Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

μ -Biphenyl-3,3',4,4'-tetracarboxylato- $\kappa^2 O^3$: O^3 '-bis[triaqua(2,2'-bipyridyl- $\kappa^2 N, N'$)nickel(II)] hexahydrate

Dong Zhou,^a Min Shao,^b Xiang He,^b Yongmei Zhao^b and Shourong Zhu^a*

^aDepartment of Chemistry, Shanghai University, Shanghai 200444, People's Republic of China, and ^bInstrumental Analysis Center, Shanghai University, Shanghai 200444, People's Republic of China

Correspondence e-mail: shourongzhu@shu.edu.cn

Received 13 March 2009; accepted 20 April 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.009 Å; R factor = 0.062; wR factor = 0.172; data-to-parameter ratio = 13.2.

The asymmetric unit of the title complex, $[Ni_2(C_{16}H_6O_8)-(C_{10}H_8N_2)_2(H_2O)_6]\cdot 6H_2O$, contains one Ni^{II} atom, one 2,2'bipyridine ligand, three coordinated water molecules, one-half of a fully deprotonated biphenyl-3,3',4,4'-tetracarboxylate anion and three lattice water molecules. The Ni^{II} atom displays a distorted NiN₂O₄ octahedral coordination formed by one carboxylate O atom, three water O atoms and two N atoms of the chelating ligand. The complete biphenyl-3,3',4,4'tetracarboxylate ligand displays inversion symmetry and links two symmetry-related Ni^{II} atoms into a binuclear complex. Neighbouring complex molecules are linked through O– $H \cdots O$ hydrogen bonds into a three-dimensional structure. Additional O– $H \cdots O$ hydrogen bonds between the lattice water molecules help to consolidate the crystal packing.

Related literature

For other metal complexes with biphenyl-3,3',4,4'-tetracarboxylate as ligand, see: Hao *et al.* (2005); Wang *et al.* (2005, 2006, 2007). For related structures containing biphenyl-3,3',4,4'-tetracarboxylate and neutral chelating ligands, see: Zhu *et al.* (2008*a*,*b*).

Experimental *Crystal data*

-	
$[Ni_2(C_{16}H_6O_8)(C_{10}H_8N_2)_2(H_2O)_6]$	$\beta = 98.075 \ (2)^{\circ}$
6H ₂ O	$\gamma = 92.162 \ (3)^{\circ}$
$M_r = 972.19$	V = 1061.4 (3) Å ³
Triclinic, P1	Z = 1
a = 7.5126 (14) Å	Mo $K\alpha$ radiation
b = 12.088 (2) Å	$\mu = 0.97 \text{ mm}^{-1}$
c = 12.285 (2) Å	T = 296 K
$\alpha = 105.445 \ (2)^{\circ}$	$0.20 \times 0.20 \times 0.15 \text{ mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.829, \ T_{\max} = 0.868$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	280 parameters
$vR(F^2) = 0.172$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
6698 reflections	$\Delta \rho_{\rm min} = -0.53 \text{ e} \text{ Å}^{-3}$

5556 measured reflections 3698 independent reflections

 $R_{\rm int} = 0.037$

2526 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Ni1-N2	2.063 (4)	Ni1-O1	2.069 (3)
Ni1-N1	2.064 (4)	Ni1 - O3W	2.075 (3)
Ni1 - O2W	2.067 (3)	Ni1 - O1W	2.076 (4)

Table 2

H	yd	lrogen-	bond	geometry	(/	 °]).
---	----	---------	------	----------	----	------------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1WA····O4 ⁱ	0.82	1.91	2.720 (5)	168
$O1W-H1WB\cdots O3$	0.85	2.04	2.889 (5)	176
$O2W - H2WA \cdots O2$	0.82	1.99	2.708 (5)	146
$O2W - H2WB \cdot \cdot \cdot O3^{ii}$	0.84	2.06	2.715 (5)	135
O3W−H3WA···O3 ⁱ	0.85	1.88	2.723 (5)	168
$O3W - H3WB \cdot \cdot \cdot O4W$	0.82	1.97	2.793 (6)	178
$O4W-H4WA\cdots O2^{iii}$	0.87	1.87	2.715 (6)	164
$O4W-H4WB\cdots O5W$	0.85	2.22	2.803 (8)	125
$O5W-H5WB\cdots O6W^{iv}$	0.83	2.18	2.770 (15)	128
$O6W-H6WA\cdots O2$	0.85	2.44	3.091 (11)	134
$O6W-H6WA\cdots O2$	0.85	2.44	3.091 (11)	134
S(i)	. 1 . 1	1.1. (!!)	1.0 1.1	1. (!!!)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) x - 1, y, z; (iv) -x + 1, -y, -z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors thank Shanghai University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2225).

References

- Brandenburg, K. & Putz, H. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hao, X.-R., Su, Z.-M., Zhao, Y.-H., Shao, K.-Z. & Wang, Y. (2005). Acta Cryst. C61, m469–m471.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X. L., Cao, Q. & Wang, E. B. (2005). Eur. J. Inorg. Chem. pp 3418–3421.
- Wang, X. L., Cao, Q. & Wang, E. B. (2006). Cryst. Growth Des. 6, 439-433.
- Wang, J. J., Yang, M. L. & Hu, H. M. (2007). Z. Anorg. Allg. Chem. 633, 341– 345.
- Zhu, S., Zhang, H. & Shao, M. (2008a). *Transition Met. Chem.* **33**, 669–680. Zhu, S., Zhang, H. & Zhao, Y. (2008b). *J. Mol. Struct.* **892**, 420–426.

supporting information

Acta Cryst. (2009). E65, m562-m563 [doi:10.1107/S1600536809014639]

μ -Biphenyl-3,3',4,4'-tetracarboxylato- $\kappa^2 O^3$: O^3 '-bis[triaqua(2,2'-bipyridyl- $\kappa^2 N, N'$)nickel(II)] hexahydrate

Dong Zhou, Min Shao, Xiang He, Yongmei Zhao and Shourong Zhu

S1. Comment

Coordination compounds of biphenyl-3,3',4,4'-tetracarboxylic acid have been investigated previously. As expected, the deprotonated ligand coordinates to metal ions in a versatile mode due to its multidentate character (Hao *et al.*, 2005; Wang *et al.*, 2005; 2006; 2007). Upon adding chelating ligands, such as 2,2'-bipyridine or 1,10-phenanthroline, ternary coordination polymers can be formed (Zhu *et al.*, 2008a). In all these complexes, biphenyl-3,3',4,4'-tetracarboxylate acts as counter ion and/or multidentate ligand. Here we present the crystal structure of the dinuclear complex $[Ni_2(C_{10}H_8N_2)_2(C_{16}H_6O_8)(H_2O)_6]$ ⁶H₂O, (I).

The unique Ni atom in the structure of complex (I) (Fig. 1) is in a distorted octahedral coordination sphere formed by one carboxylate O, three water O and two N atoms with Ni—O and Ni—N bond lengths in the range 2.063 (4) Å - 2.076 (4) Å with σ =0.87 (Zhu *et al.*, 2008b). The fully deprotonated biphenyl-3,3',4,4'-tetracarboxylate ligand displays inversion symmetry and links two symmetry-related Ni^{II} atoms. Due to symmetric reason, the two benzene rings of the biphenyl ligand are coplanar. The two pyridine rings in the 2,2'-bipyridine molecule have a torsion angle of 4.7 (8)°. The carboxylate group that coordinate to nickel is almost coplanar with the benzene ring (torsion angle 8.6 (8)°), while the free carboxylate has a torsion angle of 72.2 (7)° with the benzene ring which is almost perpendicular each other. The intramolecular distance between the two nickel(II) ions is 14.788 (11) Å.

As expected, there are considerable hydrogen bonds in the structure. Table 2 lists bond distances and angles. These Hbonds link dinuclear complex together to a three-dimensional structure (Fig 2.). The uncoordinated crystal lattice water molecules interact through additional hydrogen bonds, as shown in Fig. 3, and thus help to consolidate the crystal packing.

S2. Experimental

A mixture of biphenyl-3,3',4,4'-tetracarboxylic acid dianhydride (0.5 mmol), 2,2'-bipyridine (0.5 mmol), NaOH (2 mmol) and Ni(NO₃)₂ (1 mmol) in 8 ml H₂O was placed in a 25 ml Teflon reactor, which was sealed and heated in a oven at 433 K for 72 h. Then the autoclave was cooled to room temperature at the rate of 10 K to get light-blue flat crystals of the title compound (in *ca* 85% yield based on biphenyltetracarboxylic dianhydride). The crystals were isolated by filtration and washed with water.

S3. Refinement

The aromatic H atoms were generated geometrically and were included in the refinement in the riding model approximation (d(C-H) = 0.93 Å, $U_{iso}=1.2$ Ueq(C)). The H atoms of the water molecules were identified in difference Fourier syntheses and were refined with distance restraints of d(O-H) = 0.85 Å.

Figure 1

The asymmetric unit in the structure of complex (I), displayed with ellipsoids at the 50% probability level. Dashed lines represent hydrogen bonds.

Figure 2

Crystal packing in the crystal structure of compound (I) viewed down the *a* axis with ellipsoids ath the 30% probability level.

Figure 3

(a) The π -- π interaction between adjacent 2, 2'-bipyridine molecules. (b) The crystal lattice water molecules arranged in chains via H -bonds; other atoms are omitted for clarity.

μ -Biphenyl-3,3',4,4'-tetracarboxylato- $\kappa^2 O^3$: O^3 '- bis[triaqua(2,2'-bipyridyl- $\kappa^2 N, N'$)nickel(II)] hexahydrate

Crystal data	
$[Ni_2(C_{16}H_6O_8)(C_{10}H_8N_2)_2(H_2O)_6]$ · 6H ₂ O	Z = 1
$M_r = 972.19$	F(000) = 506
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.521 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.5126 (14) Å	Cell parameters from 1042 reflections
b = 12.088 (2) Å	$\theta = 2.8 - 21.2^{\circ}$
c = 12.285(2) Å	$\mu = 0.97 \text{ mm}^{-1}$
$\alpha = 105.445 (2)^{\circ}$	T = 296 K
$\beta = 98.075(2)^{\circ}$	Flat, light-blue
$y = 92.162(3)^{\circ}$	$0.20 \times 0.20 \times 0.15 \text{ mm}$
V = 1061.4 (3) Å ³	
, 1001.1(0).11	

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2002) $T_{\min} = 0.829, T_{\max} = 0.868$	5556 measured reflections 3698 independent reflections 2526 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -11 \rightarrow 14$ $l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.172$ S = 1.05 3698 reflections 280 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0835P)^2 + 0.0076P]$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.61$ e Å ⁻³ $\Delta\rho_{min} = -0.53$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2^2 . The threshold expression of $F^2^2 > \sigma(F^2^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.76324 (9)	0.27456 (6)	0.46907 (5)	0.0292 (2)	
C1	0.8729 (8)	0.3451 (5)	0.2678 (4)	0.0353 (13)	
C2	0.8455 (7)	0.4289 (4)	0.1965 (4)	0.0279 (12)	
C3	0.7072 (7)	0.5022 (4)	0.2062 (4)	0.0271 (11)	
C4	0.6778 (8)	0.5682 (5)	0.1309 (5)	0.0390 (14)	
H4	0.5816	0.6146	0.1345	0.047*	
C5	0.7894 (8)	0.5668 (5)	0.0497 (5)	0.0439 (16)	
H5	0.7662	0.6122	-0.0002	0.053*	
C6	0.9365 (7)	0.4985 (4)	0.0411 (4)	0.0294 (12)	
C7	0.9582 (7)	0.4283 (4)	0.1148 (4)	0.0325 (13)	
H7	1.0511	0.3793	0.1095	0.039*	
C8	0.5935 (8)	0.5223 (4)	0.3010 (5)	0.0319 (13)	
C9	0.7786 (9)	0.2720 (6)	0.7187 (5)	0.0498 (16)	
H9	0.7915	0.3519	0.7363	0.060*	
C10	0.7713 (11)	0.2212 (7)	0.8067 (6)	0.071 (2)	

H10	0.7805	0.2658	0.8820	0.086*
C11	0.7506 (12)	0.1055 (7)	0.7801 (7)	0.078 (2)
H11	0.7430	0.0692	0.8374	0.093*
C12	0.7407 (10)	0.0414 (6)	0.6699 (6)	0.064 (2)
H12	0.7271	-0.0385	0.6516	0.077*
C13	0.7509 (7)	0.0962 (5)	0.5854 (5)	0.0384 (14)
C14	0.7468 (7)	0.0348 (5)	0.4639 (5)	0.0362 (13)
C15	0.7461 (9)	-0.0842 (5)	0.4239 (6)	0.0596 (19)
H15	0.7454	-0.1292	0.4745	0.072*
C16	0.7463 (11)	-0.1351 (6)	0.3104 (7)	0.075 (2)
H16	0.7468	-0.2147	0.2837	0.091*
C17	0.7460 (10)	-0.0692 (6)	0.2371 (6)	0.070 (2)
H17	0.7472	-0.1023	0.1597	0.084*
C18	0.7437 (8)	0.0492 (5)	0.2803 (5)	0.0490 (16)
H18	0.7395	0.0946	0.2297	0.059*
N1	0.7680 (6)	0.2112 (4)	0.6097 (4)	0.0375 (11)
N2	0.7472 (6)	0.1002 (4)	0.3901 (4)	0.0333 (10)
01	0.7508 (5)	0.3349 (3)	0.3258 (3)	0.0327 (9)
O2	1.0074 (6)	0.2870 (4)	0.2630 (4)	0.0519 (12)
O3	0.6703 (5)	0.5796 (3)	0.3995 (3)	0.0357 (9)
O4	0.4305 (5)	0.4876 (3)	0.2757 (3)	0.0414 (10)
O1W	0.7793 (5)	0.4475 (3)	0.5584 (3)	0.0378 (9)
H1WA	0.7075	0.4576	0.6039	0.045*
H1WB	0.7528	0.4864	0.5108	0.045*
O2W	1.0407 (5)	0.2754 (3)	0.4820 (3)	0.0366 (9)
H2WA	1.0698	0.2647	0.4183	0.044*
H2WB	1.0810	0.3312	0.5383	0.044*
O3W	0.4835 (5)	0.2653 (3)	0.4440 (3)	0.0372 (9)
H3WA	0.4238	0.3141	0.4852	0.045*
H3WB	0.4455	0.2638	0.3776	0.045*
O4W	0.3480 (6)	0.2550 (4)	0.2175 (4)	0.0662 (13)
H4WA	0.2365	0.2698	0.2201	0.079*
H4WB	0.3472	0.2363	0.1454	0.079*
O5W	0.3527 (11)	0.0578 (6)	0.0358 (6)	0.141 (3)
H5WA	0.4255	0.1162	0.0371	0.169*
H5WB	0.3141	-0.0088	-0.0025	0.169*
O6W	0.9624 (19)	0.0848 (9)	0.0429 (9)	0.288 (7)
H6WA	0.9844	0.1042	0.1156	0.345*
H6WB	0.9808	0.1578	0.0631	0.345*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0322 (4)	0.0294 (4)	0.0321 (4)	0.0051 (3)	0.0127 (3)	0.0145 (3)
C1	0.038 (3)	0.042 (3)	0.033 (3)	0.006 (3)	0.016 (3)	0.015 (3)
C2	0.028 (3)	0.033 (3)	0.027 (3)	0.006 (2)	0.012 (2)	0.012 (2)
C3	0.030 (3)	0.028 (3)	0.026 (3)	0.004 (2)	0.014 (2)	0.008 (2)
C4	0.038 (3)	0.048 (4)	0.041 (3)	0.019 (3)	0.023 (3)	0.019 (3)

C5	0.047 (4)	0.056 (4)	0.047 (4)	0.016 (3)	0.022 (3)	0.036 (3)
C6	0.034 (3)	0.036 (3)	0.023 (3)	0.007 (2)	0.015 (2)	0.012 (2)
C7	0.038 (3)	0.037 (3)	0.032 (3)	0.013 (3)	0.017 (2)	0.019 (2)
C8	0.038 (3)	0.027 (3)	0.038 (3)	0.009 (2)	0.018 (3)	0.015 (2)
C9	0.061 (4)	0.049 (4)	0.042 (4)	0.002 (3)	0.011 (3)	0.017 (3)
C10	0.098 (6)	0.083 (6)	0.038 (4)	0.000 (5)	0.012 (4)	0.025 (4)
C11	0.118 (7)	0.074 (6)	0.056 (5)	-0.004 (5)	0.015 (5)	0.044 (4)
C12	0.091 (6)	0.059 (5)	0.055 (5)	0.005 (4)	0.014 (4)	0.038 (4)
C13	0.034 (3)	0.039 (3)	0.046 (4)	0.000 (3)	0.004 (3)	0.018 (3)
C14	0.029 (3)	0.029 (3)	0.053 (4)	0.002 (2)	0.007 (3)	0.016 (3)
C15	0.066 (5)	0.041 (4)	0.077 (5)	0.003 (3)	-0.003 (4)	0.031 (4)
C16	0.111 (7)	0.037 (4)	0.069 (5)	0.010 (4)	0.000 (5)	0.005 (4)
C17	0.086 (6)	0.057 (5)	0.058 (5)	0.007 (4)	0.017 (4)	-0.003 (4)
C18	0.063 (4)	0.046 (4)	0.038 (4)	0.009 (3)	0.012 (3)	0.009 (3)
N1	0.038 (3)	0.043 (3)	0.038 (3)	0.011 (2)	0.012 (2)	0.017 (2)
N2	0.031 (3)	0.034 (3)	0.037 (3)	0.004 (2)	0.008 (2)	0.013 (2)
01	0.037 (2)	0.038 (2)	0.032 (2)	0.0107 (17)	0.0208 (17)	0.0162 (17)
O2	0.051 (3)	0.065 (3)	0.065 (3)	0.036 (2)	0.039 (2)	0.042 (2)
03	0.038 (2)	0.039 (2)	0.029 (2)	0.0016 (18)	0.0134 (17)	0.0021 (17)
O4	0.031 (2)	0.054 (3)	0.039 (2)	0.0020 (19)	0.0156 (18)	0.0096 (19)
O1W	0.043 (2)	0.039 (2)	0.040 (2)	0.0053 (18)	0.0209 (18)	0.0157 (18)
O2W	0.033 (2)	0.044 (2)	0.036 (2)	0.0058 (18)	0.0107 (17)	0.0136 (18)
O3W	0.033 (2)	0.045 (2)	0.039 (2)	0.0084 (18)	0.0172 (18)	0.0134 (18)
O4W	0.048 (3)	0.075 (3)	0.071 (3)	0.005 (2)	0.015 (2)	0.009 (3)
O5W	0.189 (8)	0.116 (6)	0.113 (6)	0.008 (5)	0.038 (5)	0.019 (5)
O6W	0.42 (2)	0.237 (14)	0.165 (11)	-0.049 (13)	0.054 (12)	-0.011 (9)

Geometric parameters (Å, °)

Ni1—N2	2.063 (4)	C11—H11	0.9300
Ni1—N1	2.064 (4)	C12—C13	1.380 (8)
Ni1—O2W	2.067 (3)	C12—H12	0.9300
Nil—O1	2.069 (3)	C13—N1	1.340 (7)
Ni1—O3W	2.075 (3)	C13—C14	1.475 (8)
Nil—O1W	2.076 (4)	C14—N2	1.352 (7)
C1—O2	1.252 (6)	C14—C15	1.390 (8)
C101	1.259 (6)	C15—C16	1.366 (9)
C1—C2	1.508 (7)	C15—H15	0.9300
C2—C3	1.388 (7)	C16—C17	1.351 (10)
С2—С7	1.400 (6)	C16—H16	0.9300
C3—C4	1.375 (7)	C17—C18	1.390 (8)
С3—С8	1.513 (7)	C17—H17	0.9300
C4—C5	1.387 (7)	C18—N2	1.322 (7)
C4—H4	0.9300	C18—H18	0.9300
C5—C6	1.403 (7)	O1W—H1WA	0.8201
С5—Н5	0.9300	O1W—H1WB	0.8498
С6—С7	1.394 (7)	O2W—H2WA	0.8201
C6C6 ⁱ	1.489 (9)	O2W—H2WB	0.8379

С7—Н7	0.9300	O3W—H3WA	0.8542
C8—O4	1.248 (6)	O3W—H3WB	0.8200
C8-03	1.266 (6)	O4W—H4WA	0.8664
C9—N1	1.334 (7)	O4W—H4WB	0.8528
C9-C10	1 384 (8)	O5W—H5WA	0.8722
C9—H9	0.9300	O5W—H5WB	0.8339
C10-C11	1 347 (9)	O6W—H6WA	0.8500
C10_H10	0.9300	O6W—H6WB	0.8500
C_{11} C_{12}	1 359 (10)		0.0500
011-012	1.559 (10)		
N2—Ni1—N1	80.00 (17)	С9—С10—Н10	120.9
N2—Ni1—O2W	88.41 (16)	C10—C11—C12	120.3 (6)
N1—Ni1—O2W	91.05 (16)	C10—C11—H11	119.9
N2—Ni1—O1	98.95 (15)	C12—C11—H11	119.9
N1—Ni1—O1	178 17 (17)	C11-C12-C13	1194(7)
0^2W Ni1 -0^1	90.43 (14)	C11 - C12 - H12	120.3
N2_Ni1_03W	88 32 (16)	C13 - C12 - H12	120.3
N1_Ni1_03W	91 12 (16)	N1 - C13 - C12	120.5
$\begin{array}{c} 111 \\ 02W \\ 011 \\ 03W \end{array}$	175 71 (14)	N1 C13 C14	121.5(0) 1150(5)
$O_2 W = M_1 = O_3 W$	173.71(14) 87 34 (14)	$C_{12} C_{13} C_{14}$	113.0(3) 123.7(6)
$N_2 N_1 = 01W$	176 34 (15)	$N_2 = C_{13} = C_{14}$	123.7(0) 110.8(6)
$N_1 = N_1 = O_1 W$	170.34(15)	$N_2 = C_1 4 = C_{13}$	119.0(0) 116.8(5)
$\begin{array}{c} \mathbf{N} = \mathbf{N} \mathbf{N} = \mathbf{O} \mathbf{W} \\ \mathbf{O} \mathbf{W} = \mathbf{N} \mathbf{O} \mathbf{W} \\ \mathbf{O} \mathbf{W} = \mathbf{N} \mathbf{O} \mathbf{W} \\ \mathbf{O} \mathbf{W} = \mathbf{O} \mathbf{W} \\ \mathbf{O} \mathbf{W} = \mathbf{O} \mathbf{W} \\ \mathbf{O} \mathbf{W} = \mathbf{O} \mathbf{W} \\ \mathbf{W} \\ \mathbf{W} = \mathbf{O} \mathbf{W} \\ \mathbf{W} $	90.33(10)	112 - 014 - 013	110.0(3) 122.4(5)
02 w $-Ni$ $01 w$	91.70 (13)	C16 - C14 - C13	123.4(3)
O_{1} O_{1} O_{1} O_{1} O_{1} O_{2} O_{2} O_{1} O_{2} O_{2	84./1(14)	C16 - C15 - C14	120.2 (0)
$O_{3} = O_{1} = O_{1}$	91.07 (14)	С14 С15 Н15	119.9
02-01-01	123.8 (5)	C14—C15—H15	119.9
02 - C1 - C2	119.8 (4)	C17 - C16 - C15	119.6 (7)
01 - 01 - 02	116.3 (5)	C1/-C16-H16	120.2
$C_3 = C_2 = C_1$	119.6 (4)	C15—C16—H16	120.2
C3—C2—C1	121.8 (4)	C16—C17—C18	118.4 (7)
C7—C2—C1	118.6 (4)	C16—C17—H17	120.8
C4—C3—C2	119.0 (4)	C18—C17—H17	120.8
C4—C3—C8	116.6 (4)	N2-C18-C17	122.8 (6)
C2—C3—C8	124.2 (4)	N2-C18-H18	118.6
C3—C4—C5	121.1 (5)	C17—C18—H18	118.6
C3—C4—H4	119.5	C9—N1—C13	118.1 (5)
C5—C4—H4	119.5	C9—N1—Ni1	127.2 (4)
C4—C5—C6	121.6 (5)	C13—N1—Ni1	114.7 (4)
C4—C5—H5	119.2	C18—N2—C14	119.1 (5)
С6—С5—Н5	119.2	C18—N2—Ni1	127.5 (4)
C7—C6—C5	116.1 (4)	C14—N2—Ni1	113.3 (4)
$C7-C6-C6^{i}$	121.8 (6)	C1—O1—Ni1	129.2 (3)
C5—C6—C6 ⁱ	122.1 (6)	Ni1—O1W—H1WA	109.6
C6—C7—C2	122.5 (5)	Ni1—O1W—H1WB	108.5
С6—С7—Н7	118.8	H1WA—O1W—H1WB	109.4
С2—С7—Н7	118.8	Ni1—O2W—H2WA	109.7
O4—C8—O3	125.0 (5)	Ni1—O2W—H2WB	105.3
O4—C8—C3	118.2 (5)	H2WA—O2W—H2WB	124.6

supporting information

O3—C8—C3	116.7 (5)	Ni1—O3W—H3WA	122.7
N1—C9—C10	122.8 (6)	Ni1—O3W—H3WB	109.6
N1—C9—H9	118.6	H3WA—O3W—H3WB	105.8
С10—С9—Н9	118.6	H4WA—O4W—H4WB	100.3
С11—С10—С9	118.1 (7)	H5WA—O5W—H5WB	143.0
C11—C10—H10	120.9	H6WA—O6W—H6WB	74.3

Symmetry code: (i) -x+2, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H1 <i>WA</i> ···O4 ⁱⁱ	0.82	1.91	2.720 (5)	168
O1 <i>W</i> —H1 <i>WB</i> ···O3	0.85	2.04	2.889 (5)	176
O2 <i>W</i> —H2 <i>WA</i> ···O2	0.82	1.99	2.708 (5)	146
O2W— $H2WB$ ···O3 ⁱⁱⁱ	0.84	2.06	2.715 (5)	135
O3 <i>W</i> —H3 <i>WA</i> ···O3 ⁱⁱ	0.85	1.88	2.723 (5)	168
O3 <i>W</i> —H3 <i>WB</i> ···O4 <i>W</i>	0.82	1.97	2.793 (6)	178
$O4W$ — $H4WA$ ··· $O2^{iv}$	0.87	1.87	2.715 (6)	164
O4 <i>W</i> —H4 <i>WB</i> ···O5 <i>W</i>	0.85	2.22	2.803 (8)	125
$O5W$ — $H5WB$ ··· $O6W^{\vee}$	0.83	2.18	2.770 (15)	128
O6 <i>W</i> —H6 <i>WA</i> ···O2	0.85	2.44	3.091 (11)	134
O6 <i>W</i> —H6 <i>WA</i> ···O2	0.85	2.44	3.091 (11)	134

Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) x-1, y, z; (v) -x+1, -y, -z.