1-Mo1-S2 ${ }^{\text {x }}$	90.323 (17)
S1-Mo1-S2 ${ }^{\text {xii }}$	91.758 (14)
$\mathrm{S} 2-\mathrm{Mo} 1-\mathrm{S} 2{ }^{\text {xiii }}$	95.79 (2)
S2-Mo1-S2 ${ }^{\text {x }}$	87.39 (2)
S2-Mo1-S2 ${ }^{\text {xii }}$	88.750 (19)
S2 ${ }^{\text {xiii }}$-Mo1-S2	95.79 (2)
$\mathrm{S} 2^{\text {xiii }}$ - $\mathrm{Mo} 1-\mathrm{S} 2^{\text {x }}$	99.70 (2)
S2 ${ }^{\text {xiii- }}$ - $\mathrm{Mo} 1-\mathrm{S} 2^{\text {xii }}$	91.39 (2)
$\mathrm{S} 2{ }^{\mathrm{x}}$-Mo1-S2	87.39 (2)
S2 ${ }^{\text {x }}$ - Mo1-S2 ${ }^{\text {xiii }}$	99.70 (2)
S2 ${ }^{\text {- }}$ - Mo1-S2 ${ }^{\text {xii }}$	168.58 (2)
S2 ${ }^{\text {xii }}$-Mo1-S2	88.750 (19)
S2xii-Mo1-S2 ${ }^{\text {xiii }}$	91.39 (2)
S2 ${ }^{\text {xii }}$ - $\mathrm{Mo} 1-\mathrm{S} 2^{\mathrm{x}}$	168.58 (2)
Hg1-S1-Mo1	139.382 (14)
$\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{Mo1}{ }^{\text {ix }}$	139.382 (13)
$\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{Mo1}{ }^{\text {xi }}$	139.382 (14)
Mo1-S1-Mo1 ${ }^{\text {ix }}$	68.64 (2)
Mol-S1-Mo1 ${ }^{\text {xi }}$	68.64 (2)
Mol ${ }^{\text {ix }}$-S1-Mo1	68.64 (2)
Mo1 ${ }^{\text {ix }}$-S1-Mo1 ${ }^{\text {xi }}$	68.64 (2)
Mol ${ }^{\text {xi}}-\mathrm{S} 1-\mathrm{Mo} 1$	68.64 (2)
Mo1 ${ }^{\text {xi_ }}$ S $1-\mathrm{Mo1}{ }^{\text {ix }}$	68.64 (2)
$\mathrm{Hg} 1^{\text {xiv }}$ - $\mathrm{S} 2-\mathrm{Mol}$	125.450 (18)
$\mathrm{Hg} 1^{\text {xiv }}-\mathrm{S} 2-\mathrm{Mo}^{\text {x }}$	98.407 (18)
$\mathrm{Hg} 1^{\text {xiv }}$ - $\mathrm{S} 2-\mathrm{Mo}^{\text {xv }}$	97.225 (18)
$\mathrm{Hg} 1^{\text {xiv }}$ - $\mathrm{S} 2-\mathrm{Mo} 1^{\text {xii }}$	156.59 (2)
Mo1-S2-Mo1 ${ }^{\text {x }}$	69.005 (19)
Mo1-S2-Mo1 ${ }^{\text {xv }}$	132.74 (2)

Mo1 ${ }^{\text {iii- }}$ Mo1-S2 ${ }^{\text {x }}$	49.797 (18)
Mo1 ${ }^{\text {iii- }} \mathrm{Mo} 1-\mathrm{S} 2{ }^{\text {xii }}$	141.203 (18)
Mol ${ }^{\text {ix }}$-Mo1-Mol ${ }^{\text {iii }}$	147.479 (10)
Mol ${ }^{\text {ix }}$ - Mo1-Mo1 ${ }^{\text {x }}$	90
Mo1 ${ }^{\text {ix }}$-Mo1-Mo1 ${ }^{\text {xi }}$	60.000 (8)
Mol ${ }^{\text {ix }}$-Mo1-Mo1 ${ }^{\text {xii }}$	60.398 (6)
Mol ${ }^{\text {ix }}$-Mo1-S1	55.682 (11)
Mol ${ }^{\text {ix }}$-Mo1-S2	117.489 (13)
$\mathrm{Mo} 1^{\text {ix }}$ - $\mathrm{Mo} 1-\mathrm{S} 2^{\text {xiii }}$	131.337 (14)
$\mathrm{Mo} 1^{\mathrm{ix}}$ - $\mathrm{Mo} 1-\mathrm{S} 2^{\mathrm{x}}$	115.28 (2)
Mo1 ${ }^{\text {ix }}$ - Mol-S2 ${ }^{\text {xii }}$	57.566 (18)

Mo1-S2-Mo1 ${ }^{\text {xii }}$	68.041 (15)
Mol ${ }^{\text {x- }}$ S2-Mol	69.005 (19)
Mo1 ${ }^{\text {x }}$-S2- $\mathrm{Mol}^{\text {xv }}$	129.09 (2)
Mo1 ${ }^{\text {x- }}$ S2-Mo1 ${ }^{\text {xii }}$	66.955 (19)
Mo1 ${ }^{\text {xv }}$-S2-Mo1	132.74 (2)
Mol ${ }^{\text {xv }}$ - $\mathrm{S} 2-\mathrm{Mol}^{\text {x }}$	129.09 (2)
Mo1 ${ }^{\text {xv }}$ - $\mathrm{S} 2-\mathrm{Mo}{ }^{\text {xii }}$	80.305 (15)
Mo1 ${ }^{\text {xii- }}$-S2-Mo1	68.041 (15)
Mo1 ${ }^{\text {xii }}$-S2-Mo1 ${ }^{\text {x }}$	66.955 (19)
Mo1 ${ }^{\text {xii }}$-S2-Mo1 ${ }^{\text {xv }}$	80.305 (15)

Symmetry codes: (i) $-x,-y,-z$; (ii) $x+1 / 3, y+2 / 3, z+2 / 3$; (iii) $-x-1 / 3,-y-2 / 3,-z-2 / 3$; (iv) $-y-2 / 3, x-y-1 / 3, z+2 / 3$; (v) $y+2 / 3,-x+y+1 / 3,-z-2 / 3$; (vi) $-x+y+1 / 3,-x-1 / 3, z+2 / 3$; (vii) $x-y-1 / 3, x+1 / 3,-z-2 / 3$; (viii) $-x,-y,-z-1$; (ix) $-y, x-y, z$; (x) $y,-x+y,-z-1$; (xi) $-x+y,-x, z$; (xii) $x-y, x,-z-1$; (xiii) $-y-1 / 3, x-y-2 / 3, z+1 / 3$; (xiv) $x-1 / 3, y-2 / 3, z-2 / 3$; (xv) $-x+y+1 / 3,-x-1 / 3, z-1 / 3$.

[^0]: 5784 measured reflections
 1121 independent reflections 1069 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.044$

