

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[1,2-Bis(diphenylphosphino)-1,2-dicarbacloso-dodecaborane- $\kappa^2 P.P'$][7.8-bis(diphenylphosphino)-7,8-dicarba-nidoundecaborato- $\kappa^2 P, P'$]gold(I)–dichloromethane-water (2/1/1)

Ioseph A. Ioppolo,^a Iack K. Clegg^b and Louis M. Rendina^a*

^aSchool of Chemistry, F11, The University of Sydney, New South Wales 2006, Australia, and ^bCentre for Heavy Metals Research, School of Chemistry, F11, The University of Sydney, New South Wales 2006, Australia Correspondence e-mail: rendina@chem.usyd.edu.au

Received 17 April 2009; accepted 22 April 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.010 Å; Hatom completeness 99%; disorder in main residue; R factor = 0.044; wR factor = 0.094; data-to-parameter ratio = 14.8.

title compound, $[Au(C_{26}H_{30}B_{10}P_2)(C_{26}H_{30}B_9P_2)]$. The 0.5CH₂Cl₂·0.5H₂O, contains two independent complex molecules in the asymmetric unit. The gold(I) centres display a distorted tetrahedral geometry. The complex is stablized through weak intramolecular $\pi - \pi$ stacking $(Cg \cdots Cg = 4.17 \text{ \AA})$ and edge-to-face interactions ($H \cdot \cdot \cdot Cg = 3.21$ Å). Adjacent molecules interact through C-H··· π (H···Cg = 2.88 Å) and $B-H\cdots\pi$ ($H\cdots Cg = 3.15$ Å) contacts, forming a threedimensional network, with solvent molecules occupying the cavities. One of the phenyl groups was disordered over two sites with occupancy factors of 0.65 and 0.35.

Related literature

The chelating P-donor ligand 1,2-bis(diphenylphosphino)-1,2dicarba-closo-carborane has been used to prepare 2-, 3- and 4coordinate complexes of gold(I) (Crespo et al., 1992, 1994; Al-Baker et al., 1985). Coordination of this ligand has often led to deboronation of the closo-carborane cage to afford the corresponding nido-carborane in polar solvents (Teixidor et al., 1995, 1996). A non-solvated crystal structure of the title compound has been reported previously (Crespo et al., 1997). Facile deboronation of the carborane cage in polar solvents has also been observed when substituents α to the cage are electron withdrawing (Shaeck & Kahl, 1999; Ioppolo et al., 2007a,b). In contrast, our group has shown that ligands containing the thermodynamically stable 1,12-carborane cluster do not degrade upon complexation to gold(I) (Ioppolo et al., 2007a,b). Boron-containing ligands and their respective complexes are of interest for potential application in boron neutron capture therapy (BNCT) (Crossley et al., 2005, 2007; 157624 measured reflections

 $R_{\rm int} = 0.106$

refinement $\Delta \rho_{\rm max} = 1.47 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.00 \ {\rm e} \ {\rm \AA}^{-3}$

20684 independent reflections

14971 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Todd et al., 2005; Ioppolo et al., 2007a,b; Ching et al., 2007). For the synthesis of the precursor gold compound, see: Uson et al. (1989).

Experimental

Crystal data

$\beta = 90.849 \ (3)^{\circ}$
$\gamma = 105.839 \ (2)^{\circ}$
$V = 5879.3 (5) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 2.69 \text{ mm}^{-1}$
T = 150 K
$0.10 \times 0.10 \times 0.02~\mathrm{mm}$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\rm min}=0.767,\;T_{\rm max}=0.948$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.094$ S = 1.0620684 reflections 1397 parameters 77 restraints

Table 1

Selected bond angles (*))	
-------------------------	---	---	--

P3-Au1-P2	119.51 (5)	P6-Au2-P7	119.47 (5)
P3-Au1-P1	131.67 (5)	P6-Au2-P8	131.52 (5)
P2-Au1-P1	86.45 (5)	P7-Au2-P8	88.03 (5)
P3-Au1-P4	89.19 (5)	P6-Au2-P5	84.82 (5)
P2-Au1-P4	131.50 (5)	P7-Au2-P5	136.50 (5)
P1-Au1-P4	103.15 (5)	P8-Au2-P5	102.13 (6)

Data collection: APEX (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT and XPREP (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), WinGX32 (Farrugia, 1999), POV-RAY (Cason, 2002) and WebLab ViewerPro (Molecular Simulations, 2000); software used to prepare material for publication: enCIFer (Allen et al., 2004).

We gratefully acknowledge the Australian Research Council for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2431).

References

- Al-Baker, S., Hill, W. E. & McAuliffe, C. A. (1985). J. Chem. Soc. Dalton Trans. pp. 1387–1390.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker, (2003). APEX, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cason, C. J. (2002). POV-RAY. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.
- Ching, H. Y. V., Clegg, J. K. & Rendina, L. M. (2007). Dalton Trans. pp. 2121–2126.
- Crespo, O., Gimeno, M. C., Jones, P. G. & Laguna, A. (1994). *Inorg. Chem.* 33, 6128–6131.
- Crespo, O., Gimeno, M. C., Jones, P. G., Laguna, A. & Villacampa, M. D. (1997). Angew. Chem. Int. Ed. 36, 993–995.
- Crespo, O., Gimeno, M. C., Laguna, A. & Jones, P. G. (1992). J. Chem. Soc. Dalton Trans. pp. 1601–1605.

- Crossley, E. L., Caiazza, D. & Rendina, L. M. (2005). Dalton Trans. pp. 2825–2827.
- Crossley, E. L., Ziolkowski, E. J., Codere, J. A. & Rendina, L. M. (2007). *Mini Rev. Med. Chem.* 7, 303–313.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ioppolo, J. A., Clegg, J. K. & Rendina, L. M. (2007a). Dalton Trans. pp. 1982– 1985.
- Ioppolo, J. A., Kepert, C. J., Price, D. J. & Rendina, L. M. (2007b). Aust. J. Chem. 60, 816–820.
- Molecular Simulations (2000). WebLab ViewerPro. Accelrys Software Inc., San Diego, California, USA.
- Shaeck, J. J. & Kahl, S. B. (1999). Inorg. Chem. 38, 204-206.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Teixidor, F., Vinas, C., Abad, M. M., Kivekas, R. & Sillanpaa, R. (1996). J. Organomet. Chem. 509, 139–150.
- Teixidor, F., Vinas, C., Abad, M. M., Nunez, R., Kivekas, R. & Sillanpaa, R. (1995). J. Organomet. Chem. 503, 193–203.
- Todd, J. A., Turner, P., Ziolkowski, E. J. & Rendina, L. M. (2005). *Inorg. Chem.* 44, 6401–6408.
- Uson, R., Laguna, A. & Laguna, M. (1989). Inorg. Synth. 26, 85-86.

Acta Cryst. (2009). E65, m603-m604 [doi:10.1107/S1600536809014937]

[1,2-Bis(diphenylphosphino)-1,2-dicarba-*closo*-dodecaborane- $\kappa^2 P, P'$][7,8-bis(diphenylphosphino)-7,8-dicarba-*nido*-undecaborato- $\kappa^2 P, P'$]gold(I)–dichloro-methane–water (2/1/1)

Joseph A. Ioppolo, Jack K. Clegg and Louis M. Rendina

S1. Comment

We are currently investigating a wide variety of boron-containing ligands (Crossley *et al.*, 2005; Todd *et al.*, 2005; Ioppolo *et al.*, 2007a, 2007b; Ching *et al.*, 2007) for application as potential BNCT agents (Crossley *et al.*, 2007). The title compound (I) was synthesized as part of these ongoing investigations. The gold(I) centre is bound to four phosphorus atoms from two ligands (one 1,2-bis(diphenylphosphino)-1,2-dicarba-*closo*-dodecaborane and one 7,8-bis(diphenylphosphino)-7,8-dicarba-*nido*-undecaborane) giving an overall neutral charge to each molecule. The metal centre has a distorted tetrahedral geometry (Fig. 1), the distortion arising primarily from the small bite angle of the phosphorus containing ligands of less than 90°. This arrangement is stabilized by intramolecular edge-to-face and offset face-to-face π - π interactions between the phenyl rings bound to each phosphorus ligand. There are further intermolecular π - π interactions present in the crystal lattice. Adjacent molecules connect *via* both edge-to-face π - π and phenyl-carborane interactions forming infinite two-dimensional sheets which propagate in the *bc*-plane. Indicative distances include C70H —B13 (2.86 Å), C102H—B38 (3.28 Å), C30H—C88 (2.88 Å) and C18H—C63 (3.17 Å). A schematic representation of part of one of these sheets is given in Fig. 2. These 2-D sheets interact with adjacent sheets through further BH - π and phenyl-phenyl contacts to form a 3-D motif, a schematic representation of which is shown in Fig. 3. These interactions are indicated by a B35H—C100 distance of 3.15 Å and a C24H—C70 distance of 3.53 Å.

S2. Experimental

The title compound was prepared from [AuCl(SMe₂)] by using a modification of a previously reported method (Uson *et al.*, 1989) and identified as the desired product by comparison with literature data (Crespo *et al.*, 1997). Crystals suitable for X-ray diffraction were isolated from a CH₂Cl₂ solution after several days of slow evaporation.

S3. Refinement

C and B bound-H (except the bridging H present on the *nido* cages) atoms were included in idealized positions and refined using a riding-model approximation, with C—H = 0.95 - 0.99 Å and B—H = 1.12 Å. The bridging H atoms on the *nido* cages were located in the difference Fourier map prior and refined with bond length restraints of 1.10 (4) Å. U_{iso} (H) values were fixed at $1.2U_{eq}$ of the parent atoms. One of the phenyl rings is disordered and modelled over two positions with occupancies of 0.65 and 0.35, respectively. Rigid body restraints were employed on these rings to facilitate realistic modelling. The two water molecules are both half occupancy and were modelled isotropically. Despite being in almost ideal positions for hydrogen bonding, their H atoms could not be located in the difference Fourier map, and were not included in the model. The max. and min. electron density peaks were located 0.91 Å and 0.07 Å from the Au2 and C56B atoms, respectively.

Figure 1

ORTEP representation of one of the two crystallographically independent molecules in the asymmetric unit of the structure of (I) shown with 50% probability ellipsoids. Solvent molecules are omitted for clarity.

Figure 2

A schematic representation of part of two-dimensional sheets formed by π - π interactions.

Figure 3

A schematic representation of the extended crystal packing. Adjacent layers (as shown in Fig 2) are given in alternating colours.

[1,2-Bis(diphenylphosphino)-1,2-dicarba-*closo*-dodecaborane- $\kappa^2 P, P'$][7,8-bis(diphenylphosphino)-7,8-dicarba*nido*- undecaborato- $\kappa^2 P, P'$]gold(I)-dichloromethane- water (2/1/1)

Crystal data	
$[Au(C_{26}H_{30}B_{10}P_2) (C_{26}H_{30}B_{9}P_2)] \cdot 0.5CH_2Cl_2 \cdot 0.5H_2O$ $M_r = 1262.71$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 13.2043 (6) Å b = 20.1424 (9) Å c = 23.5721 (11) Å a = 102.131 (3)° $\beta = 90.849$ (3)° $\gamma = 105.839$ (2)°	$V = 5879.3 (5) Å^3$ Z = 4 F(000) = 2528 $D_x = 1.427 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 Å$ Cell parameters from 5169 reflections $\theta = 3.0-22.5^{\circ}$ $\mu = 2.69 \text{ mm}^{-1}$ T = 150 K Plate, colourless $0.10 \times 0.10 \times 0.02 \text{ mm}$
Data collection	
Bruker APEXII FR591 diffractometer Radiation source: rotating anode Graphite monochromator ω and φ scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003) $T_{min} = 0.767$, $T_{max} = 0.948$ 157624 measured reflections 20684 independent reflections 14971 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.106$	$k = -23 \rightarrow 23$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.1^{\circ}$	$l = -28 \rightarrow 28$
$h = -15 \rightarrow 15$	

Kejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.094$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
20684 reflections	and constrained refinement
1397 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0344P)^2 + 11.0634P]$
77 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 1.47 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was coated in Exxon Paratone N hydrocarbon oil and mounted on a thin mohair fibre attached to a copper pin. Upon mounting on the diffractometer, the crystal was quenched to 150(K) under a cold nitrogen gas stream supplied by an Oxford Cryosystems Cryostream and data were collected at this temperature.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.1097 (4)	0.8335 (3)	0.0588 (2)	0.0191 (12)	
C2	0.1375 (4)	0.9003 (3)	0.0470 (3)	0.0256 (13)	
H2	0.1433	0.9053	0.0079	0.031*	
C3	0.1570 (5)	0.9601 (3)	0.0921 (3)	0.0323 (15)	
H3	0.1770	1.0058	0.0838	0.039*	
C4	0.1477 (5)	0.9533 (3)	0.1488 (3)	0.0336 (15)	
H4	0.1606	0.9944	0.1794	0.040*	
C5	0.1197 (4)	0.8874 (4)	0.1612 (3)	0.0329 (16)	
H5	0.1129	0.8829	0.2004	0.039*	
C6	0.1014 (4)	0.8278 (3)	0.1169 (3)	0.0280 (14)	
H6	0.0829	0.7824	0.1259	0.034*	
C7	0.1386 (4)	0.6922 (3)	0.0252 (2)	0.0221 (13)	
C8	0.2220 (4)	0.7112 (3)	0.0671 (3)	0.0276 (14)	
H8	0.2504	0.7596	0.0862	0.033*	
C9	0.2647 (5)	0.6608 (3)	0.0816 (3)	0.0354 (16)	
H9	0.3214	0.6746	0.1109	0.042*	
C10	0.2253 (5)	0.5905 (3)	0.0538 (3)	0.0378 (17)	
H10	0.2557	0.5561	0.0631	0.045*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C11	0.1404 (5)	0.5701 (3)	0.0117 (3)	0.0397 (17)
H11	0.1121	0.5219	-0.0076	0.048*
C12	0.0984 (5)	0.6210 (3)	-0.0013 (3)	0.0320 (15)
H12	0.0399	0.6069	-0.0293	0.038*
C13	-0.0583 (4)	0.7145 (3)	-0.0081(2)	0.0185 (12)
C14	-0.1161 (4)	0.6758 (3)	-0.0725 (2)	0.0216 (13)
C15	-0.0209 (4)	0.5873 (3)	-0.1640(3)	0.0282 (14)
C16	-0.0579 (4)	0.5281 (3)	-0.1396 (3)	0.0306 (15)
H16	-0.0930	0.5322	-0.1047	0.037*
C17	-0.0428(6)	0.4637 (4)	-0.1666(3)	0.0467 (19)
H17	-0.0686	0.4238	-0.1500	0.056*
C18	0.0081 (6)	0.4563 (4)	-0.2166(3)	0.0469 (19)
H18	0.0170	0.4117	-0.2347	0.056*
C19	0.0467(5)	0.5149(4)	-0.2403(3)	0.0431(17)
H19	0.0829	0.5104	-0.2748	0.052*
C20	0.0329(5)	0.5794(3)	-0.2144(3)	0.032
H20	0.0604	0.6191	-0.2309	0.030*
C21	-0.1060(4)	0.6944(3)	-0.1915(3)	0.039 0.0289 (14)
C21	-0.1117(5)	0.074 (3)	-0.1883(3)	0.0205(17)
U22	-0.0756	0.7020 (4)	-0.1560	0.0393(17)
C23	-0.1670 (6)	0.7980	-0.2206(4)	0.047
U23	-0.1705	0.7807 (5)	-0.2253	0.057 (2)
C24	-0.2166(7)	0.0279 0.7207 (6)	-0.2255	0.008°
C24 H24	-0.2562	0.7297 (0)	-0.2051	0.081 (3)
П24 С25	-0.2302	0.7413	-0.3031 -0.2838(4)	0.097°
C23	-0.2103(7)	0.0013 (0)	-0.2030(4)	0.079 (3)
H23	-0.2413	0.0208	-0.3181	0.093
C26	-0.1577(5)	0.0451 (4)	-0.2399 (3)	0.0490 (19)
H20	-0.1373	0.3934	-0.2452	0.039°
C27	0.3423(4) 0.2528(5)	0.0019(3)	-0.1135(2)	0.0239(13)
C28	0.2528 (5)	0.6040 (3)	-0.1205 (5)	0.0334 (15)
H28	0.1848	0.0115	-0.11/5	0.040^{*}
0.29	0.2034 (5)	0.5360 (4)	-0.1300 (3)	0.050 (2)
H29	0.2027	0.4968	-0.1325	0.060°
C30	0.3622 (6)	0.5248 (4)	-0.1358 (3)	0.0465 (19)
H30	0.3693	0.4/82	-0.1428	0.056*
C31	0.4507 (5)	0.5827 (4)	-0.1315 (3)	0.0412 (17)
H31	0.5184	0.5753	-0.1363	0.049*
C32	0.4412 (5)	0.6503 (3)	-0.1202 (3)	0.0298 (14)
H32	0.5026	0.6895	-0.1158	0.036*
C33	0.3867 (4)	0.7909 (3)	-0.0243(2)	0.0210 (13)
C34	0.4573 (4)	0.7648 (3)	0.0028 (3)	0.0274 (14)
H34	0.4729	0.7228	-0.0168	0.033*
035	0.5044 (5)	0.7989 (3)	0.0574 (3)	0.0299 (14)
H35	0.5535	0.7810	0.0750	0.036*
C36	0.4808 (4)	0.8594 (3)	0.0871 (3)	0.0296 (14)
H36	0.5139	0.8830	0.1248	0.035*
C37	0.4100 (4)	0.8848 (3)	0.0620 (3)	0.0311 (15)
H37	0.3929	0.9257	0.0826	0.037*

C38	0.3631 (4)	0.8512 (3)	0.0068 (3)	0.0272 (14)	
H38	0.3140	0.8695	-0.0103	0.033*	
C39	0.3949 (4)	0.8013 (3)	-0.1451 (3)	0.0245 (13)	
C40	0.3374 (4)	0.8589 (3)	-0.1681 (3)	0.0257 (14)	
C41	0.2055 (4)	0.9455 (3)	-0.0994 (2)	0.0199 (12)	
C42	0.1073 (5)	0.9581 (3)	-0.0936 (3)	0.0319 (15)	
H42	0.0470	0.9255	-0.1161	0.038*	
C43	0.0970 (5)	1.0174 (4)	-0.0555 (3)	0.0415 (18)	
H43	0.0297	1.0260	-0.0528	0.050*	
C44	0.1825 (5)	1.0645 (3)	-0.0212 (3)	0.0392 (17)	
H44	0.1742	1.1044	0.0061	0.047*	
C45	0.2798 (5)	1.0529 (3)	-0.0268 (3)	0.0372 (16)	
H45	0.3396	1.0860	-0.0041	0.045*	
C46	0.2922 (4)	0.9938 (3)	-0.0651 (3)	0.0284 (14)	
H46	0.3600	0.9861	-0.0680	0.034*	
C47	0.1366 (4)	0.8565 (3)	-0.2141 (3)	0.0288 (14)	
C48	0.1377 (6)	0.9187 (4)	-0.2319 (3)	0.0448 (18)	
H48	0.1677	0.9634	-0.2063	0.054*	
C49	0.0949 (7)	0.9147 (5)	-0.2867 (3)	0.062 (2)	
H49	0.0935	0.9569	-0.2983	0.074*	
C50	0.0543 (7)	0.8503 (5)	-0.3248 (3)	0.066 (2)	
H50	0.0275	0.8481	-0.3629	0.080*	
C51	0.0526 (6)	0.7886 (4)	-0.3074 (3)	0.051 (2)	
H51	0.0233	0.7440	-0.3333	0.061*	
C52	0.0933 (5)	0.7918 (3)	-0.2527 (3)	0.0340 (15)	
H52	0.0919	0.7492	-0.2410	0.041*	
C58A	0.3300 (5)	0.4932 (5)	0.6977 (4)	0.0417 (13)	0.65
H58A	0.2662	0.4764	0.7150	0.050*	0.65
C53A	0.3750 (7)	0.4455 (3)	0.6634 (4)	0.0417 (13)	0.65
C55A	0.4684 (6)	0.4701 (3)	0.6381 (3)	0.0417 (13)	0.65
H55A	0.4992	0.4375	0.6146	0.050*	0.65
C56A	0.5167 (5)	0.5424 (3)	0.6472 (3)	0.0417 (13)	0.65
H56A	0.5805	0.5592	0.6300	0.050*	0.65
C57A	0.4717 (5)	0.5901 (3)	0.6816(3)	0.0417 (13)	0.65
H57A	0.5047	0.6396	0.6878	0.050*	0.65
C54A	0.3783 (6)	0.5655 (4)	0.7068 (4)	0.0417 (13)	0.65
H54A	0.3475	0.5981	0.7303	0.050*	0.65
C53B	0.3764 (13)	0.4424 (8)	0.6679 (11)	0.080 (4)	0.35
C58B	0.3352 (10)	0.4964 (11)	0.6951 (12)	0.080 (4)	0.35
H58B	0.2612	0.4874	0.6980	0.096*	0.35
C55B	0.4022 (13)	0.5636 (10)	0.7181 (10)	0.080 (4)	0.35
H55B	0.3740	0.6005	0.7366	0.096*	0.35
C54B	0.5105 (12)	0.5768 (7)	0.7138 (8)	0.080 (4)	0.35
H54B	0.5562	0.6227	0.7295	0.096*	0.35
C56B	0.5517 (10)	0.5228 (8)	0.6866 (9)	0.080 (4)	0.35
H56B	0.6257	0.5318	0.6837	0.096*	0.35
C57B	0.4847 (14)	0.4556 (7)	0.6637 (9)	0.080 (4)	0.35
H57B	0.5129	0.4187	0.6451	0.096*	0.35

C59	0.2188 (4)	0.3317 (3)	0.7009 (3)	0.0281 (14)
C60	0.1181 (6)	0.2851 (4)	0.6858 (3)	0.0483 (19)
H60	0.0930	0.2672	0.6460	0.058*
C61	0.0541 (6)	0.2648 (4)	0.7297 (4)	0.058 (2)
H61	-0.0147	0.2330	0.7197	0.070*
C62	0.0915 (5)	0.2912 (4)	0.7878 (3)	0.0427 (18)
H62	0.0504	0.2753	0.8176	0.051*
C63	0.1865 (5)	0.3395 (4)	0.8014 (3)	0.0436 (18)
H63	0.2104	0.3599	0.8411	0.052*
C64	0.2500 (5)	0.3597 (3)	0.7580 (3)	0.0376 (16)
H64	0.3167	0.3939	0.7685	0.045*
C65	0.2140 (5)	0.3413 (3)	0.5808 (3)	0.0317 (15)
C66	0.1840 (5)	0.2670 (3)	0.5331 (2)	0.0303 (15)
C67	0.2875 (5)	0.1684(3)	0.4721 (3)	0.0306 (15)
C68	0.3782 (5)	0.2068 (4)	0.4515 (3)	0.0429 (18)
H68	0.4260	0.2461	0.4770	0.051*
C69	0.3987(7)	0.1879(5)	0.3941 (4)	0.062(2)
H69	0.4579	0.2159	0.3792	0.074*
C70	0.3321 (8)	0.1274 (5)	0.3581 (4)	0.073(3)
H70	0.3468	0.1139	0.3187	0.088*
C71	0.2467 (7)	0.0876 (4)	0.3785 (3)	0.059 (2)
H71	0.2024	0.0460	0.3537	0.071*
C72	0.2242 (6)	0.1079 (4)	0.4356 (3)	0.0442 (18)
H72	0.1644	0.0798	0.4499	0.053*
C73	0.1599 (4)	0.1240 (3)	0.5615 (2)	0.0300 (15)
C74	0.0556 (5)	0.1196 (4)	0.5766 (3)	0.0380 (16)
H74	0.0268	0.1578	0.5761	0.046*
C75	-0.0054(5)	0.0580 (4)	0.5924 (3)	0.049 (2)
H75	-0.0761	0.0544	0.6018	0.059*
C76	0.0369 (6)	0.0029 (4)	0.5943 (3)	0.057 (2)
H76	-0.0042	-0.0381	0.6058	0.069*
C77	0.1390 (6)	0.0071 (4)	0.5795 (4)	0.061 (2)
H77	0.1676	-0.0311	0.5804	0.073*
C78	0.1997 (5)	0.0666 (4)	0.5633 (3)	0.0441 (18)
H78	0.2697	0.0688	0.5531	0.053*
C79	0.3188 (4)	0.1737 (3)	0.7488 (3)	0.0297 (14)
C80	0.2186 (5)	0.1531 (4)	0.7209 (3)	0.0467 (19)
H80	0.2083	0.1635	0.6841	0.056*
C81	0.1322 (5)	0.1169 (4)	0.7471 (3)	0.050(2)
H81	0.0631	0.1028	0.7284	0.060*
C82	0.1489 (5)	0.1019 (4)	0.8005 (3)	0.0408 (17)
H82	0.0911	0.0763	0.8180	0.049*
C83	0.2473 (5)	0.1235 (3)	0.8282 (3)	0.0330 (15)
H83	0.2569	0.1142	0.8654	0.040*
C84	0.3332 (5)	0.1588 (3)	0.8031 (3)	0.0308 (15)
H84	0.4017	0.1728	0.8225	0.037*
C85	0.4756 (4)	0.3134 (3)	0.7723 (3)	0.0283 (14)
C86	0.4497 (5)	0.3222 (4)	0.8289 (3)	0.0423 (17)

H86	0.3994	0.2850	0.8407	0.051*
C87	0.4954 (5)	0.3840 (4)	0.8688 (3)	0.0433 (18)
H87	0.4781	0.3881	0.9082	0.052*
C88	0.5638 (5)	0.4386 (4)	0.8536 (3)	0.0365 (16)
H88	0.5976	0.4798	0.8825	0.044*
C89	0.5857 (6)	0.4353 (4)	0.7958 (4)	0.060 (2)
H89	0.6314	0.4749	0.7845	0.071*
C90	0.5389 (5)	0.3720 (4)	0.7542 (3)	0.0488 (19)
H90	0.5502	0.3693	0.7141	0.059*
C91	0.5346 (4)	0.1905 (3)	0.7113 (3)	0.0280 (14)
C92	0.6099 (4)	0.1995 (3)	0.6537 (3)	0.0278 (14)
C93	0.5898 (5)	0.1915 (4)	0.5319 (3)	0.0356 (16)
C94	0.5128 (5)	0.1292 (4)	0.5086 (3)	0.0414 (17)
H94	0.4486	0.1180	0.5269	0.050*
C95	0.5274 (6)	0.0827 (4)	0.4591 (3)	0.055 (2)
Н95	0.4747	0.0393	0.4442	0.066*
C96	0.6198 (7)	0.1002 (5)	0.4316 (4)	0.069 (3)
H96	0.6306	0.0688	0.3977	0.083*
C97	0.6961 (7)	0.1629 (5)	0.4534 (4)	0.068 (3)
H97	0.7582	0.1752	0.4336	0.081*
C98	0.6830 (6)	0.2086 (4)	0.5044 (3)	0.051 (2)
H98	0.7371	0.2510	0.5202	0.061*
C99	0.6672 (5)	0.3324 (3)	0.6038 (3)	0.0340 (16)
C100	0.7553 (5)	0.3659 (4)	0.6419 (3)	0.051 (2)
H100	0.7718	0.3444	0.6716	0.061*
C101	0.8203 (6)	0.4314 (4)	0.6366 (4)	0.064 (2)
H101	0.8814	0.4539	0.6627	0.077*
C102	0.7983 (6)	0.4630 (4)	0.5956 (4)	0.062 (2)
H102	0.8439	0.5074	0.5926	0.074*
C103	0.7088 (6)	0.4314 (4)	0.5573 (3)	0.053 (2)
H103	0.6927	0.4539	0.5282	0.063*
C104	0.6433 (5)	0.3663 (4)	0.5624 (3)	0.0442 (18)
H104	0.5811	0.3448	0.5370	0.053*
O1	0.5000	0.5000	0.5000	0.124 (4)*
O2	0.4605 (13)	0.6157 (9)	0.5794 (7)	0.127 (6)*
C105	0.1611 (7)	0.6054 (5)	0.5840 (4)	0.080 (3)
H10A	0.1858	0.5627	0.5721	0.096*
H10B	0.1228	0.6108	0.5496	0.096*
P1	0.08514 (10)	0.75599 (7)	-0.00144 (6)	0.0181 (3)
P2	-0.03011 (11)	0.67667 (8)	-0.13385 (6)	0.0206 (3)
P3	0.20151 (11)	0.85853 (8)	-0.14488 (7)	0.0217 (3)
P4	0.31718 (11)	0.74770 (8)	-0.09602 (6)	0.0202 (3)
P5	0.30666 (12)	0.35056 (9)	0.64326 (7)	0.0291 (4)
P6	0.25284 (12)	0.20160 (9)	0.54478 (7)	0.0267 (4)
P7	0.56905 (12)	0.24710 (9)	0.60042 (7)	0.0291 (4)
P8	0.42192 (12)	0.23123 (9)	0.71552 (7)	0.0279 (4)
Cl1	0.0742 (2)	0.59305 (16)	0.63828 (13)	0.1050 (9)
C12	0.2658 (3)	0.6759 (2)	0.60485 (17)	0.1588 (16)

0.50

Au1	0 138379 (16)	0 761176 (11)	-0.099659 (9)	0.01778 (6)
Au2	0 393473 (17)	0 255209 (12)	0 619681 (10)	0.02597(7)
B1	-0.1165(5)	0.6728 (4)	0.0408(3)	0.02337(7)
B2	-0.2339(6)	0.6018(4)	0.0022(3)	0.0350(19)
B3	-0.2204(5)	0.6016(4)	-0.0732(4)	0.0339(18)
BJ B4	-0.2204(5)	0.6020(4)	-0.0792(3)	0.0337(10)
	-0.2784	0.6920 (4)	-0.1101	0.0257 (17)
B5	-0.1282(5)	0.0991 0.7600 (4)	-0.0392(3)	0.030
Ы5 Н5 А	-0.0022	0.8103	-0.0532(3)	0.0240 (13)
B6	-0.1378(5)	0.3103 0.7569 (4)	0.0350(3)	0.029
Нбл	-0.1114	0.7505 (4)	0.0330 (3)	0.0272 (10)
110A P7	-0.2450(5)	0.6850 (4)	0.0701	0.035
Б7 Ц7	-0.2430(3)	0.0830 (4)	0.0418 (3)	0.0352 (18)
П/ D9	-0.2877 -0.2084(5)	0.0870	-0.0323	0.042°
	-0.3084 (3)	0.0438 (4)	-0.0307(3)	0.0332 (18)
ПоА	-0.3939	0.0214	-0.0387	0.042°
B9	-0.2530 (5)	0.7390 (4)	-0.0096 (3)	0.0308 (17)
H9A	-0.3033	0.7763	-0.0034	0.03/*
BIO	0.5293 (6)	0.8352 (4)	-0.1385 (4)	0.0391 (19)
HIOC	0.5824	0.8252	-0.1058	0.047*
B11	0.3682 (6)	0.8648 (4)	-0.2384 (3)	0.038 (2)
HIIA	0.3155	0.8744	-0.2716	0.046*
B12	0.4481 (5)	0.8902 (4)	-0.1182 (4)	0.0339 (18)
H12A	0.4470	0.9162	-0.0714	0.041*
B13	0.5539 (6)	0.9185 (4)	-0.1598 (4)	0.044 (2)
H13	0.6239	0.9644	-0.1410	0.053*
B14	0.5660 (6)	0.8421 (4)	-0.2099 (4)	0.043 (2)
H14	0.6445	0.8372	-0.2244	0.052*
B15	0.4638 (6)	0.7674 (4)	-0.1998 (3)	0.0346 (18)
H15	0.4739	0.7128	-0.2074	0.041*
B16	0.3401 (6)	0.7822 (4)	-0.2161 (3)	0.0305 (17)
H16A	0.2675	0.7376	-0.2333	0.037*
B17	0.4483 (6)	0.8078 (4)	-0.2583 (4)	0.042 (2)
H17A	0.4483	0.7795	-0.3046	0.050*
B18	0.5058 (6)	0.9014 (4)	-0.2333 (4)	0.047 (2)
H18A	0.5451	0.9355	-0.2631	0.056*
B19	0.4304 (6)	0.9323 (4)	-0.1773 (3)	0.0381 (19)
H19A	0.4173	0.9860	-0.1696	0.046*
B20	0.5211 (6)	0.1188 (4)	0.6543 (3)	0.0318 (17)
H20A	0.4484	0.0948	0.6237	0.038*
B21	0.5248 (6)	0.1101 (4)	0.7271 (3)	0.0312 (17)
H21	0.4539	0.0781	0.7445	0.037*
B22	0.6095 (5)	0.1903 (4)	0.7701 (3)	0.0303 (17)
H22A	0.5947	0.2121	0.8160	0.036*
B23	0.6606 (6)	0.2467 (5)	0.7241 (4)	0.048 (2)
H23A	0.6789	0.3056	0.7392	0.058*
B24	0.6517 (6)	0.1244 (4)	0.6306 (3)	0.0331 (17)
H24A	0.6652	0.1027	0.5844	0.040*
B25	0.7375 (6)	0.2040 (4)	0.6728 (3)	0.0345 (18)

H25A	0.8075	0.2351	0.6540	0.041*
B26	0.7395 (6)	0.1977 (4)	0.7470 (3)	0.0335 (18)
H26A	0.8121	0.2242	0.7773	0.040*
B27	0.6529 (6)	0.1135 (4)	0.7508 (3)	0.0350 (18)
H27	0.6678	0.0845	0.7843	0.042*
B28	0.5990 (6)	0.0686 (4)	0.6783 (3)	0.0385 (19)
H28A	0.5781	0.0096	0.6635	0.046*
B29	0.7325 (6)	0.1222 (4)	0.6904 (3)	0.0383 (19)
H29A	0.8003	0.0986	0.6841	0.046*
B30	0.2719 (6)	0.3414 (4)	0.5161 (3)	0.0400 (19)
H30A	0.3580	0.3485	0.5107	0.048*
B31	0.1146 (6)	0.3758 (4)	0.5894 (4)	0.0381 (19)
B32	0.1711 (7)	0.2807 (4)	0.4635 (4)	0.044 (2)
H32A	0.1914	0.2494	0.4223	0.053*
B33	0.2236 (7)	0.4129 (4)	0.5491 (4)	0.043 (2)
H33	0.2776	0.4679	0.5639	0.051*
B34	0.0908 (7)	0.3956 (5)	0.5209 (4)	0.051 (2)
H34A	0.0569	0.4400	0.5175	0.062*
B35	0.0073 (7)	0.3171 (5)	0.5363 (4)	0.052 (2)
B36	0.0642 (6)	0.2451 (5)	0.5024 (4)	0.041 (2)
B37	0.0608 (7)	0.3133 (5)	0.4680 (4)	0.048 (2)
H37A	0.0059	0.3027	0.4284	0.058*
B38	0.1902 (7)	0.3735 (5)	0.4750 (4)	0.049 (2)
H38A	0.2214	0.4030	0.4407	0.059*
H1	-0.067 (5)	0.668 (3)	0.083 (3)	0.059*
H2A	-0.270 (5)	0.554 (4)	0.017 (3)	0.059*
H3A	-0.237 (5)	0.562 (4)	-0.119 (3)	0.059*
H3B	-0.146 (3)	0.618 (2)	0.003 (2)	0.059*
H31A	0.104 (5)	0.410 (4)	0.631 (3)	0.059*
H31B	0.064 (4)	0.314 (2)	0.574 (2)	0.059*
H35A	-0.079 (3)	0.311 (3)	0.539 (3)	0.059*
H36A	0.022 (5)	0.186 (4)	0.486 (3)	0.059*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.009 (3)	0.020 (3)	0.025 (3)	0.002 (2)	-0.004 (2)	0.002 (3)
C2	0.029 (3)	0.024 (3)	0.025 (3)	0.009 (3)	-0.001 (3)	0.005 (3)
C3	0.031 (3)	0.025 (3)	0.040 (4)	0.010 (3)	-0.001 (3)	0.003 (3)
C4	0.032 (3)	0.033 (4)	0.035 (4)	0.013 (3)	-0.004 (3)	-0.001 (3)
C5	0.022 (3)	0.056 (5)	0.021 (3)	0.015 (3)	0.003 (3)	0.005 (3)
C6	0.022 (3)	0.032 (4)	0.029 (4)	0.005 (3)	0.007 (3)	0.008 (3)
C7	0.021 (3)	0.022 (3)	0.024 (3)	0.004 (2)	0.003 (2)	0.009 (3)
C8	0.020 (3)	0.022 (3)	0.040 (4)	0.001 (3)	-0.004 (3)	0.010 (3)
С9	0.029 (3)	0.033 (4)	0.043 (4)	0.006 (3)	-0.013 (3)	0.013 (3)
C10	0.038 (4)	0.029 (4)	0.054 (5)	0.012 (3)	-0.002 (3)	0.022 (3)
C11	0.048 (4)	0.023 (4)	0.048 (4)	0.013 (3)	-0.015 (3)	0.006 (3)
C12	0.034 (3)	0.033 (4)	0.028 (4)	0.012 (3)	-0.007 (3)	0.002 (3)

C13	0.017 (3)	0.019 (3)	0.020(3)	0.006 (2)	0.003 (2)	0.002 (2)
C14	0.014 (3)	0.020 (3)	0.030 (3)	0.005 (2)	-0.003 (2)	0.005 (3)
C15	0.022 (3)	0.032 (4)	0.024 (3)	0.006 (3)	-0.008(3)	-0.004(3)
C16	0.028 (3)	0.026 (4)	0.035 (4)	0.005 (3)	-0.001(3)	0.003 (3)
C17	0.052 (4)	0.028 (4)	0.058 (5)	0.010 (3)	-0.004(4)	0.007 (4)
C18	0.058(5)	0.030(4)	0.050 (5)	0.021 (4)	-0.012(4)	-0.008(4)
C19	0.045(4)	0.046 (5)	0.035(4)	0.018(4)	-0.002(3)	-0.004(4)
C20	0.033(3)	0.034(4)	0.027(4)	0.012(3)	0.000(3)	0.001(3)
C21	0.016(3)	0.031(1) 0.042(4)	0.027(4)	0.012(3)	0.000(3)	0.007(3)
C22	0.018(3) 0.028(4)	0.012(1)	0.027(1) 0.042(4)	0.021(3)	0.000(3)	0.007(3)
C23	0.020(1)	0.086 (6)	0.055(5)	0.021(5)	0.007(3)	0.035(5)
C24	0.066 (6)	0.000(0)	0.057 (6)	0.012(3)	-0.002(1)	0.035(3)
C24	0.066 (6)	0.144(10) 0.114(0)	0.058 (6)	0.044 (6)	-0.033(5)	0.004(7)
C25	0.000(0)	0.114(9)	0.038(0)	0.044(0)	-0.018(3)	-0.000(0)
C20	0.039(4)	0.030(3)	0.043(3)	0.017(4)	-0.002(3)	0.007(4)
C27	0.030(3)	0.019(3)	0.021(3)	0.007(3)	-0.002(3)	0.000(3)
C28	0.023(3)	0.022(3)	0.031(4)	0.008(3)	-0.007(3)	0.003(3)
C29	0.042(4)	0.027(4)	0.078(0)	0.011(3)	-0.019(4)	0.004(4)
C30	0.058 (5)	0.033 (4)	0.051(5)	0.025 (4)	-0.023(4)	-0.002(3)
C31	0.038 (4)	0.043 (4)	0.041 (4)	0.022(3)	-0.009(3)	-0.006(3)
C32	0.029 (3)	0.030 (4)	0.028 (4)	0.015(3)	-0.007(3)	-0.006(3)
033	0.018 (3)	0.020(3)	0.026 (3)	0.005 (2)	0.005 (2)	0.008(3)
C34	0.025 (3)	0.027 (3)	0.028 (4)	0.009 (3)	0.006 (3)	0.001 (3)
C35	0.030 (3)	0.034 (4)	0.028 (4)	0.011 (3)	-0.001 (3)	0.010 (3)
C36	0.023 (3)	0.034 (4)	0.024 (3)	-0.001 (3)	-0.001 (3)	0.002 (3)
C37	0.028 (3)	0.023 (3)	0.034 (4)	0.003 (3)	-0.004(3)	-0.007(3)
C38	0.022 (3)	0.027 (3)	0.031 (4)	0.006 (3)	0.005 (3)	0.003 (3)
C39	0.019 (3)	0.025 (3)	0.028 (3)	0.005 (3)	0.006 (3)	0.004 (3)
C40	0.024 (3)	0.028 (3)	0.029 (3)	0.010 (3)	0.010 (3)	0.012 (3)
C41	0.026 (3)	0.014 (3)	0.024 (3)	0.008 (2)	0.007 (3)	0.011 (3)
C42	0.033 (3)	0.027 (4)	0.041 (4)	0.014 (3)	0.010 (3)	0.012 (3)
C43	0.041 (4)	0.046 (4)	0.052 (5)	0.027 (4)	0.018 (4)	0.023 (4)
C44	0.059 (5)	0.024 (4)	0.042 (4)	0.020 (3)	0.023 (4)	0.012 (3)
C45	0.042 (4)	0.025 (4)	0.038 (4)	0.001 (3)	0.005 (3)	0.004 (3)
C46	0.025 (3)	0.022 (3)	0.043 (4)	0.010 (3)	0.013 (3)	0.013 (3)
C47	0.026 (3)	0.042 (4)	0.023 (3)	0.010 (3)	0.006 (3)	0.016 (3)
C48	0.062 (5)	0.041 (4)	0.035 (4)	0.015 (4)	-0.002 (4)	0.014 (3)
C49	0.091 (6)	0.063 (6)	0.042 (5)	0.028 (5)	-0.004(4)	0.026 (5)
C50	0.095 (7)	0.076 (6)	0.032 (5)	0.025 (5)	-0.010 (4)	0.021 (5)
C51	0.051 (5)	0.058 (5)	0.032 (4)	0.002 (4)	-0.004 (3)	0.003 (4)
C52	0.040 (4)	0.035 (4)	0.028 (4)	0.010 (3)	0.006 (3)	0.010 (3)
C58A	0.047 (3)	0.023 (3)	0.046 (3)	-0.003 (2)	-0.003 (2)	0.006 (2)
C53A	0.047 (3)	0.023 (3)	0.046 (3)	-0.003(2)	-0.003(2)	0.006 (2)
C55A	0.047 (3)	0.023 (3)	0.046 (3)	-0.003(2)	-0.003(2)	0.006 (2)
C56A	0.047 (3)	0.023 (3)	0.046 (3)	-0.003 (2)	-0.003(2)	0.006 (2)
C57A	0.047 (3)	0.023 (3)	0.046 (3)	-0.003 (2)	-0.003(2)	0.006 (2)
C54A	0.047 (3)	0.023 (3)	0.046 (3)	-0.003 (2)	-0.003(2)	0.006 (2)
C53B	0.042 (6)	0.054 (7)	0.111 (9)	-0.001 (5)	0.017 (6)	-0.035 (6)
C58B	0.042 (6)	0.054 (7)	0.111 (9)	-0.001 (5)	0.017 (6)	-0.035 (6)
	× /	× /	× /	\ /	× /	(-)

C55B	0.042 (6)	0.054 (7)	0.111 (9)	-0.001 (5)	0.017 (6)	-0.035 (6)
C54B	0.042 (6)	0.054 (7)	0.111 (9)	-0.001(5)	0.017 (6)	-0.035 (6)
C56B	0.042 (6)	0.054 (7)	0.111 (9)	-0.001 (5)	0.017 (6)	-0.035 (6)
C57B	0.042 (6)	0.054 (7)	0.111 (9)	-0.001 (5)	0.017 (6)	-0.035 (6)
C59	0.027 (3)	0.023 (3)	0.030 (4)	0.006 (3)	0.003 (3)	-0.004(3)
C60	0.050 (4)	0.051 (5)	0.042 (5)	0.015 (4)	0.003 (4)	0.007 (4)
C61	0.049 (5)	0.060 (5)	0.061 (6)	0.005 (4)	0.016 (4)	0.018 (5)
C62	0.048 (4)	0.041 (4)	0.041 (5)	0.009 (4)	0.018 (4)	0.015 (4)
C63	0.052 (4)	0.055 (5)	0.023 (4)	0.015 (4)	0.000 (3)	0.007 (3)
C64	0.037 (4)	0.037 (4)	0.032 (4)	0.003 (3)	-0.007(3)	0.004 (3)
C65	0.032 (3)	0.025 (3)	0.035 (4)	0.006 (3)	0.000 (3)	0.004 (3)
C66	0.030 (3)	0.034 (4)	0.018 (3)	0.002 (3)	-0.007(3)	-0.004(3)
C67	0.040(4)	0.034(4)	0.018(3)	0.001(3)	0.003(3)	0.005(3)
C68	0.044(4)	0.047(4)	0.041(4)	0.012(4)	0.003(3)	0.017(4)
C69	0.077(6)	0.080(6)	0.054 (6)	0.012(1)	0.040(5)	0.036(5)
C70	0.077(8)	0.000(0)	0.027(5)	0.054(7)	0.010(5)	0.030(5)
C71	0.112(6)	0.094(7)	0.027(5)	0.054(7)	0.030(3)	-0.011(4)
C72	0.075(0)	0.037(5)	0.039(3)	0.010(4)	0.012(4)	0.011(4)
C73	0.034(4)	0.040(5)	0.029(4)	-0.001(4)	-0.006(3)	0.005(3)
C74	0.027(3)	0.038(4)	0.015(3)	0.001(3)	-0.000(3)	0.000(3)
C74	0.033(4)	0.047(4)	0.023(4)	-0.003(3)	0.001(3)	0.003(3)
C75	0.037(4)	0.007(5)	0.039(4)	-0.010(4)	-0.003(3)	0.023(4)
C70	0.037(4)	0.009(0)	0.002(5)	0.010(4)	-0.003(4)	0.039(3)
C77	0.034(3)	0.034(3)	0.085(0)	0.007(4)	-0.001(4)	0.049(3)
C78	0.035(4)	0.040(4)	0.039(3)	0.011(3)	0.002(3)	0.028(4)
C79	0.025(3)	0.034(4)	0.029 (4)	0.005(3)	0.005(3)	0.009(3)
C80	0.043(4)	0.054(5)	0.037(4)	-0.002(4)	0.000(3)	0.018(4)
C81	0.037(4)	0.056(5)	0.045 (5)	-0.006 (4)	-0.002(3)	0.009 (4)
C82	0.033(4)	0.046 (4)	0.039 (4)	-0.002(3)	0.010(3)	0.017(4)
C83	0.035 (4)	0.034 (4)	0.034 (4)	0.014(3)	0.010 (3)	0.010 (3)
C84	0.028 (3)	0.033 (4)	0.034 (4)	0.009 (3)	-0.003 (3)	0.011 (3)
C85	0.025 (3)	0.032 (4)	0.025 (4)	0.004 (3)	0.002 (3)	0.006 (3)
C86	0.046 (4)	0.032 (4)	0.046 (5)	0.007 (3)	0.013 (4)	0.006 (3)
C87	0.047 (4)	0.035 (4)	0.045 (5)	0.013 (4)	0.009 (4)	0.000 (4)
C88	0.029 (3)	0.034 (4)	0.044 (4)	0.013 (3)	-0.010 (3)	-0.001(3)
C89	0.038 (4)	0.043 (5)	0.083 (7)	-0.006(4)	0.007 (4)	0.005 (5)
C90	0.040 (4)	0.048 (5)	0.053 (5)	0.002 (4)	0.006 (4)	0.012 (4)
C91	0.022 (3)	0.033 (4)	0.029 (4)	0.008 (3)	0.002 (3)	0.008 (3)
C92	0.021 (3)	0.029 (3)	0.032 (4)	0.005 (3)	0.005 (3)	0.007 (3)
C93	0.034 (4)	0.040 (4)	0.038 (4)	0.013 (3)	0.008 (3)	0.017 (3)
C94	0.046 (4)	0.052 (5)	0.025 (4)	0.012 (4)	0.007 (3)	0.007 (3)
C95	0.057 (5)	0.056 (5)	0.040 (5)	0.005 (4)	0.000 (4)	-0.002 (4)
C96	0.090 (7)	0.062 (6)	0.047 (5)	0.026 (5)	0.022 (5)	-0.010 (4)
C97	0.059 (5)	0.081 (7)	0.057 (6)	0.018 (5)	0.037 (4)	0.004 (5)
C98	0.055 (5)	0.053 (5)	0.042 (5)	0.015 (4)	0.016 (4)	0.003 (4)
C99	0.032 (3)	0.030 (4)	0.037 (4)	0.004 (3)	0.002 (3)	0.006 (3)
C100	0.044 (4)	0.045 (5)	0.056 (5)	-0.001 (4)	-0.014 (4)	0.015 (4)
C101	0.040 (4)	0.047 (5)	0.098 (7)	-0.008 (4)	-0.022 (4)	0.027 (5)
C102	0.044 (4)	0.045 (5)	0.096 (7)	-0.003 (4)	-0.008(5)	0.035 (5)

C103	0.048 (4)	0.050 (5)	0.062 (5)	0.006 (4)	0.000 (4)	0.029 (4)
C104	0.033 (4)	0.036 (4)	0.058 (5)	-0.006 (3)	-0.011 (3)	0.021 (4)
C105	0.083 (7)	0.068 (6)	0.078 (7)	0.010 (5)	0.010 (5)	0.009 (5)
P1	0.0160 (7)	0.0188 (8)	0.0196 (8)	0.0043 (6)	0.0006 (6)	0.0056 (6)
P2	0.0175 (7)	0.0210 (8)	0.0211 (8)	0.0034 (6)	-0.0016 (6)	0.0028 (7)
P3	0.0224 (8)	0.0203 (8)	0.0248 (8)	0.0080 (6)	0.0050 (6)	0.0074 (7)
P4	0.0168 (7)	0.0182 (8)	0.0247 (8)	0.0053 (6)	0.0015 (6)	0.0022 (7)
Р5	0.0263 (8)	0.0286 (9)	0.0272 (9)	0.0044 (7)	0.0012 (7)	-0.0009(7)
P6	0.0246 (8)	0.0302 (9)	0.0210 (9)	0.0026 (7)	0.0011 (7)	0.0031 (7)
P7	0.0259 (8)	0.0335 (10)	0.0265 (9)	0.0055 (7)	0.0014 (7)	0.0077 (8)
P8	0.0250 (8)	0.0331 (9)	0.0232 (9)	0.0029 (7)	0.0015 (7)	0.0080(7)
Cl1	0.130(2)	0.102(2)	0.093(2)	0.0300(19)	0.0296(18)	0.0456(17)
Cl2	0.130(2) 0.137(3)	0.102(2) 0.148(3)	0.093(2) 0.142(3)	-0.047(3)	-0.008(2)	0.040(3)
Au1	0.137(3)	0.01812(12)	0.02088(13)	0.0437(9)	0.000(2)	0.010(3) 0.00583(10)
Au2	0.02331(13)	0.01012(12) 0.02883(15)	0.02000(13) 0.02257(14)	0.00137(3)	0.00100(0)	0.00505(10) 0.00535(11)
R1	0.02331(13)	0.02003(13) 0.037(4)	0.02237(14) 0.034(4)	0.00240(11)	0.00023(10)	0.00335(11) 0.012(4)
B1 B2	0.022(4)	0.037(4)	0.034(4)	-0.003(3)	0.000(3)	0.012(4)
D2 B3	0.022(4)	0.037(3)	0.045(5)	-0.003(3)	0.010(3)	0.013(4)
DJ D/	0.023(4)	0.023(4)	0.040(3)	0.003(3)	0.002(3)	0.003(4)
D4 D5	0.015(3)	0.034(4)	0.039(4)	0.004(3)	0.000(3)	0.003(4)
DJ P6	0.013(3)	0.023(4) 0.034(4)	0.033(4) 0.027(4)	0.010(3)	0.002(3)	0.003(3)
D0 D7	0.020(3)	0.034(4)	0.027(4)	0.011(3)	0.005(3)	0.002(3)
D/ D0	0.025(4)	0.040(3)	0.040(3)	0.001(3)	0.000(3)	0.010(4)
	0.013(3)	0.042(3)	0.042(3)	-0.002(3)	0.003(3)	0.007(4)
B9 D10	0.019(3)	0.037(4)	0.034(4)	0.008(3)	0.001(3)	0.003(4)
B10 D11	0.025(4)	0.033(4)	0.058 (5)	0.009(3)	0.011(4)	0.006 (4)
BII	0.057(5)	0.036(5)	0.033(5)	0.021(4)	0.026 (4)	0.019 (4)
B12	0.028 (4)	0.024 (4)	0.046 (5)	0.005 (3)	0.004 (4)	0.004 (4)
BI3	0.028 (4)	0.036 (5)	0.064 (6)	0.004 (4)	0.023(4)	0.009 (4)
B14	0.038 (4)	0.042 (5)	0.054 (5)	0.013 (4)	0.027 (4)	0.016 (4)
BI5	0.034 (4)	0.032 (4)	0.032 (4)	0.004 (3)	0.018 (3)	0.001 (4)
B16	0.037 (4)	0.029 (4)	0.023 (4)	0.007 (3)	0.005 (3)	0.002 (3)
B17	0.052 (5)	0.041 (5)	0.036 (5)	0.017 (4)	0.027 (4)	0.011 (4)
B18	0.050 (5)	0.039 (5)	0.055 (6)	0.010 (4)	0.033 (4)	0.018 (4)
B19	0.043 (4)	0.029 (4)	0.045 (5)	0.004 (4)	0.019 (4)	0.018 (4)
B20	0.034 (4)	0.028 (4)	0.027 (4)	-0.003(3)	-0.005(3)	0.007 (3)
B21	0.033 (4)	0.027 (4)	0.031 (4)	0.002 (3)	-0.003(3)	0.011 (3)
B22	0.032 (4)	0.036 (4)	0.024 (4)	0.009 (3)	-0.002 (3)	0.011 (3)
B23	0.041 (5)	0.045 (5)	0.055 (6)	0.007 (4)	0.002 (4)	0.011 (5)
B24	0.036 (4)	0.035 (4)	0.032 (4)	0.018 (4)	0.006 (3)	0.005 (4)
B25	0.027 (4)	0.035 (4)	0.042 (5)	0.011 (3)	0.005 (3)	0.006 (4)
B26	0.025 (4)	0.036 (4)	0.038 (5)	0.006 (3)	-0.001 (3)	0.008 (4)
B27	0.039 (4)	0.036 (5)	0.034 (4)	0.015 (4)	0.000 (4)	0.010 (4)
B28	0.048 (5)	0.027 (4)	0.039 (5)	0.010 (4)	-0.002 (4)	0.005 (4)
B29	0.035 (4)	0.047 (5)	0.040 (5)	0.022 (4)	0.002 (4)	0.011 (4)
B30	0.042 (5)	0.040 (5)	0.037 (5)	0.008 (4)	0.000 (4)	0.011 (4)
B31	0.036 (4)	0.040 (5)	0.037 (5)	0.017 (4)	-0.006 (4)	-0.002 (4)
B32	0.062 (5)	0.046 (5)	0.030 (5)	0.022 (4)	-0.003 (4)	0.013 (4)
B33	0.050 (5)	0.039 (5)	0.041 (5)	0.014 (4)	-0.005 (4)	0.010 (4)

B34	0.067 (6)	0.056 (6)	0.043 (5)	0.036 (5)	-0.014 (4)	0.012 (4)	
B35	0.048 (5)	0.055 (6)	0.052 (6)	0.024 (5)	-0.014 (4)	-0.002 (5)	
B36	0.043 (5)	0.043 (5)	0.035 (5)	0.012 (4)	-0.014 (4)	0.002 (4)	
B37	0.055 (5)	0.053 (6)	0.033 (5)	0.022 (4)	-0.024 (4)	-0.004 (4)	
B38	0.076 (6)	0.051 (6)	0.033 (5)	0.030 (5)	0.005 (4)	0.018 (4)	

Bond lengths (Å)

C1—C2	1.382 (7)	C80—C81	1.405 (9)
C1—C6	1.404 (8)	С80—Н80	0.9500
C1—P1	1.827 (6)	C81—C82	1.382 (9)
C2—C3	1.390 (8)	C81—H81	0.9500
С2—Н2	0.9500	C82—C83	1.360 (8)
C3—C4	1.374 (9)	C82—H82	0.9500
С3—Н3	0.9500	C83—C84	1.378 (8)
C4—C5	1.373 (9)	С83—Н83	0.9500
C4—H4	0.9500	C84—H84	0.9500
C5—C6	1.376 (8)	C85—C86	1.370 (9)
С5—Н5	0.9500	C85—C90	1.400 (9)
С6—Н6	0.9500	C85—P8	1.852 (6)
С7—С8	1.382 (7)	C86—C87	1.371 (9)
C7—C12	1.389 (8)	C86—H86	0.9500
C7—P1	1.833 (6)	C87—C88	1.336 (9)
С8—С9	1.388 (8)	C87—H87	0.9500
C8—H8	0.9500	C88—C89	1.390 (10)
C9—C10	1.380 (9)	C88—H88	0.9500
С9—Н9	0.9500	C89—C90	1.413 (10)
C10-C11	1.397 (8)	C89—H89	0.9500
C10—H10	0.9500	C90—H90	0.9500
C11—C12	1.374 (8)	C91—B22	1.693 (9)
C11—H11	0.9500	C91—C92	1.706 (8)
C12—H12	0.9500	C91—B21	1.710 (9)
C13—C14	1.625 (8)	C91—B23	1.719 (10)
C13—B1	1.645 (8)	C91—B20	1.722 (9)
C13—B5	1.719 (8)	C91—P8	1.879 (6)
C13—B6	1.737 (8)	C92—B25	1.711 (9)
C13—P1	1.839 (5)	C92—B20	1.729 (9)
C14—B3	1.621 (8)	C92—B24	1.735 (9)
C14—B4	1.756 (8)	C92—B23	1.751 (11)
C14—B5	1.762 (9)	C92—P7	1.884 (6)
C14—P2	1.851 (6)	C93—C94	1.380 (9)
C15—C20	1.394 (8)	C93—C98	1.392 (9)
C15—C16	1.403 (8)	C93—P7	1.834 (7)
C15—P2	1.830 (6)	C94—C95	1.388 (10)
C16—C17	1.388 (9)	С94—Н94	0.9500
C16—H16	0.9500	С95—С96	1.384 (10)
C17—C18	1.365 (10)	С95—Н95	0.9500
С17—Н17	0.9500	С96—С97	1.375 (11)

C18—C19	1.387 (10)	С96—Н96	0.9500
C18—H18	0.9500	С97—С98	1.397 (10)
C19—C20	1.376 (9)	С97—Н97	0.9500
С19—Н19	0.9500	С98—Н98	0.9500
С20—Н20	0.9500	C99—C100	1.378 (9)
C21—C22	1.381 (9)	C99—C104	1.383 (9)
C21—C26	1.389 (9)	C99—P7	1.833 (6)
C21—P2	1.827 (6)	C100-C101	1.395 (9)
C22—C23	1.374 (9)	C100—H100	0.9500
С22—Н22	0.9500	C101—C102	1.332 (10)
C23—C24	1.358 (12)	C101—H101	0.9500
С23—Н23	0.9500	C102—C103	1.390 (10)
C24—C25	1.379 (13)	C102—H102	0.9500
C24—H24	0.9500	C103—C104	1.389 (9)
C25—C26	1.403 (10)	C103—H103	0.9500
С25—Н25	0.9500	C104—H104	0.9500
C26—H26	0.9500	C105—Cl2	1.669 (9)
C27—C32	1.389 (8)	C105—Cl1	1.744 (9)
C27—C28	1.398 (8)	C105—H10A	0.9900
C27—P4	1.815 (6)	C105—H10B	0.9900
C28—C29	1.387 (9)	P1—Au1	2.4444 (14)
C28—H28	0.9500	P2—Au1	2.4082 (14)
C29—C30	1.386 (9)	P3—Au1	2.3852 (14)
С29—Н29	0.9500	P4—Au1	2.4512 (14)
C30—C31	1.392 (9)	P5—Au2	2.4665 (17)
С30—Н30	0.9500	P6—Au2	2.3956 (15)
C31—C32	1.374 (8)	P7—Au2	2.4113 (16)
C31—H31	0.9500	P8—Au2	2.4517 (16)
С32—Н32	0.9500	B1—B7	1.780 (10)
C33—C34	1.394 (8)	B1—B6	1.823 (10)
C33—C38	1.396 (8)	B1—B2	1.865 (10)
C33—P4	1.833 (6)	B1—H1	1.20 (7)
C34—C35	1.375 (8)	B1—H3B	1.23 (4)
C34—H34	0.9500	B2—B8	1.760 (11)
C35—C36	1.389 (8)	B2—B7	1.784 (11)
С35—Н35	0.9500	B2—B3	1.830 (11)
C36—C37	1.362 (8)	B2—H2A	1.08 (7)
С36—Н36	0.9500	B2—H3B	1.11 (4)
C37—C38	1.384 (8)	B3—B8	1.744 (10)
С37—Н37	0.9500	B3—B4	1.757 (10)
С38—Н38	0.9500	В3—НЗА	1.27 (7)
C39—B10	1.710 (9)	B4—B8	1.738 (10)
C39—B12	1.710 (9)	B4—B9	1.753 (10)
C39—C40	1.716 (8)	B4—B5	1.799 (9)
C39—B15	1.721 (9)	B4—H4A	1.1200
C39—B16	1.735 (9)	B5—B6	1.768 (10)
C39—P4	1.875 (6)	B5—B9	1.778 (9)
C40—B19	1.700 (9)	B5—H5A	1.1200

C40—B16	1.722 (9)	B6—B9	1.744 (9)
C40—B11	1.733 (9)	B6—B7	1.764 (9)
C40—B12	1.745 (9)	B6—H6A	1.1200
C40—P3	1.882 (5)	B7—B9	1.809 (10)
C41-C42	1 391 (8)	B7—B8	1 809 (11)
C_{41} C_{42}	1.305 (8)	B7 H7	1.1200
C_{41} P_{2}	1.335 (6)		1.1200 1.776(10)
$C_{41} = 15$	1.038(0)		1.1200
C42—C43	1.377 (9)	B8—H8A	1.1200
C42—H42	0.9500	B9—H9A	1.1200
C43—C44	1.376 (9)	B10—B12	1.746 (10)
C43—H43	0.9500	B10—B14	1.781 (11)
C44—C45	1.370 (9)	B10—B15	1.785 (11)
C44—H44	0.9500	B10—B13	1.799 (11)
C45—C46	1.386 (8)	B10—H10C	1.1200
C45—H45	0.9500	B11—B18	1.756 (11)
C46—H46	0.9500	B11—B17	1.763 (11)
C47—C52	1.391 (9)	B11—B19	1.770 (12)
C47—C48	1.398 (9)	B11—B16	1.795 (10)
C47—P3	1 820 (6)	B11—H11A	1 1200
C_{48} C_{49}	1 381 (9)	B12_B13	1.7200
C_{48} H/8	0.9500	B12 B13	1.755(10) 1.817(11)
C_{40} C_{50}	1.376(11)	D12-D19	1.017 (11)
C49-C30	1.570 (11)	D12—H12A	1.1200
C49—H49	0.9500	B13—B18	1.765 (12)
C50—C51	1.383 (10)	B13—B14	1.778 (11)
С50—Н50	0.9500	B13—B19	1.784 (11)
C51—C52	1.371 (9)	B13—H13	1.1200
C51—H51	0.9500	B14—B18	1.772 (12)
С52—Н52	0.9500	B14—B15	1.788 (10)
C58A—C53A	1.3900	B14—B17	1.795 (12)
C58A—C54A	1.3900	B14—H14	1.1200
C58A—H58A	0.9500	B15—B17	1.779 (11)
C53A—C55A	1.3900	B15—B16	1.789 (10)
C53A—P5	1.833 (6)	B15—H15	1.1200
C55A—C56A	1.3900	B16—B17	1.776 (10)
C55A—H55A	0.9500	B16—H16A	1 1200
$C_{56A} = C_{57A}$	1 3900	B17—B18	1 793 (11)
C56A H56A	0.9500	B17 H17A	1.1200
C57A C54A	1 2000		1.1200
C57A = C54A	1.3900		1.770 (11)
$C_{5/A}$ $H_{5/A}$	0.9300		1.1200
C54A—H54A	0.9500	BI9—HI9A	1.1200
C53B—C58B	1.3900	B20—B21	1.764 (10)
C53B—C57B	1.3900	B20—B28	1.786 (10)
C53B—P5	1.792 (14)	B20—B24	1.802 (10)
C58B—C55B	1.3900	B20—H20A	1.1200
C58B—H58B	0.9500	B21—B28	1.748 (11)
C55B—C54B	1.3900	B21—B27	1.752 (10)
C55B—H55B	0.9500	B21—B22	1.783 (10)
C54B—C56B	1.3900	B21—H21	1.1200

C54BH54B	0.9500	B22B23	1 744 (11)
C56B C57B	1 3000	B22 B25 B22 B27	1.744(11) 1.768(10)
C56B H56B	0.9500	B22 B27	1.706(10) 1.786(10)
C57B H57B	0.9500		1.1200
$C_{50} C_{64}$	1 254 (9)	D22—1122A	1.1200
C59-C04	1.334(0)	B23—B20	1.700(11)
C59—C60	1.393 (9)	B23—B23	1.819(11)
C39—P3	1.855 (0)	B23—H23A	1.1200
	1.403 (10)	B24—B29	1.772 (10)
С60—Н60	0.9500	B24—B28	1.773 (10)
C61—C62	1.390 (10)	B24—B25	1.775 (11)
C61—H61	0.9500	B24—H24A	1.1200
C62—C63	1.347 (9)	B25—B29	1.769 (11)
C62—H62	0.9500	B25—B26	1.780 (11)
C63—C64	1.389 (9)	B25—H25A	1.1200
С63—Н63	0.9500	B26—B29	1.780 (11)
C64—H64	0.9500	B26—B27	1.788 (10)
C65—C66	1.618 (8)	B26—H26A	1.1200
C65—B31	1.640 (10)	B27—B28	1.790 (11)
C65—B30	1.715 (10)	B27—B29	1.790 (11)
С65—В33	1.735 (10)	B27—H27	1.1200
C65—P5	1.846 (6)	B28—B29	1.781 (11)
С66—В36	1.636 (9)	B28—H28A	1.1200
C66—B32	1.736 (9)	B29—H29A	1.1200
C66 - B30	1 752 (10)	B30—B33	1.770(12)
C66—P6	1.852 (6)	B30—B38	1.770(12)
C67 - C72	1 380 (9)	B30_B32	1.797 (11)
C67_C68	1.303 (8)	B30 H30A	1.727 (11)
C67 B6	1.393(0) 1.817(6)	D30—1130A D21 D24	1.1200
C68 - C60	1.017(0) 1.278(10)	$D_{21} D_{21} D_{22}$	1.700(11) 1.812(12)
C69 $U69$	1.578 (10)	D31	1.012(12)
C(0, C70	0.9300	D31-D33	1.641(12)
C69—C70	1.391 (12)	B31—H31A	1.10(/)
С69—Н69	0.9500	B31—H31B	1.22 (4)
C/0_C/1	1.353 (11)	B32—B37	1.750 (11)
С70—Н70	0.9500	B32—B36	1.765 (12)
C71—C72	1.383 (9)	B32—B38	1.777 (12)
С71—Н71	0.9500	B32—H32A	1.1200
С72—Н72	0.9500	B33—B38	1.754 (11)
C73—C78	1.401 (9)	B33—B34	1.781 (11)
C73—C74	1.410 (8)	B33—H33	1.1200
С73—Р6	1.826 (6)	B34—B35	1.775 (13)
C74—C75	1.409 (9)	B34—B37	1.794 (12)
С74—Н74	0.9500	B34—B38	1.803 (13)
C75—C76	1.380 (10)	B34—H34A	1.1200
С75—Н75	0.9500	B35—B37	1.762 (13)
C76—C77	1.383 (10)	B35—B36	1.854 (12)
С76—Н76	0.9500	B35—H31B	1.18 (4)
C77—C78	1.378 (9)	B35—H35A	1.12 (4)
С77—Н77	0.9500	B36—B37	1.746 (12)

С78—Н78	0.9500	B36—H36A	1.14 (7)
C79—C80	1.385 (8)	B37—B38	1.787 (13)
C79—C84	1.394 (8)	B37—H37A	1.1200
C79—P8	1.835 (6)	B38—H38A	1.1200