organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethyl 3-bromobenzoate

Sher Bahadur,^a Itrat Anis,^b Muhammad Raza Shah^{a*} and Kuldip Singh^c

^aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, ^bDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and ^cDepartment of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, England

Correspondence e-mail: raza_shahm@yahoo.com

Received 16 April 2009; accepted 25 April 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.014 Å; R factor = 0.061; wR factor = 0.119; data-to-parameter ratio = 14.0.

The molecule of the title compound, C₁₃H₁₂BrN₃O₄, is nonplanar, as indicated in the dihedral angle of 59.5 $(4)^{\circ}$ formed between the least-squares planes through the imidazole and benzene rings. In the crystal, molecules are connected via C- $H \cdot \cdot \cdot O$ contacts, forming a supramolecular chain.

Related literature

For potential pharmacological uses of benzoic acid derivatives, see: Correa-Basurto et al. (2005); Jetten et al. (1987); Kelly et al. (2007); Sato et al. (2005). For a related structure, see: Wang et al. (2008).

Experimental

Crystal data	
$C_{13}H_{12}BrN_3O_4$	a = 11.871 (2) A
$M_r = 354.17$	b = 19.840 (4)
Monoclinic, Cc	c = 7.1983 (13)

$\beta = 124.488 \ (3)^{\circ}$
$V = 1397.4 (4) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.589, T_{\max} = 0.916$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained
$wR(F^2) = 0.119$	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.86	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$
2680 reflections	Absolute structure: Flack (1983),
191 parameters	1301 Friedel pairs
2 restraints	Flack parameter: 0.091 (17)

 $\mu = 2.96 \text{ mm}^{-1}$ T = 150 K

 $R_{\rm int} = 0.087$

 $0.20 \times 0.07 \times 0.03 \text{ mm}$

5456 measured reflections

2680 independent reflections

1636 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -Н	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4a\cdots O2^{i}$	0.99	2.59	3.494 (10)	152
Summatry and (i) x	n e 1			

Symmetry code: (i) x, y, z - 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Pakistan Science Foundation for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2425).

References

- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART for Windows NT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.
- Correa-Basurto, J., Espinosa-Raya, J., Vazquez-Alcantara, I., Flores-Sandoval, C. A. & Trujillo-Ferrara, J. (2005). Chem. Biol. Interact. 157, 353-434.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jetten, A. M., Anderson, K., Deas, M. A., Kagechika, H., Lotan, R., Rearick, J. I. & Shudo, K. (1987). Cancer Res. 47, 3523-3527.
- Kelly, P. N., Adeline, P., Siobhan, D., Isobel, O., Rosaleen, D., Alok, G., John, G. F., Alan, L. J. & Peter, K. T. M. (2007). J. Organomet. Chem. 692, 1327-1331.
- Sato, M., Shudo, K. & Hiragun, A. (2005). J. Cell. Physiol. 135, 179-188.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, S. Q., Jian, F. F. & Liu, H. Q. (2008). Acta. Cryst. E64, o1750.

Acta Cryst. (2009). E65, o1176 [doi:10.1107/S1600536809015499]

2-(2-Methyl-5-nitro-1*H*-imidazol-1-yl)ethyl 3-bromobenzoate

Sher Bahadur, Itrat Anis, Muhammad Raza Shah and Kuldip Singh

S1. Comment

Derivatives of benzoic acid offer promise as compounds that possess multifunctional physiological activity (hypolesterolemic, antitumor, antithrombic, *etc.*) and do not cause hypervitaminosis and other side-effects (Jetten *et al.* 1987). It has been reported that synthesized benzoic acid derivatives of the amide- and chalcone-series show inhibitory activity of squamous cell differentiation of rabbit traeheal epithelial cell but induce differentiation of mouse embryonal carcinoma F9 and human promyelocytic leukemia HL60 cells (Correa-Basurto *et al.*, 2005). *p*-Aminobenzoic acid derivatives were evaluated as acetylcholinesterase inhibitors (AChEIs) (Sato *et al.*, 2005). Benzoic acid derivatives have also been found to exhibit cytotoxic effects on the MDA-MB-435-S—F breast cancer cell line (Kelly *et al.*, 2007).

In the crystal structure of the title compound (I), Fig. 1, the key C=O and C—N bond distances are in agreement with those observed in the related structure of imidazolmethyl phthalimide (Wang *et al.*, 2008).

S2. Experimental

Metronidazole (5 g, 29.23 mmol) was added to 3-bromobenzoic acid (7.64 g, 38.01 mmol) dissolved in anhydrous CH_2Cl_2 (10 ml). Then 4-dimethylaminopyridine (0.15 equiv.) and dicyclohexylcarbodiimide (1.25 equiv) were added, and the resulting solution stirred. After 12 h, the solvent was evaporated under reduced pressure. The crude reaction mixture was subjected to flash column chromatography over silica gel, successively eluting with n-hexane–ethyl acetate (3:7) which afforded (I) in 70% yield. Colorless crystals were obtained from the slow evaporation of a CH_2Cl_2 solution of (I).

S3. Refinement

H atoms were placed in calculated positions, C—H = 0.95–0.99 Å, and included in the riding model approximation with U_{iso} set to $1.5U_{eq}(C)$ for methyl-H atoms and $1.2U_{eq}(C)$ for remaining H atoms.

Figure 1

Molecular Structure of (I) show atom labelling and 30% displacement ellipsoids.

2-(2-Methyl-5-nitro-1*H*-imidazol-1-yl)ethyl 3-bromobenzoate

Crystal data

C₁₃H₁₂BrN₃O₄ $M_r = 354.17$ Monoclinic, Cc Hall symbol: C -2yc a = 11.871 (2) Å b = 19.840 (4) Å c = 7.1983 (13) Å $\beta = 124.488$ (3)° V = 1397.4 (4) Å³ Z = 4

Data collection

Bruker APEX 2000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.589, T_{\max} = 0.916$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.119$ S = 0.86 F(000) = 712 $D_x = 1.683 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 616 reflections $\theta = 3.7-23.3^{\circ}$ $\mu = 2.96 \text{ mm}^{-1}$ T = 150 KNeedle, colourless $0.20 \times 0.07 \times 0.03 \text{ mm}$

5456 measured reflections 2680 independent reflections 1636 reflections with $I > 2\sigma(I)$ $R_{int} = 0.087$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -14 \rightarrow 14$ $k = -24 \rightarrow 23$ $l = -8 \rightarrow 8$

2680 reflections191 parameters2 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} = 0.001$
map	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
Hydrogen site location: inferred from	$\Delta ho_{\min} = -0.55 \text{ e} \text{\AA}^{-3}$
neighbouring sites	Absolute structure: Flack (1983), 1301 Friedel
H-atom parameters constrained	pairs
$w = 1/[\sigma^2(F_o^2) + (0.0345P)^2]$	Absolute structure parameter: 0.091 (17)
where $P = (F_o^2 + 2F_c^2)/3$	-

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.81001 (10)	0.59782 (5)	0.72927 (13)	0.0588 (3)
01	0.0138 (5)	0.6343 (3)	0.5323 (9)	0.0363 (14)
O2	0.0896 (5)	0.7074 (3)	0.8019 (9)	0.0434 (15)
O3	0.2933 (5)	0.5475 (3)	0.4184 (9)	0.0309 (14)
O4	0.2623 (6)	0.4375 (3)	0.4381 (11)	0.0437 (16)
N1	0.0966 (6)	0.6786 (3)	0.6597 (11)	0.0322 (16)
N2	0.2152 (6)	0.6769 (3)	0.4669 (9)	0.0234 (14)
N3	0.3904 (6)	0.7449 (3)	0.6962 (11)	0.0324 (16)
C1	0.2023 (8)	0.6976 (4)	0.6362 (12)	0.0261 (17)
C2	0.3074 (10)	0.7391 (4)	0.7650 (18)	0.042 (3)
H2	0.3216	0.7622	0.8924	0.050*
C3	0.3307 (8)	0.7090 (4)	0.5099 (13)	0.0281 (18)
C4	0.1261 (7)	0.6329 (4)	0.2730 (12)	0.0280 (18)
H4A	0.1413	0.6422	0.1537	0.034*
H4B	0.0295	0.6436	0.2115	0.034*
C5	0.1513 (7)	0.5597 (4)	0.3332 (13)	0.0294 (19)
H5A	0.1344	0.5490	0.4498	0.035*
H5B	0.0903	0.5315	0.1988	0.035*
C6	0.3328 (8)	0.4832 (4)	0.4592 (12)	0.0222 (18)
C7	0.4765 (8)	0.4759 (4)	0.5349 (12)	0.0263 (19)
C8	0.5272 (9)	0.4134 (4)	0.5409 (13)	0.041 (2)
H8	0.4686	0.3754	0.4966	0.049*
C9	0.6614 (10)	0.4036 (5)	0.6098 (14)	0.048 (2)
H9	0.6962	0.3596	0.6198	0.057*
C10	0.7422 (9)	0.4597 (5)	0.6630 (13)	0.049 (3)
H10	0.8333	0.4538	0.7053	0.059*
C11	0.6978 (8)	0.5231 (4)	0.6579 (12)	0.035 (2)
C12	0.5625 (7)	0.5325 (4)	0.5850 (12)	0.032 (2)
H12	0.5277	0.5768	0.5688	0.038*

C13	0.3796 (8)	0.7029 (4)	0.3597 (13)	0.043 (2)
H13A	0.3319	0.7359	0.2373	0.064*
H13B	0.3608	0.6573	0.2962	0.064*
H13C	0.4781	0.7115	0.4472	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0321 (4)	0.0955 (8)	0.0384 (5)	-0.0218 (7)	0.0137 (4)	0.0017 (7)
01	0.025 (3)	0.046 (4)	0.035 (3)	-0.002 (3)	0.014 (3)	0.006 (3)
O2	0.038 (3)	0.065 (4)	0.039 (3)	0.001 (3)	0.028 (3)	-0.007 (3)
O3	0.025 (3)	0.031 (3)	0.036 (4)	0.002 (3)	0.017 (3)	0.005 (3)
O4	0.042 (4)	0.031 (3)	0.062 (4)	-0.003 (3)	0.032 (4)	0.005 (3)
N1	0.021 (4)	0.044 (4)	0.030 (4)	0.007 (3)	0.014 (3)	0.013 (3)
N2	0.025 (4)	0.028 (4)	0.018 (3)	-0.009(3)	0.012 (3)	-0.003 (3)
N3	0.031 (4)	0.036 (4)	0.036 (4)	-0.007 (3)	0.022 (4)	-0.012 (3)
C1	0.024 (4)	0.031 (4)	0.025 (4)	-0.005 (4)	0.015 (4)	-0.006 (4)
C2	0.030 (5)	0.030 (5)	0.059 (7)	0.003 (5)	0.021 (5)	0.000 (5)
C3	0.035 (5)	0.024 (4)	0.030 (5)	0.006 (4)	0.021 (4)	0.008 (4)
C4	0.027 (4)	0.039 (5)	0.022 (4)	-0.005 (4)	0.017 (4)	0.000 (4)
C5	0.021 (4)	0.043 (5)	0.028 (5)	-0.003 (4)	0.017 (4)	0.008 (4)
C6	0.027 (5)	0.028 (5)	0.010 (4)	-0.004 (4)	0.010 (3)	-0.002 (4)
C7	0.024 (4)	0.037 (5)	0.019 (4)	0.005 (4)	0.013 (4)	-0.002 (4)
C8	0.044 (6)	0.046 (6)	0.024 (5)	0.004 (5)	0.014 (4)	0.003 (4)
C9	0.049 (6)	0.049 (6)	0.041 (6)	0.022 (5)	0.023 (5)	0.011 (5)
C10	0.038 (5)	0.085 (8)	0.035 (6)	0.012 (5)	0.027 (5)	0.012 (5)
C11	0.029 (5)	0.050 (6)	0.021 (4)	0.005 (4)	0.011 (4)	0.000 (4)
C12	0.025 (4)	0.045 (5)	0.021 (4)	0.009 (4)	0.010 (4)	0.009 (4)
C13	0.053 (6)	0.043 (5)	0.044 (5)	-0.010 (5)	0.035 (5)	0.006 (4)

Geometric parameters (Å, °)

Br1—C11	1.861 (8)	C4—H4B	0.9900
01—N1	1.248 (7)	C5—H5A	0.9900
O2—N1	1.216 (8)	С5—Н5В	0.9900
O3—C6	1.334 (9)	C6—C7	1.475 (10)
O3—C5	1.451 (8)	C7—C8	1.369 (10)
O4—C6	1.183 (9)	C7—C12	1.420 (11)
N1-C1	1.410 (9)	C8—C9	1.389 (12)
N2-C1	1.374 (9)	C8—H8	0.9500
N2—C3	1.378 (9)	C9—C10	1.375 (11)
N2-C4	1.468 (8)	С9—Н9	0.9500
N3—C3	1.317 (9)	C10—C11	1.356 (11)
N3—C2	1.334 (11)	C10—H10	0.9500
C1—C2	1.336 (12)	C11—C12	1.391 (10)
С2—Н2	0.9500	C12—H12	0.9500
C3—C13	1.493 (10)	C13—H13A	0.9800
C4—C5	1.497 (10)	C13—H13B	0.9800

C4—H4A	0.9900	C13—H13C	0.9800
C6—O3—C5	115.6 (6)	H5A—C5—H5B	108.7
O2—N1—O1	123.3 (6)	O4—C6—O3	124.8 (7)
O2—N1—C1	117.7 (7)	O4—C6—C7	124.0 (8)
01—N1—C1	119.0 (6)	Q3—C6—C7	111.3 (7)
C1-N2-C3	105.0 (6)	C8—C7—C12	118.0 (7)
C1—N2—C4	129.7 (6)	C8—C7—C6	119.7 (8)
C3—N2—C4	125.2 (6)	C12—C7—C6	122.1(7)
$C_3 - N_3 - C_2$	104.3(7)	C7—C8—C9	122.2(8)
C2-C1-N2	105.7 (7)	C7—C8—H8	118.9
C2-C1-N1	128.8 (8)	С9—С8—Н8	118.9
N2-C1-N1	125.4 (6)	C_{10} C_{9} C_{8}	117.7 (8)
$N_3 - C_2 - C_1$	1130(9)	C10-C9-H9	121.1
N3-C2-H2	123.5	С8—С9—Н9	121.1
C1-C2-H2	123.5	C11—C10—C9	122.9 (8)
N3-C3-N2	111.8 (6)	$C_{11} - C_{10} - H_{10}$	118 5
N3-C3-C13	125.1 (7)	C9-C10-H10	118.5
N2-C3-C13	123.0(7)	C10-C11-C12	118.9 (8)
$N_2 - C_4 - C_5$	112.5 (6)	C10-C11-Br1	121.6(7)
N2-C4-H4A	109.1	C12— $C11$ — $Br1$	119.3 (6)
C5—C4—H4A	109.1	C11—C12—C7	120.0 (8)
N2—C4—H4B	109.1	C11—C12—H12	120.0
C5—C4—H4B	109.1	C7—C12—H12	120.0
H4A—C4—H4B	107.8	C3—C13—H13A	109.5
03-C5-C4	106.1 (6)	C3—C13—H13B	109.5
03—C5—H5A	110.5	H13A—C13—H13B	109.5
C4—C5—H5A	110.5	C3—C13—H13C	109.5
03—C5—H5B	110.5	H13A—C13—H13C	109.5
C4—C5—H5B	110.5	H13B—C13—H13C	109.5
C3—N2—C1—C2	-0.1 (8)	C6—O3—C5—C4	-173.1 (6)
C4—N2—C1—C2	-177.6 (7)	N2-C4-C5-O3	-59.7 (7)
C3—N2—C1—N1	178.8 (7)	C5—O3—C6—O4	-2.7 (11)
C4—N2—C1—N1	1.3 (12)	C5—O3—C6—C7	177.4 (6)
O2—N1—C1—C2	7.5 (12)	O4—C6—C7—C8	13.3 (12)
O1—N1—C1—C2	-173.8 (8)	O3—C6—C7—C8	-166.7 (7)
O2—N1—C1—N2	-171.2 (7)	O4—C6—C7—C12	-172.0 (7)
O1—N1—C1—N2	7.5 (10)	O3—C6—C7—C12	8.0 (10)
C3—N3—C2—C1	3.8 (10)	C12—C7—C8—C9	4.8 (12)
N2—C1—C2—N3	-2.3 (10)	C6—C7—C8—C9	179.8 (7)
N1—C1—C2—N3	178.8 (7)	C7—C8—C9—C10	-3.0 (13)
C2—N3—C3—N2	-3.8 (9)	C8—C9—C10—C11	2.2 (13)
C2—N3—C3—C13	176.0 (8)	C9-C10-C11-C12	-3.3 (13)
C1—N2—C3—N3	2.5 (8)	C9-C10-C11-Br1	-179.6 (6)
C4—N2—C3—N3	-179.8 (6)	C10—C11—C12—C7	5.1 (11)
C1—N2—C3—C13	-177.3 (7)	Br1-C11-C12-C7	-178.5 (6)
C4—N2—C3—C13	0.3 (11)	C8—C7—C12—C11	-5.8 (11)

C1—N2—C4—C5 C3—N2—C4—C5	-81.4 (9) 101.6 (8)	С6—	-C7C12C11	17	79.4 (7)
Hydrogen-bond geometry (Å, °)					
D—H···A	D-	—Н	H···A	D····A	D—H···A
C4—H4a···O2 ⁱ	0.9	99	2.59	3.494 (10)	152

Symmetry code: (i) x, y, z-1.