metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dibenzyldichloridotin(IV)

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 21 April 2009; accepted 23 April 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.014; wR factor = 0.041; data-to-parameter ratio = 20.3.

The title compound, $[Sn(C_7H_7)_2Cl_2]$, exists as a monomeric tetrahedral molecule. The Sn atom lies on a special position of site symmetry 2. Adjacent molecules are linked into a linear chain running along the *b* axis of the monoclinic unit cell by Sn···Cl bridges of 3.7275 (4) Å.

Related literature

For the synthesis of dibenzyltin dichloride by the direct reaction of benzyl chloride and metallic tin, see: Shishido et al. (1961). For an overview of crystallographic and theoretical structures of diorganotin dichlorides, see: Buntine et al. (2003).

Experimental

Crystal data

$[Sn(C_7H_7)_2Cl_2]$	V = 1377.60 (4)
$M_r = 371.84$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 23.7710 (3) Å	$\mu = 2.22 \text{ mm}^{-1}$
b = 4.8019 (1) Å	$T = 123 { m K}$
c = 12.0808 (2) Å	$0.35 \times 0.30 \times 0.00$
$\beta = 92.560 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.511, T_{\max} = 0.732$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.014$ $wR(F^2) = 0.041$ S = 1.031580 reflections

n 0.15 mm

Å³

6090 measured reflections 1580 independent reflections 1527 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$

78 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.60~{\rm e}~{\rm \AA}^{-3}$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the University of Malaya (FS339/2008A) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2438).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Buntine, M. A., Kosovel, F. J. & Tiekink, E. R. T. (2003). CrystEngComm, 5, 331-338.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shishido, K., Yoshiyuki, T. & Jiro, K. (1961). J. Am. Chem. Soc. 83, 538-541. Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, m596 [doi:10.1107/S160053680901513X]

Dibenzyldichloridotin(IV)

Kong Mun Lo and Seik Weng Ng

S1. Experimental

Dibenzyltin dichloride was synthesized from benzyl chloride and metallic tin by a literature method (Shishido *et al.*, 1961). Crystals were obtained by recrystallization from chloroform.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with U(H) set to 1.2U(C).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of part of the supramolecular chain in $(C_6H_5CH_2)_2SnCl_2$ drawn at the 70% probability level. Dashed lines denote the Sn…Cl bridges. Hydrogen atoms are drawn as spheres of arbitrary radius. Unlabelled atoms within the partially labelled molecule are related by the symmetry operation: -x+1, y, -z+1/2.

Dibenzyldichloridotin(IV)

Crystal data

 $[Sn(C_7H_7)_2Cl_2] M_r = 371.84$ Monoclinic, *C*2/*c* Hall symbol: -C 2yc *a* = 23.7710 (3) Å *b* = 4.8019 (1) Å *c* = 12.0808 (2) Å β = 92.560 (1)° *V* = 1377.60 (4) Å³ *Z* = 4

Data collection

Bruker SMART APEX	6090 measured reflections
diffractometer	1580 independent reflections
Radiation source: fine-focus sealed tube	1527 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.021$
ωscans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -30 \rightarrow 30$
(SADABS; Sheldrick, 1996)	$k = -6 \rightarrow 6$
$T_{\min} = 0.511, T_{\max} = 0.732$	$l = -15 \rightarrow 15$
Refinement	

F(000) = 728

 $\theta = 2.5 - 28.3^{\circ}$

 $\mu = 2.22 \text{ mm}^{-1}$ T = 123 K

Block, colorless

 $0.35 \times 0.30 \times 0.15 \text{ mm}$

 $D_{\rm x} = 1.793 \text{ Mg m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 5461 reflections

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.014$ Hydrogen site location: inferred from $wR(F^2) = 0.041$ neighbouring sites S = 1.03H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0238P)^2 + 1.6061P]$ 1580 reflections 78 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.27 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.60 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.5000	0.49246 (2)	0.2500	0.01354 (6)	
Cl1	0.473226 (16)	0.81293 (8)	0.38720 (3)	0.01976 (9)	
C1	0.57846 (6)	0.3263 (3)	0.31462 (14)	0.0206 (3)	
H1A	0.5716	0.2146	0.3816	0.025*	
H1B	0.5942	0.2008	0.2588	0.025*	
C2	0.62055 (7)	0.5502 (3)	0.34383 (14)	0.0175 (3)	
C3	0.65796 (6)	0.6448 (3)	0.26657 (13)	0.0197 (3)	
H3	0.6563	0.5694	0.1938	0.024*	
C4	0.69765 (7)	0.8477 (3)	0.29468 (14)	0.0225 (3)	
H4	0.7228	0.9111	0.2411	0.027*	
C5	0.70071 (8)	0.9580 (3)	0.40082 (17)	0.0253 (4)	
Н5	0.7282	1.0952	0.4204	0.030*	
C6	0.66358 (7)	0.8673 (4)	0.47815 (14)	0.0260 (3)	

supporting information

H6	0.6654	0.9436	0.5508	0.031*
C7	0.62366 (7)	0.6650 (3)	0.44994 (13)	0.0222 (3)
H7	0.5983	0.6044	0.5035	0.027*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01130 (9)	0.01254 (9)	0.01666 (9)	0.000	-0.00051 (6)	0.000
Cl1	0.02142 (18)	0.02114 (18)	0.01692 (16)	-0.00076 (14)	0.00309 (13)	-0.00308 (13)
C1	0.0153 (7)	0.0142 (7)	0.0318 (8)	0.0000 (6)	-0.0049 (6)	0.0023 (6)
C2	0.0129 (7)	0.0138 (6)	0.0254 (8)	0.0020 (6)	-0.0044 (6)	0.0025 (6)
C3	0.0168 (7)	0.0191 (7)	0.0232 (7)	0.0026 (6)	0.0001 (6)	-0.0025 (6)
C4	0.0145 (7)	0.0216 (7)	0.0316 (8)	-0.0003 (6)	0.0022 (6)	0.0026 (6)
C5	0.0195 (8)	0.0193 (7)	0.0361 (10)	-0.0029 (6)	-0.0081 (7)	-0.0010 (7)
C6	0.0271 (8)	0.0281 (8)	0.0222 (8)	0.0000 (7)	-0.0075 (6)	-0.0023 (6)
C7	0.0204 (8)	0.0249 (8)	0.0210 (7)	-0.0011 (6)	-0.0016 (6)	0.0051 (6)

Geometric parameters (Å, °)

Sn1—Cl1 ⁱ	3.7275 (4)	C3—C4	1.388 (2)
Sn1—C1 ⁱⁱ	2.143 (2)	С3—Н3	0.9500
Sn1—C1	2.143 (2)	C4—C5	1.386 (3)
Sn1—Cl1	2.3695 (4)	C4—H4	0.9500
Sn1—Cl1 ⁱⁱ	2.3695 (4)	C5—C6	1.384 (3)
C1—C2	1.500 (2)	С5—Н5	0.9500
C1—H1A	0.9900	C6—C7	1.390 (2)
C1—H1B	0.9900	С6—Н6	0.9500
C2—C3	1.394 (2)	С7—Н7	0.9500
C2—C7	1.394 (2)		
C1 ⁱⁱ —Sn1—C1	136.30 (8)	C4—C3—C2	120.80 (15)
C1 ⁱⁱ —Sn1—Cl1	103.88 (4)	C4—C3—H3	119.6
C1—Sn1—Cl1	104.09 (4)	С2—С3—Н3	119.6
C1 ⁱⁱ —Sn1—Cl1 ⁱⁱ	104.09 (4)	C5—C4—C3	120.11 (15)
C1—Sn1—Cl1 ⁱⁱ	103.88 (4)	C5—C4—H4	119.9
Cl1—Sn1—Cl1 ⁱⁱ	99.001 (18)	C3—C4—H4	119.9
C2C1Sn1	112.29 (10)	C6—C5—C4	119.69 (16)
C2C1H1A	109.1	С6—С5—Н5	120.2
Sn1—C1—H1A	109.1	C4—C5—H5	120.2
C2C1H1B	109.1	C5—C6—C7	120.24 (16)
Sn1—C1—H1B	109.1	С5—С6—Н6	119.9
H1A—C1—H1B	107.9	С7—С6—Н6	119.9
C3—C2—C7	118.52 (15)	C6—C7—C2	120.63 (15)
C3—C2—C1	120.99 (15)	С6—С7—Н7	119.7
C7—C2—C1	120.48 (15)	С2—С7—Н7	119.7
C1 ⁱⁱ —Sn1—C1—C2	177.45 (13)	C2—C3—C4—C5	0.4 (2)
Cl1—Sn1—C1—C2	-54.18 (12)	C3—C4—C5—C6	-0.8 (3)

Cl1 ⁱⁱ —Sn1—C1—C2	49.01 (12)	C4—C5—C6—C7	0.5 (3)
Sn1—C1—C2—C3	-90.75 (16)	C5—C6—C7—C2	0.2 (3)
Sn1—C1—C2—C7	90.34 (15)	C3—C2—C7—C6	-0.6(2)
C7—C2—C3—C4	0.3 (2)	C1—C2—C7—C6	178.31 (15)
C1—C2—C3—C4	-178.60 (14)		

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*+1, *y*, –*z*+1/2.