metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di-*n*-butylbis(*N*-*n*-butyl-*N*-ethyldithiocarbamato-*kS*)tin(IV)

Ibrahim Baba,^a Nur Nadia Dzulkefli^a and Seik Weng Ng^{b*}

^aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 17 April 2009; accepted 22 April 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (N–C) = 0.012 Å; some non-H atoms missing; disorder in main residue; R factor = 0.066; wR factor = 0.239; data-to-parameter ratio = 15.8.

The Sn atom in the title compound, $[Sn(C_4H_9)_2(C_7H_{14}NS_2)_2]$, exists in a tetrahedral C_2S_2Sn coordination geometry. The geometry is distorted towards skew-trapezoidal-bipyramidal owing to the proximity of the double-bond S atoms [Sn-S =2.521 (2) and $Sn \cdots S = 2.933$ (2) Å]. The Sn atom lies on a special position of *mm*2 site symmetry and the tin-bound *n*butyl chain is disordered about a mirror plane. The ethyl and *n*-butyl groups of the dithiocarbamate unit are disordered about another mirror plane.

Related literature

For other di-*n*-butyltin dithiocarbamates, see: Farina *et al.* (2000); Lokaj *et al.* (1986); Menezes *et al.* (2005); Vrábel *et al.* (1992*a,b*); Vrábel & Kellö (1993); Zia-ur-Rehman *et al.* (2006). For a review of the applications and structures of tin dithiocarbamates, see: Tiekink (2008).

Experimental

Crystal data

 $\begin{bmatrix} Sn(C_4H_9)_2(C_7H_{14}NS_2)_2 \end{bmatrix} \\ M_r = 585.54 \\ Orthorhombic, Pmmn \\ a = 11.1317 (2) Å \\ b = 19.4349 (3) Å \\ c = 7.7262 (1) Å$

Data collection

Bruker SMART APEX112diffractometer20'Absorption correction: multi-scan160(SADABS; Sheldrick, 1996) R_{ir} $T_{min} = 0.749, T_{max} = 0.821$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.239$ S = 1.112072 reflections 131 parameters $V = 1671.51 (5) Å^{3}$ Z = 2 Mo K\alpha radiation \mu = 1.02 mm^{-1} T = 123 K 0.30 \times 0.25 \times 0.20 mm

11224 measured reflections 2072 independent reflections 1667 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.024$

 $\begin{array}{l} \text{55 restraints} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 1.03 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank Universiti Kebangsaan Malaysia and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2428).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farina, Y., Baba, I., Othman, A. H. & Ng, S. W. (2000). Main Group Met. Chem. 23, 795–796.
- Lokaj, J., Kellö, E., Kettmann, V., Vrábel, V. & Rattay, V. (1986). Collect. Czech. Chem. Commun. **51**, 2521–2527.
- Menezes, D. C., Vieira, F. T., de Lima, G. M., Porto, A. O., Cortes, M. E., Ardisson, J. D. & Albrecht-Schmitt, T. E. (2005). *Eur. J. Med. Chem.* 40, 1277–1282.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.
- Vrábel, V. & Kellö, E. (1993). Acta Cryst. C49, 873-875.
- Vrábel, V., Lokaj, J., Kellö, E., Garaj, J., Batsanov, A. C. & Struchkov, Yu. T. (1992b). Acta Cryst. C48, 633–635.
- Vrábel, V., Lokaj, J., Kellö, E., Rattay, V., Batsanov, A. C. & Struchkov, Yu. T. (1992a). Acta Cryst. C48, 627–629.

Westrip, S. P. (2009). publCIF. In preparation.

Zia-ur-Rehman, Shahzadi, S., Ali, S., Badshah, A. & Jin, G.-X. (2006). J. Iran. Chem. Soc. 3, 157–160.

supporting information

Acta Cryst. (2009). E65, m594 [doi:10.1107/S1600536809014883]

Di-n-butylbis(N-n-butyl-N-ethyldithiocarbamato-kS)tin(IV)

Ibrahim Baba, Nur Nadia Dzulkefli and Seik Weng Ng

S1. Experimental

Carbon disulfide (4 ml, 0.06 mol) was added to *n*-butylisopropylamine (8 ml, 0.06 mol) in ethanol (50 ml) at 277 K. Dibutyltin dichloride (9.1 g, 0.03 mol) dissolved in ethanol (50 ml) was added. The white solid that precipitated was collected and recrystallized from ethanol.

S2. Refinement

The tin-bound butyl chain was allowed to refined off the mirror plane, as were the ethyl and butyl groups of the dithiocarbamate anion. 1,2-Related carbon-carbon distances were restrained to 1.54 ± 0.01 Å and the 1,3-related ones to 2.51 ± 0.02 Å. The N1–C6 and N1–C6' pair of distances were restrained to 0.01 Å as were the N1–C8 and N1–C8' pair. The temperature factors of the primed atoms were restrained to those of the unprimed ones; the anisotropic displacement parameters of the primed atoms were restrained to be nearly isotropic.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The final difference Fourier map had a large peak in the vicinity of the C9' atom.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of dibutyldi(*N*-butyl-*N*-ethylbutyldithiocarbamato)tin at the 70% probability level; the disorder is not shown. Unlabelled atoms are related by a 2-fold axis. Hydrogen atoms are drawn as spheres of arbitrary radius.

Di-n-butylbis(N-n-butyl-N-ethyldithiocarbamato- KS)tin(IV)

Crystal data

 $[Sn(C_4H_9)_2(C_7H_{14}NS_2)_2]$ $M_r = 585.54$ Orthorhombic, *Pmmn* Hall symbol: -P 2ab 2a a = 11.1317 (2) Å b = 19.4349 (3) Å c = 7.7262 (1) Å V = 1671.51 (5) Å³ Z = 2

Data collection

Bruker SMART APEX	11224 measured reflections
diffractometer	2072 independent reflections
Radiation source: fine-focus sealed tube	1667 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Sheldrick, 1996)	$k = -24 \rightarrow 25$
$T_{\min} = 0.749, \ T_{\max} = 0.821$	$l = -10 \rightarrow 9$
Refinement	
Refinement on F^2	Secondary atom site location: difference

F(000) = 612

 $\theta = 2.8 - 28.2^{\circ}$

 $\mu = 1.02 \text{ mm}^{-1}$ T = 123 K

Block, colorless

 $0.30 \times 0.25 \times 0.20$ mm

 $D_{\rm x} = 1.163 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 5407 reflections

Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.066$ Hydrogen site location: inferred from $wR(F^2) = 0.239$ neighbouring sites *S* = 1.11 H-atom parameters constrained 2072 reflections $w = 1/[\sigma^2(F_0^2) + (0.1484P)^2 + 2.8257P]$ where $P = (F_o^2 + 2F_c^2)/3$ 131 parameters 55 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.03 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sn1	0.7500	0.2500	0.43290 (7)	0.0602 (4)	
S1	0.7500	0.33480 (11)	0.6798 (2)	0.0659 (6)	
S2	0.7500	0.39534 (11)	0.3309 (3)	0.0852 (9)	
N1	0.7500	0.4700 (4)	0.6210 (11)	0.0661 (18)	
C1	0.5831 (12)	0.257 (4)	0.3153 (12)	0.085 (10)	0.50
H1A	0.5315	0.2190	0.3580	0.102*	0.50
H1B	0.5448	0.3008	0.3488	0.102*	0.50
C2	0.5905 (11)	0.2529 (13)	0.1171 (11)	0.100 (5)	0.50
H2A	0.6437	0.2901	0.0752	0.120*	0.50
H2B	0.6277	0.2085	0.0843	0.120*	0.50
C3	0.4697 (14)	0.2591 (17)	0.0264 (19)	0.107 (9)	0.50
H3A	0.4814	0.2581	-0.1006	0.129*	0.50
H3B	0.4314	0.3034	0.0573	0.129*	0.50
C4	0.3882 (18)	0.1990 (16)	0.082 (3)	0.130 (9)	0.50

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H4A	0.3075	0.2058	0.0345	0.195*	0.50
H4B	0.3839	0.1973	0.2087	0.195*	0.50
H4C	0.4215	0.1557	0.0384	0.195*	0.50
C5	0.7500	0.4065 (5)	0.5500 (10)	0.0576 (18)	
C6	0.744 (3)	0.4806 (13)	0.8169 (16)	0.085 (4)	0.25
H6A	0.7181	0.5282	0.8426	0.102*	0.25
H6B	0.6849	0.4485	0.8678	0.102*	0.25
C7	0.865 (3)	0.4679 (13)	0.8947 (16)	0.049 (4)	0.25
H7A	0.8610	0.4755	1.0200	0.074*	0.25
H7B	0.9235	0.4996	0.8437	0.074*	0.25
H7C	0.8896	0.4204	0.8716	0.074*	0.25
C6′	0.732 (3)	0.4781 (19)	0.8168 (18)	0.085 (4)	0.25
H6′1	0.6980	0.4354	0.8668	0.102*	0.25
H6′2	0.6764	0.5166	0.8415	0.102*	0.25
C7′	0.857 (3)	0.4929 (13)	0.895 (3)	0.049 (4)	0.25
H7′1	0.8499	0.4994	1.0199	0.074*	0.25
H7′2	0.8904	0.5346	0.8419	0.074*	0.25
H7′3	0.9108	0.4539	0.8711	0.074*	0.25
C8	0.7479 (19)	0.5360 (8)	0.521 (3)	0.083 (4)	0.50
H8A	0.7211	0.5739	0.5971	0.100*	0.25
H8B	0.6901	0.5321	0.4240	0.100*	0.25
C9	0.8705 (19)	0.5520 (8)	0.451 (3)	0.047 (4)	0.25
H9A	0.8942	0.5147	0.3706	0.056*	0.25
H9B	0.9283	0.5519	0.5483	0.056*	0.25
C10	0.8813 (14)	0.6206 (8)	0.356 (3)	0.042 (3)	0.25
H10A	0.9489	0.6186	0.2727	0.050*	0.25
H10B	0.8979	0.6579	0.4398	0.050*	0.25
C11	0.764 (3)	0.6359 (14)	0.259 (4)	0.102 (6)	0.25
HIIA	0.7647	0.6837	0.2178	0.153*	0.25
H11B	0.6955	0.6291	0.3365	0.153*	0.25
H11C	0.7567	0.6048	0.1592	0.153*	0.25
C8′	0.734 (3)	0.5340 (12)	0.513 (5)	0.083 (4)	0.25
H8C	0.6770	0.5655	0.5725	0.100*	0.25
H8D	0.6985	0 5215	0 3999	0.100*	0.25
C9'	0.8539(19)	0.5710(11)	0.485(3)	0.047(4)	0.25
H9C	0.8873	0 5851	0 5982	0.056*	0.25
H9D	0.9114	0.5388	0.4302	0.056*	0.25
C10′	0.8399(14)	0.6346 (8)	0.370(3)	0.042(3)	0.25
H10C	0.8562	0.6218	0.2482	0.050*	0.25
H10D	0.8999	0.6696	0.4046	0.050*	0.25
C11′	0.7130 (18)	0.6661 (16)	0 383 (4)	0.102 (6)	0.25
HIID	0 7018	0.6997	0.2898	0.153*	0.25
H11E	0 7037	0.6889	0.4951	0.153*	0.25
H11F	0.6528	0.6295	0 3717	0.153*	0.25
	0.0320	0.0270	0.3/1/	0.133	0.20

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U ¹²	<i>U</i> ¹³	<i>U</i> ²³
Sn1	0.1059 (7)	0.0502 (5)	0.0245 (4)	0.000	0.000	0.000
S 1	0.1097 (17)	0.0588 (11)	0.0292 (8)	0.000	0.000	-0.0063 (7)
S2	0.172 (3)	0.0471 (11)	0.0367 (9)	0.000	0.000	-0.0001 (8)
N1	0.080 (4)	0.055 (4)	0.064 (4)	0.000	0.000	-0.018 (3)
C1	0.112 (9)	0.08 (3)	0.062 (6)	0.03 (2)	-0.015 (6)	-0.007 (11)
C2	0.135 (11)	0.112 (11)	0.053 (5)	0.075 (14)	0.011 (7)	0.029 (11)
C3	0.145 (13)	0.11 (2)	0.070 (7)	0.041 (19)	-0.030 (9)	0.006 (12)
C4	0.137 (18)	0.16 (2)	0.089 (13)	0.024 (18)	-0.032 (12)	0.002 (13)
C5	0.073 (5)	0.057 (4)	0.043 (4)	0.000	0.000	-0.006 (3)
C6	0.086 (8)	0.091 (6)	0.077 (6)	0.000 (8)	-0.029 (8)	-0.042 (5)
C7	0.048 (5)	0.066 (11)	0.034 (4)	0.002 (9)	-0.017 (4)	0.016 (6)
C6′	0.086 (8)	0.091 (6)	0.077 (6)	0.000 (8)	-0.029 (8)	-0.042 (5)
C7′	0.048 (5)	0.066 (11)	0.034 (4)	0.002 (9)	-0.017 (4)	0.016 (6)
C8	0.068 (7)	0.063 (5)	0.118 (7)	-0.021 (8)	0.010 (9)	0.001 (5)
C9	0.040 (6)	0.057 (8)	0.044 (7)	0.002 (6)	0.011 (5)	0.013 (7)
C10	0.031 (8)	0.035 (6)	0.058 (6)	0.010 (5)	0.014 (6)	0.005 (5)
C11	0.119 (11)	0.092 (9)	0.095 (9)	0.039 (9)	-0.007 (8)	0.002(7)
C8′	0.068 (7)	0.063 (5)	0.118 (7)	-0.021 (8)	0.010 (9)	0.001 (5)
C9′	0.040 (6)	0.057 (8)	0.044 (7)	0.002 (6)	0.011 (5)	0.013 (7)
C10′	0.031 (8)	0.035 (6)	0.058 (6)	0.010 (5)	0.014 (6)	0.005 (5)
C11′	0.119 (11)	0.092 (9)	0.095 (9)	0.039 (9)	-0.007 (8)	0.002 (7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Sn1—C1	2.073 (13)	С7—Н7В	0.9800
Sn1—C1 ⁱ	2.073 (13)	С7—Н7С	0.9800
Sn1—C1 ⁱⁱ	2.073 (13)	C6′—C7′	1.545 (10)
Sn1—C1 ⁱⁱⁱ	2.073 (13)	С6′—Нб′1	0.9900
Sn1—S1	2.5211 (19)	С6′—Н6′2	0.9900
Sn1—S1 ⁱⁱⁱ	2.5211 (19)	C7′—H7′1	0.9800
S1—C5	1.718 (9)	C7′—H7′2	0.9800
S2—C5	1.707 (8)	С7′—Н7′3	0.9800
N1—C5	1.350 (11)	C8—C9	1.4998
N1—C8	1.499 (14)	C8—H8A	0.9900
N1—C8′	1.508 (15)	C8—H8B	0.9900
N1—C8′ ⁱⁱ	1.508 (15)	C9—C10	1.527 (9)
N1—C6	1.528 (14)	С9—Н9А	0.9900
N1—C6 ⁱⁱ	1.528 (14)	С9—Н9В	0.9900
N1—C6′ ⁱⁱ	1.534 (15)	C10—C11	1.536 (10)
N1—C6′	1.534 (15)	C10—H10A	0.9900
C1—C2	1.536 (9)	C10—H10B	0.9900
C1—H1A	0.9900	C11—H11A	0.9800
C1—H1B	0.9900	C11—H11B	0.9800
С2—С3	1.520 (9)	C11—H11C	0.9800
C2—H2A	0.9900	C8′—C9′	1.536 (10)

C2H2B	0.9900	C8'—H8C	0 9900
$C_2 C_4$	1.540(10)		0.9900
C_{2} H_{2} Λ	0.0000	C0' = C10'	1.520 (10)
	0.9900	C_{3} — C_{10}	1.329 (10)
C3—H3B	0.9900	C9—H9C	0.9900
C4—H4A	0.9800	С9′—Н9D	0.9900
C4—H4B	0.9800	C10'—C11'	1.543 (10)
C4—H4C	0.9800	C10'—H10C	0.9900
C6—C7	1.4925	C10'—H10D	0.9900
С6—Н6А	0.9900	C11'—H11D	0.9800
С6—Н6В	0.9900	C11'—H11E	0.9800
С7—Н7А	0.9800	C11′—H11F	0.9800
C1—Sn1—C1 ⁱⁱ	127.4 (9)	С6—С7—Н7А	109.5
C1 ⁱ —Sn1—C1 ⁱⁱ	128.0 (6)	С6—С7—Н7В	109.5
C1— $Sn1$ — $C1$ ⁱⁱⁱ	128.0 (6)	H7A—C7—H7B	109.5
$C1^{i}$ $Sn1$ $C1^{iii}$	127 4 (9)	С6—С7—Н7С	109 5
C1 = Sn1 = S1	106.9(14)	H7A - C7 - H7C	109.5
$C1^{i}$ $Sn1$ $S1$	111.9(15)	H7B_C7_H7C	109.5
$C1^{ii}$ $Sn1$ $S1$	111.9(13) 106.0(14)	$\frac{11}{B} - \frac{C}{C} - \frac{11}{C}$	105.5
$C1 \longrightarrow Sn1 \longrightarrow S1$	100.9(14)	NI = CC = C/	110.3 (19)
C1 = S11 = S1	111.9 (15)	NI = C0 = H0 I	110.4
C1 = S11 = S1	111.9 (15)	C/-C0-H0	110.4
C1 - Sn1 - S1	106.9 (14)	N1 - C6 - H6'2	110.4
$C1^{n}$ — $Sn1$ — $S1^{m}$	111.9 (15)	С7'—С6'—Н6'2	110.4
$C1^{m}$ — $Sn1$ — $S1^{m}$	106.9 (14)	H6'1—C6'—H6'2	108.6
S1— $Sn1$ — $S1$ ⁱⁱⁱ	81.64 (10)	C6'—C7'—H7'1	109.5
C5—S1—Sn1	95.1 (3)	C6'—C7'—H7'2	109.5
C5—N1—C8	124.9 (12)	H7'1—C7'—H7'2	109.5
C5—N1—C8′	122.0 (17)	С6'—С7'—Н7'3	109.5
C5—N1—C8′ ⁱⁱ	122.0 (17)	H7′1—C7′—H7′3	109.5
C5—N1—C6	121.7 (12)	H7′2—C7′—H7′3	109.5
C8—N1—C6	113.3 (14)	N1—C8—C9	110.5 (8)
C8′—N1—C6	115.5 (18)	N1—C8—H8A	109.6
C8′ ⁱⁱ —N1—C6	116.1 (19)	С9—С8—Н8А	109.6
$C5-N1-C6^{ii}$	121.7(12)	N1—C8—H8B	109.6
$C8 - N1 - C6^{ii}$	1134(14)	C9 C8 H8B	109.6
$C8'$ N1 $C6^{ii}$	116.1 (10)		109.0
$C8'^{ii}$ N1 $C6^{ii}$	110.1(19) 115.5(19)	$C_{2}^{8} = C_{1}^{10} = C_{1}^{10}$	100.1
C5 N1 CC'	110.7 (16)	C_{8}	113.2 (9)
C_{3} NI C_{6}	119.7 (16)	Cla Ca Hat	108.5
$C8 - N1 - C6^{m}$	115.1 (18)	C10—C9—H9A	108.5
C8'—N1—C6''	118 (2)	С8—С9—Н9В	108.5
$C8^{m}$ N1 $-C6^{m}$	116 (2)	С10—С9—Н9В	108.5
C5—N1—C6′	119.7 (16)	H9A—C9—H9B	107.5
C8—N1—C6′	114.8 (18)	C9—C10—C11	109.7 (12)
C8′—N1—C6′	116 (2)	C9—C10—H10A	109.7
C8' ⁱⁱ —N1—C6'	118 (2)	C11—C10—H10A	109.7
C2—C1—Sn1	112.7 (9)	C9—C10—H10B	109.7
C2—C1—H1A	109.1	C11—C10—H10B	109.7
Sn1—C1—H1A	109.1	H10A—C10—H10B	108.2

C2—C1—H1B	109.1	C10-C11-H11A	109.5
Sn1—C1—H1B	109.1	C10-C11-H11B	109.5
H1A—C1—H1B	107.8	H11A—C11—H11B	109.5
C3—C2—C1	114.1 (9)	C10—C11—H11C	109.5
C3—C2—H2A	108.7	H11A—C11—H11C	109.5
C1—C2—H2A	108.7	H11B—C11—H11C	109.5
C3—C2—H2B	108.7	N1—C8′—C9′	111.1 (17)
C1—C2—H2B	108.7	N1—C8′—H8C	109.4
H2A—C2—H2B	107.6	C9'—C8'—H8C	109.4
C2—C3—C4	109.4 (13)	N1—C8′—H8D	109.4
С2—С3—НЗА	109.8	C9'—C8'—H8D	109.4
С4—С3—НЗА	109.8	H8C—C8′—H8D	108.0
С2—С3—Н3В	109.8	C10'—C9'—C8'	111.9 (11)
С4—С3—Н3В	109.8	С10'—С9'—Н9С	109.2
НЗА—СЗ—НЗВ	108.2	С8′—С9′—Н9С	109.2
C3—C4—H4A	109.5	C10'—C9'—H9D	109.2
C3—C4—H4B	109.5	C8′—C9′—H9D	109.2
H4A—C4—H4B	109.5	H9C—C9′—H9D	107.9
C3—C4—H4C	109.5	C9′—C10′—C11′	112.1 (12)
H4A—C4—H4C	109.5	C9'—C10'—H10C	109.2
H4B—C4—H4C	109.5	C11′—C10′—H10C	109.2
N1—C5—S2	121.3 (7)	C9'—C10'—H10D	109.2
N1—C5—S1	120.3 (6)	C11′—C10′—H10D	109.2
S2—C5—S1	118.4 (5)	H10C—C10′—H10D	107.9
C7—C6—N1	109.8 (11)	C10'—C11'—H11D	109.5
С7—С6—Н6А	109.7	C10′—C11′—H11E	109.5
N1—C6—H6A	109.7	H11D—C11′—H11E	109.5
С7—С6—Н6В	109.7	C10'—C11'—H11F	109.5
N1—C6—H6B	109.7	H11D—C11′—H11F	109.5
H6A—C6—H6B	108.2	H11E—C11′—H11F	109.5
C1—Sn1—S1—C5	-69.5 (16)	C6′ ⁱⁱ —N1—C5—S1	8.7 (14)
C1 ⁱ —Sn1—S1—C5	-75.1 (16)	C6'—N1—C5—S1	-8.7 (14)
C1 ⁱⁱ —Sn1—S1—C5	69.5 (16)	Sn1—S1—C5—N1	180.000 (3)
C1 ⁱⁱⁱ —Sn1—S1—C5	75.1 (16)	Sn1—S1—C5—S2	0.000 (2)
S1 ⁱⁱⁱ —Sn1—S1—C5	180.000 (2)	C5—N1—C6—C7	78.1 (9)
C8—N1—C5—S2	1.1 (10)	C8—N1—C6—C7	-105.3 (10)
C8′—N1—C5—S2	8.2 (12)	C8′—N1—C6—C7	-112.2 (12)
C8′ ⁱⁱ —N1—C5—S2	-8.2 (12)	C8′ ⁱⁱ —N1—C6—C7	-96.8 (13)
C6—N1—C5—S2	177.2 (14)	C6 ⁱⁱ —N1—C6—C7	-13.4 (4)
C6 ⁱⁱ —N1—C5—S2	-177.2 (14)	C5—N1—C8—C9	-78.2 (8)
C6′ ⁱⁱ —N1—C5—S2	-171.3 (14)	C8'—N1—C8—C9	-144 (19)
C6'—N1—C5—S2	171.3 (14)	C8′ ⁱⁱ —N1—C8—C9	-6 (15)
C8—N1—C5—S1	-178.9 (10)	C6—N1—C8—C9	105.4 (14)
C8′—N1—C5—S1	-171.8 (12)	C6 ⁱⁱ —N1—C8—C9	100.2 (14)
C8′ ⁱⁱ —N1—C5—S1	171.8 (12)	C6′ ⁱⁱ —N1—C8—C9	94.5 (15)

supporting information

C6—N1—C5—S1	-2.8 (14)	C6'—N1—C8—C9	111.1 (14)
C6 ⁱⁱ —N1—C5—S1	2.8 (14)		

Symmetry codes: (i) *x*, -*y*+1/2, *z*; (ii) -*x*+3/2, *y*, *z*; (iii) -*x*+3/2, -*y*+1/2, *z*.